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The hollowing of silicon membranes to form a lattice of cylindrical holes, also called phononic crystal, has
been used by several experimental groups willing to fabricate efficient thermoelectric modules. The idea
is to reduce the thermal conductivity without impacting the electronic conductivity. For several a priori
identical materials, i.e. thin films containing periodic cylindrical holes, drastically different levels of ther-
mal conductivity reduction have been reported in the literature: from 1–2 W K�1 m�1 to 15–40 W K�1

m�1, i. e. half the thermal conductivity of the plain membrane. These differences may be due to variations
in the geometrical patterns, or to the technological processes specific to each group. It is therefore highly
desirable to understand which level of reduction can be expected from the basic concept. In this work, we
address the question by applying a fully atomistic framework, the approach-to-equilibrium molecular
dynamics (AEMD), to study two deca-nanometric patterns used in the literature and reported respec-
tively with a high and low level of thermal conductivity reduction. For both patterns, the thermal conduc-
tivity roughly decreases by a factor 2 only compared to the plain membrane. Thanks to Monte Carlo
simulations, in agreement with AEMD for the two patterns, we propose that the origin of stronger reduc-
tions could be an increase of the surface roughness during the step of hole fabrication.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Nanostructuration opens perspectives in the field of thermo-
electricity to materials that are not a priori good candidates. This
is the case for crystalline silicon, a safe and abundant material
whose technology has been largely developed and that one would
like to use on the same chip to process the information and handle
the energy conversion. Several options of nanostructuration have
been studied, such as the 1D structuration in nanowires combined
with an optimisation of the surface roughness [1–3]. In the same
idea of limiting the phonon free paths to decrease the thermal con-
ductivity, the fabrication of nanostructured membranes including
nano-holes also raised a great interest [4–8]. In silicon at room
temperature, 80% of the total thermal conductivity is provided by
phonons that experience mean free paths larger than 100 nm
[9,10]. The pattern dimensions (hole diameter and pitch) should
ideally be choosen in the range 10–100 nm to act as efficient
cutoffs on the phonon MFP distribution and strongly reduce the
thermal conductivity with a limited impact on the electronic
conductivity (MFPs of a few nanometers). Patterns in this range
are however challenging to obtain even by the most advanced
nanofabrication techniques, but a cutoff at 500 nm can still sup-
press half the total thermal conductivity [9].

However, there is a controversy on the level of thermal conduc-
tivity reduction resulting from nanostructuration. In Refs. [4,5],
values of 1–2 W K�1 m�1, close to the amorphous limit are
reported, while in Refs. [6–8], the thermal conductivity only
reduces to 15–40W K�1 m�1, i. e. half the thermal conductivity
of the plain membrane. The discrepancy can not be attributed to
the range of dimensions and volume fraction, since it is similar
in Refs. [4,5,7] (between 10 and 100 nm and 10–30%) and in Refs.
[4,6,8] (several hundreds of nm and �35%). It is therefore highly
desirable to be able to distinguish between the effect of nanostruc-
turation and of specific nano-fabrication methods by simulating
holey silicon membranes free of any defects but with real
dimensions.

In the present work, we focus on two membranes falling in the
deca-nanometric range: the membranes of Refs. [5] (hereafter
called ‘‘Y”) and [7] (hereafter called ‘‘H”). The characteristic lengths
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Table 1
Thickness t, hole diameter D and pitch p of patterns.

Source t (nm) D (nm) p (nm)

Ref. [5] (‘‘Y”) 22 16 34
Ref. [7] (‘‘H”) 54 20 60
Ref. [11] (‘‘L”) 8.1 5.4 8.1

Fig. 2. Y, H and L patterns drawn on the same scale.
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of the plain and nanostructured membranes are defined in the
schematical representation of Fig. 1. Their values are reported in
Table 1. The thermal conductivities measured in Ref. [5] are equal
to 17 W K�1 m�1 for the plain membrane and 1–2 W K�1 m�1 for
the nanostructured membrane, while in Ref. [7], the thermal con-
ductivity are equal to 59 � 10 W K�1 m�1 for the plain membrane
and 34.5 � 7.5 W K�1 m�1 for the nanostructured membrane. The
higher absolute values obtained in Ref. [7] can be explained by
the greater thickness of their membranes. However, the reduction
of thermal conductivity is far more pronounced in Ref. [5] (�10)
than in Ref. [7] (<2).

The thermal conductivity of nanostructured membranes (here-
after called ‘‘L”) has been studied by molecular dynamics (MD)
simulations [11] using the Green-Kubo approach [12]. The patterns
Y, H and L are compared in Fig. 2. A thermal conductivity of 45 W
K�1 m�1 has been obtained for the plain membrane, that decreases
to 2 to 12 W K�1 m�1 for hole diameters ranging from D = 3–6.5
nm. The thickness and pitch were set to t = 8.1 nm and p = 8.1
nm. The reduction of thermal conductivity is significative, and
ranges from 4 to 25. However the dimensions are considerably
lower dimensions than in experiments, and it can not be ruled
out that the thermal conductivity strong reduction is due a stron-
ger downscaling.

In order to achieve a better understanding of the thermal con-
ductivity of nanostructured membranes, we have studied the three
patterns by using three complementary theroretical approaches,
going from the atomistic level (molecular dynamics), to the meso-
scopic level (Monte Carlo) and to the continuum level (effective
medium theory). This work is presented as follows. Section 2 pro-
vides details on the MD method and presents the results. Section 3
is devoted to the other modelling work by Monte Carlo simulations
and using the effective medium theory. Section 4 contains the
comparison with experiments and discussion of our results. Con-
cluding remarks are collected in Section 5.
2. Approach-to-equilibrium molecular dynamics

We have started by studying a plain membrane (hereafter
called ‘‘P”) to obtain a reference of thermal conductivity in absence
of nanostructuration. The plain membrane is modeled by an ele-
mentary rectangular pattern presented in Fig. 1 (dashed-
delimited volume). The atoms are arranged on a diamond lattice
and the upper and lower surfaces are smooth. Periodic boundary
conditions are applied in the two directions of the membrane
Fig. 1. Schematic representation of the plain and nanostructured membranes studied in t
D the diameter of the cylindrical holes. The dashed volumes represent the elementary pa
case).
plane. In the present study, the thickness has been fixed to
t = 8.1 nm (15 lattice units) for all the membranes. The square
section of the rectangular supercell that models the plain mem-
brane has a side equal to a = t = 8.1 nm. It has been shown [19] that
the dependence of the thermal conductivity on the cross section of
the simulation cell is weak with the MD methodology presented
below. On the other hand, the thermal conductivity exhibits a pro-
nounced dependence on length, both in bulk materials [19] and
nanowires [20], and the length L must therefore be increased until
the thermal conductivity becomes constant in order to guarantee
that the thermal conductivity does not present any size effects
inherent to the method, and can be compared to other theoretical
or experimental values. In the present case and for the plain
membranes, this has required to increase the length L from 80
up to 800 nm.
he present work. t is the thickness of the membrane, p is the pitch of the pattern and
ttern of the simulation boxes (cross section t � a, length L, equal to 3p in the present
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The elementary pattern build to model the nanostructured
membrane is a rectangular box of thickness t = 8.1 nm, and sides
a = L=p (dashed-delimited volume in Fig. 1, right). In order to get
rid of any length dependence, the elementary supercell p� p is
duplicated one time p� ðL ¼ 2p), 2 times p� ðL ¼ 3p), . . .until the
thermal conductivity becomes constant. In the case of the pattern
Y, the elementary supercell contains Nat = 380,000 atoms and has
been replicated up to 8 times (Nat �3 millions of atoms). In the case
of the pattern H, the elementary supercell contains Nat = 1.3 mil-
lions of atoms and has been replicated up to 5 times (Nat�6.4 mil-
lions of atoms). We have also studied the smaller structure
(pattern L), having in mind the comparison of our results with
those from a different MD methodology.

The MD simulations are carried out using a modified version of
the code DL_POLY [14]. The interactions between atoms are mod-
eled by Tersoff’s empirical potential [13]. After equilibration of the
structure at room temperature Tt , the approach-to-equilibrium
molecular dynamics (AEMD) methodology [15,16] is applied. In
phase 1, the initial state is created by applying simultaneously
two Nosé-Hoover [17,18] thermostats, a first one at a hot temper-
ature (400 K) and a second thermostat at a cold temperature (200
K) respectively to the first and second halves of the atomic box
along the length L. Fig. 3.a shows the average temperature in each
block, T1 and T2, that are equilibrated during 30 ps. In Fig. 3b, the
temperature profiles averaged over the last 10 ps of the trajectory
are presented. Parabola are superimposed at the minimum and
maximum, a sign that the temperature difference is correctly equi-
librated (the heat equation including a generation term G for the

thermostat is reduced in the steady state to @2T
@z2 ¼ �G=D = constant,

with D the thermal diffusivity). For the nanostructured membrane,
the supercell contains two holes (i.e. the elementary supercell is
replicated once), centered are at the minimum and at the
 150
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block as a function of time during phase 2 (c), temperature profiles during phase 2 (d). Th
represent the MD results for the nanostructured membrane. The lines are parabola in figu
case adjusted to the MD results. (For interpretation of the references to colour in this fi
maximum of the temperature profiles. This is the reason why the
profile presents a bending at the neck (around z=L ¼ 0 and
z=L ¼ �0:5). In phase 2 of the AEMD, the thermostats are removed
and the equilibrium is approached during a microcanonical trajec-
tory. In Fig. 3.c, the temperature difference DT ¼ T2 � T1 between
the average temperatures of the hot and cold blocks is plotted
for the plain and the nanostructured membrane. The decay is
exponential, as evidenced by the curves superimposed on the MD
profiles. In the case of the nanostructured membrane, a short tran-
sient first occurs, and a bi-exponential curve adjusts more properly
the profile. The larger of the two decays, that corresponds to the
asymptotic behaviour, is exploited to obtain the thermal conduc-
tivity, according to the procedure explained below. In Fig. 3.d,
the temperatures profiles in phase 2 are plotted. In dark, the profile
in the plain membrane follows a sine function of the form
sinð2pz=LÞ, with a small deviation at the minimum and maximum.
In red, the temperature profile in the nanostructured membrane is
also a sine function in average, but with slight curvature variations
between the regions with and without hole.

The results of the MD simulations are analysed at the light of
the heat equation, written and solved in the same conditions.
The procedure has already been applied in the case of bulks
[16,19] and nanowires [20]. The temperature difference between
the two blocks has a dominant and asymptotic contribution of
the form:

DTðtÞ / DT0e�t=sD ð1Þ
and the temperature profile TðzÞ is a Fourier series with a dominant
sinusoidal term of decaying amplitude sinð2pz=LÞe�t=sD . Since both
the temporal evolution of the temperature difference and the tem-
perature profiles in phase 2 (Fig. 3. c and.d) are consistent with the
transient solution of the heat equation, we can exploit the relation
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between the decay time sD (provided the asymptotic decay is used)
and the thermal conductivity derived from the heat equation fol-
lowing the relation:

j ¼ L2

4p2

CV :q
sD

ð2Þ

where q ¼ Nat=V is the number density and CV ¼ 3kB the specific
heat. The volume V is equal to t2L in the case of the plain membrane,
and to

V ¼ t aL� nh
pD2

4

 !
ð3Þ

for a nanostructured membrane containing nh holes. The decay time
being extracted from the difference of average temperatures in each
block, the thermal conductivity obtained from Eq. (2) is an average
value that does not account for the details of the temperature pro-
file, and corresponds to the macroscopic value as determined by the
experimental measurements.

The thermal conductivities obtained by the AEMD methodology
are presented in Fig. 4. For all the membranes studied in the pre-
sent work, we are able to observe the thermal conductivity become
constant at large L. For the plain membrane P, the conductivity sat-
urates to a value of jP

MD ¼ 45� 5 W K�1 m�1. This value is larger
than the experimental value (9 W K�1 m�1 for a 9 nm-thick mem-
brane [21]). It has been shown [22] that this overestimation occurs
because the surface of the MD-simulated membrane has no rough-
ness or oxide passivation, as opposed to the nanofabricated struc-
tures. In the present work, we focus on the impact on the thermal
conductivity of the nanostructuration by hole hollowing. There-
fore, we will consider the factor of reduction from a plain to a
nanostructured membrane, and not the absolute values of thermal
conductivities. A last point concerning the plain membrane is the
length LP � 600 nm that corresponds to the thermal conductivity
saturation, identifying the value of the maximum phonon free
paths in the structure [19]. The thermal conductivity saturates to
jH

MD ¼ 21:2� 0:1 W K�1 m�1 above lengths LH ¼ 200� 50 nm for
the pattern of Ref. [7], to jY

MD ¼ 17:2� 0:1 W K�1 m�1 above

lengths LY ¼ 200� 10 nm for the pattern of Ref. [5], and to
jL

MD ¼ 3:4� 0:2 W K�1 m�1 above lengths LL ¼ 80� 10 nm for
Fig. 4. Thermal conductivity versus length obtained in the plain and nanostruc-
tured membranes by MD (filled symbols) and MC (open symbols). The results for
the plain membranes p are represented by squares, for the nanostructured
membranes H by triangles, for the nanostructured membranes Y by diamonds
and for the nanostructured membranes L by circles. The lines connecting the points
are guides for the eyes.
the pattern of Ref. [11]. This last thermal conductivity is in good
agreement with the theoretical result of Ref. [11] obtained with
the interatomic potential of Ref. [28].

3. Monte Carlo simulation and effective medium theory

The same membranes have also been studied by Monte Carlo
simulations. The latter technique is based on the resolution of
the Boltzmann Transport Equation (BTE) for phonons in the relax-
ation time approximation [23–25]:

@f
@t

þrKx � rrf ¼ f 0 � f
sRðx; TÞ ð4Þ

f is the phonon distribution function at temperature
T;vg ¼ rKx is the group velocity, sR is the relaxation time, and
the exponent ‘‘0” refers to thermal equilibrium. In this approach,
phonons are considered as pseudoparticles with wave properties
(pulsation, group velocity and polarization) carrying a given energy
�hx and interacting through phonon-phonon processes, Rayleigh
scattering with impurities and boundary scattering with the geo-
metrical boundaries of the nanostructure. The BTE (Eq. (4)) is
solved thanks to an iterative algorithm where phonon displace-
ments and interactions are modeled through several steps: (i)
Design of the geometry of the structure (plain or nanostructured)
and discretization of the control volumes. The MC control volumes
are the same as supercells used in MD simulations presented
above. (ii) Boundary condition setting. First and last cells are set
to prescribed temperatures (blackbodies), phonon reflection at
hole edges and lateral boundaries (y direction) is specular while
it depends on the specularity parameter p on the top and bottom
edges of the membrane (x direction). (iii) Sampling of phonon pop-
ulation (frequency, polarization and group velocity, using an
energy cumulative distribution function [24]) at random space
positions in a cell according to its prescribed temperature. Phonon
properties are those of the bulk crystalline Si using data provided
by Pop et al. [27]. (iv) Advective transport of phonons during a time
step dt according to their initial position and group velocity.
Reflections at the boundaries (membrane and hole edges) are
achieved during this step. v) Phonon internal scattering. The
scattering probability depends on phonon relaxation time as
Pscat ¼ 1� expð�dt=sRÞ, the selection of Umklapp, normal or impu-
rity scattering is done through random number sampling. Phonon
properties (frequency, polarization, group velocity and propagation
direction) are partly or fully resampled depending on the consid-
ered process. Semiempirical lifetimes proposed by Holland [26]
are used in this work.

During MC simulation, the three last steps are repeated until
steady state is reached (after tens of nanoseconds depending on
the nanostructure length). The heat flux along z is given as the
energy transported by phonons in each cell Jz ¼ 1

V

P
�hxvgz of vol-

ume V. Both heat flux and temperature are averaged on the steady
state period, than the thermal conductivity is extracted according
to the Fourier’s law as Jz ¼ �jrT . More details about the simula-
tion procedure can be found in references [23–25].

The results of the MC calculations are also plotted in Fig. 4. The
length dependences are similar using the two approaches. The
thermal conductivites converge to a value of jP

MC ¼ 47:0� 1:5 W
K�1 m�1 for the plain membrane, jH

MC ¼ 24:2� 0:2 W K�1 m�1 for
the nanostructured membrane H, jY

MC ¼ 15:7� 0:1 W K�1 m�1 for
the nanostructured membrane Y and jL

MC ¼ 5:2� 0:0 W K�1 m�1

for the nanostructured membrane L. The results of the two
approaches, MD and MC, are in good agreement. It can therefore
be concluded that the downscaling does not impact significantly
the phononic states (since the bulk characteristics are used in the
MC calculations) and that a classical treatment is proper (since
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the phonons are populated according to the Bose-Einstein distribu-
tion in the MC calculations, but the MD trajectories are classical).

Finally, we have calculated the thermal conductivity following
the effective medium theory (EMT). Within EMT, the heat equation
is solved in a continuous and holey bulk as a function of the vol-
ume fraction, as presented in Appendix (dark line in Fig. 5). The
result, that gives the macroscopic limit of thermal conductivity
reduction by hole hollowing, is discussed in the next section.
4. Discussion

The thermal conductivity reduction, defined as the ratio of the
thermal conductivity of the nanostructured membrane jns over
the thermal conductivity of the plain membrane, jns=jP is plotted
in Fig. 5 as a function of the volume fraction /, defined as the ratio
of hole volume over total volume. The experimental and theoreti-
cal results are distributed on 3 scales: (a) pitch and diameters
smaller than 10 nm (D; p < 10 nm), (b) in the deca-nanometer
range (10 < D; p < 100 nm) and (c) greater than 100 nm
(D; p > 100 nm). In the range (a), not achievable in practice even
by the most advanced technological recipes, we find the MD and
MC calculations with the small pattern [11]. In the range (b), we
find the experimental and theoretical calculations on the pattern
H and Y, and in the range (c) larger patterns as fabricated by
Vega-Flick et al. [8], and out of reach of the MD calculations. All
the results lie below the macroscopic limit given by the effective
medium theory, as expected from the downscaling of the mem-
branes dimensions. MD and MC results are in good agreement, as
already mentioned in Section 3. At fix volume fraction, the thermal
conductivity reduction is more pronounced when the scaling goes
down, as evidenced for / � 0:35 where we can compare the EMT
result, the measurement by Vega-Flick (scale D; p > 100 nm) and
the MD and MC calculation on the small pattern (D; p < 10 nm).
Concerning the systems in the deca-nanometric range
(10 < D; p < 100 nm), they have comparable volume fraction
(0:1 < / < 0:2) and the thermal conductivity reduction is of the
same order (0.4–0.5) at the exception of the measurement of Ref.
[5] (0.1).

In order to investigate the origin of this difference, we have car-
ried out additional MC calculations using a specularity parameter p
that corresponds to a full diffuse scattering at the top and bottom
surfaces. The thermal conductivities of the plain and nanostruc-
tured membranes are reduced respectively to 22.2 and 7.4 W K�1
m�1. The reduction factor is the same, �0.33. However, in the
hypothesis that the surface roughness has been increased during
the step of hole hollowing, the thermal conductivity would then
decrease from �45 W K�1 m�1 (plain membrane with smooth sur-
faces) to �7 W K�1 m�1 (nanostructured membrane with rough
surfaces). The corresponding reduction factor (0.15) would then
be in agreement with the measurements.

5. Conclusion

In conclusion, we have exploited the approach-to-equilibrium
methodology to calculate the thermal conductivity of real nanos-
tructures having dimensions in the deca-nanometric range. We
have shown that for volume fractions around 0.1–0.2, the thermal
conductivity reduces by a factor of 2 approximately compared to
the plain membrane. This reduction level is in agreement with
some of the reported measurements in the literature, but can not
explain the strong reduction obtained in other works. We have
used Monte Carlo simulations to rationalize a stronger reduction
in the case where the hole fabrication would increase the surface
roughness. This assumption should of course be validated experi-
mental and non-trivial nano-characterisation of the surface state.
Moreover in this case, the low thermal conductivity would be
adapted to an efficient thermoelectric module, but the electronic
conductivity could be impacted by the high surface roughness. In
order to further decrease the thermal conductivity of crystalline
Si membranes with a reduced surface roughness, a larger volume
fraction of holes or a stronger downscaling are two possible routes.
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Appendix A. Thermal conductivity from the effective medium
theory

We consider a heterogeneous medium characterized by a
position-dependent thermal conductivity j. In a steady state the
Fourier heat equation reads:

~rj � ~rT þ jr2T ¼ 0: ðA:1Þ
We assume that j depends on y and z, being however constant

along the x direction, i.e. j ¼ jðy; zÞ. Moreover, jðy; zÞ is a doubly
periodic function with periods Ly and Lz in the y and z directions,
respectively (rectangular symmetry). The length L of the overall
system in the z direction is much larger than Lz. Further, the system
is assumed to be infinite along the other directions x and y. This
system is subjected to the boundary conditions Tð0; yÞ ¼ T1 and
TðL; yÞ ¼ T2, which are able to mimic a remotely applied heat flux.
In order to solve Eq. (A.1) in a region far from the boundaries, we
define the Fourier transforms of the conductivity j and the scalar
field T:

jðy; zÞ ¼
X1
n¼�1

X1
m¼�1

jn;me
2piðnyLyþ

mz
Lz
Þ
; ðA:2Þ

Tðy; zÞ ¼ ðT2 � T1Þz
L

þ
X1
n¼�1

X1
m¼�1

Tn;me
2piðnyLyþ

mz
Lz
Þ
: ðA:3Þ



Fig. A.6. Cylindrical inclusion of thermal conductivity j2 in a medium of thermal
conductivity j1.
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In terms of Fourier components, Eq. (A.1) reads

X1
n¼�1

X1
m¼�1

Tn;mjk�n;h�m2pðnk
L2y

þmh

L2z
Þ � jk;hi

h
Lz

ðT2 � T1Þ
L

¼ 0; ðA:4Þ

which is a set of infinite equations ð�1 < k;h < þ1Þ that must be
numerically solved to get the unknowns Tn;m. Here, we have

jk;h ¼ 1
LyLz

Z Ly

0

Z Lz

0
jðy; zÞe�2piðkyLyþ

hz
Lz
Þdydz: ðA:5Þ

The effective conductivity jeff along the z direction is defined by
the ratio of the average heat flux hJzi ¼ h�j @T

@zi to the average ther-

mal gradient h� @T
@zi ¼ � ðT2�T1Þ

L . After some straightforward calcula-
tion, we get

jeff ¼ j0;0 �
X1
n¼�1

X1
m¼�1

Tn;m
2pim
Lz

j�n;�m: ðA:6Þ

If we take into consideration cylindrical inclusions of diameter
D, placed at the center of each cell, we are able to homogenize a
doubly periodic array of cylindrical inhomogeneities. The cylinders
have a thermal conductivity j2 and are embedded in a matrix of
conductivity j1 (see Fig. A.6). Hence, we can calculate through
Eq. (A.5) the Fourier coefficients of the thermal conductivity, as
follows

j0;0 ¼j1ð1� f Þþj2f ðA:7Þ

jn;m ¼ðj2�j1Þ ð�1Þnþm ffiffiffiffi
/

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn2þm2Þ

p J1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/pðn2þm2Þ

q� �
: forðn;mÞ– ð0;0Þ
where J1 is the Bessel function of the first kind and order one and
/ ¼ pD2=ð4LyLzÞ is the volume fraction of the embedded cylinders.

The effective thermal conductivity of the porous system
addressed in this paper can be eventually calculated through Eq.
(A.6), where the coefficients Tn;m are numerically evaluated by
means of Eqs. (A.4) and (A.7) with Ly ¼ Lz and j2 ¼ 0.
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