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We investigate the behavior of a chain of bistable units with an heterogeneous distribution of energy 
jumps between the folded and unfolded states. For homogeneous chains, loaded by soft or hard devices, 
all units at each switching occurrence have the same probability to unfold and it is therefore impossible 
to identify an unfolding pathway. Conversely, the heterogeneity represents a quenched disorder from 
the statistical mechanics point of view, and is able to break the symmetry eventually generating an 
unfolding pathway. We prove that the most probable pathway is realized by arranging the energy 
jumps in ascending order. Hence, the mechanics of this system is able to implement a statistical sorting 
procedure. We quantitatively evaluate the identifiability of the obtained unfolding pathway in terms of 
the variance of the heterogeneous energy jumps and the temperature. This concept is applied to both 
deterministic and random distributions of energy jumps within the chain.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Chains of bistable or multistable units – with coexisting po-
tential energy minima - have recently garnered a wide interest 
because of their capability to represent the behavior of several 
macromolecules of biological origin and of materials or structures 
with internal transitions, typically generated by micro instabilities.

Concerning the biological macromolecules, the bistability has 
been observed by force-spectroscopy experiments [1–5], typically 
performed on polypeptides [6–8], RNA [9,10], and DNA [11–14]. 
The observation of these complex behaviors is very important to 
validate the statistical mechanical theories describing the thermo-
mechanics of polymer chains [15–19]. The modeling of bistable 
systems is also relevant for the understanding of the muscles oper-
ating principle [20,21]. In this case, bistable mechanical models are 
able to describe the physical mechanisms of the two passive and 
active muscle regimes. In several artificial systems, the bistability 
has been exploited to obtain particular performances. We can cite 
bistable mechanical metamaterials with a negative Poisson ratio 
(auxetic media) [22] or systems for controlling the waves prop-
agation [23]. Moreover, asymmetric energy barriers (representing 
a mechanical diode effect) can be realized through origami struc-
tures, which may be used as building blocks for solids with unique 
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functionalities [24]. Similarly, architected materials (with internal 
instabilities) have been proposed to improve the energy dissipa-
tion, which is crucial for having a good damage tolerance [25]. 
Models based on chains of bistable units with transitions between 
two states have been also adopted to model plasticity, hysteretic 
behaviors and martensitic transformations in continuum mechan-
ics [26–32].

The paradigmatic minimal model for describing all these phys-
ical situations is constituted of a chain of bistable units that may 
assume two states, classically named folded and unfolded config-
urations. The bimodal energy potential of each unit is therefore 
composed of two energy wells with different basal energies, sepa-
rated by a given energy barrier. This chain is typically considered 
at a given temperature T in order to study the effect of the ther-
mal fluctuations on the transitions statistics between the states. 
When the chain is homogeneous (all units have the same prop-
erties), the system behavior has been studied in detail. Indeed, it 
is well known that the thermo-mechanical response of this chain 
is strongly dependent on the applied boundary conditions (see 
Fig. 1a for details). When we apply a given force (isotensional 
condition imposed by soft devices), the system is in the Gibbs 
ensemble of the statistical mechanics and the force-extension re-
sponse is characterized by a plateau describing the simultaneous 
transitions of all the units. On the other hand, when we prescribe 
the extension of the chain (isometric condition imposed by hard 
devices), the system is in the Helmholtz ensemble of the statis-
tical mechanics and the force-extension response is characterized 
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Fig. 1. Folding and unfolding processes in homogeneous and heterogeneous chains. Panel a): Gibbs (isotensional) and Helmholtz (isometric) conditions applied to homoge-
neous chains. Panel b): Force-extension response (homogeneous chain) for isotensional condition (with a force plateau, blue) and isometric condition (sawtooth like, red). 
Panel c): average spin variables showing a synchronous unfolding in the Gibbs ensemble and a sequential unfolding in the Helmholtz one (homogeneous chain). All spins 
have the same behavior, and therefore all units have the same probability to unfold at each switching occurrence (no unfolding pathway can be identified). Panel d): plot 
of the quantities ∂〈 yi 〉/∂x (or ∂〈 yi 〉/∂〈x〉) versus x (or 〈x〉) for homogeneous chains. These functions are proportional to the probability density of the position at which 
we can observe the unfolding transition of the i-th unit. Panel e): Scheme of an heterogeneous chain under isometric condition where the units have different �Ei (en-
ergy jumps) and ki (elastic constants). Panel f): Helmholtz force-extension response, slightly modified by the introduction of the heterogeneity. Panel g): the average spin 
variables under isometric condition show the unfolding pathway of the process corresponding to the ascending order of the values �Ei: 3©, 1©, 4©, 2©, 5© (in this exam-
ple �E3 < �E1 < �E4 < �E2 < �E5). Red curve: mean value 1

N

∑〈 yi 〉 of the averaged spins. Panel h): plot of the quantities ∂〈 yi 〉/∂x, confirming the symmetry breaking 
induced by the heterogeneity. Panel i): scheme of an heterogeneous chain under isotensional condition where the units have different �Ei (energy jumps) and ki (elastic 
constants). Panel j): Gibbs force-extension response, slightly modified by the introduction of the heterogeneity. Panel k): the average spin variables under isotensional condi-
tion show the unfolding pathway of the process corresponding to the ascending order of the values �Ei : 3©, 1©, 4©, 2©, 5© (in this example �E3 < �E1 < �E4 < �E2 < �E5, 
as before). Blue curve: mean value 1

N

∑〈 yi 〉 of the averaged spins. Panel l): plot of the quantities ∂〈 yi 〉/∂〈x〉, confirming the symmetry breaking induced by the hetero-
geneity. We adopted the following parameters: N = 5, � = 0.5 nm, T = 300 K, χ = 7, ki = 0.04 N/m ∀i, �Ei = 30K B T ∀i in the homogeneous chain and �E1 = 27.5K B T , 
�E2 = 32.5K B T , �E3 = 25K B T , �E4 = 30K B T , �E5 = 35K B T in the heterogeneous case. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)
by a series of peaks representing the sequential unfolding of the 
units. Moreover, the intermediate cases, in-between the Gibbs and 
the Helmholtz ensembles, have been recently studied by introduc-
ing the real stiffness of the adopted devices [8]. These results can 
be obtained with the method of the spin variables, which intro-
duces a discrete variable (spin-like) for each unit, able to define 
the potential well explored by the unit itself (folded or unfolded 
state) [33–36]. This approach, originally introduced to develop a 
chemo-mechanical model of the muscle behavior [37,38], has been 
exploited only for homogeneous chains. Therefore, the main aim 
of the present investigation is to extend these methods to the case 
of heterogeneous units, namely with heterogeneous energy jumps 
between the states and heterogeneous elastic stiffness of the units. 
The most important difference between the homogeneous and the 
heterogeneous cases can be discussed by observing the behavior of 
the system within both the Gibbs and the Helmholtz ensembles. 
We suppose to increase gradually the force applied or the exten-
sion prescribed to a homogeneous chain. We observe a progressive 
unfolding of the units. However, because of the homogeneity of 
the chain, we can not say what unit unfolds at each transition oc-
currence. Indeed, all units have the same probability to unfold at 
each transition. Conversely, if the chain is heterogeneous with re-
spect to the energy difference between folded and unfolded states 
of the units, we are able to identify an unfolding pathway, which 
is the sequence of the unfolding processes. The heterogeneity, rep-
resenting a quenched disorder within the system, is able to break 
the symmetry among the units and to generate different unfolding 
probabilities at each transition, eventually producing an unfolding 
pathway. We remark that the process corresponding to the com-
plete unfolding of a chain is a probabilistic event and therefore the 
observed pathway assumes a statistical character. It means that if 
we repeat the experiment many times, we can observe, as a result, 
different unfolding pathways. However, the heterogeneity defines 
different probabilities for each pathway and therefore is able to 
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identify the most probable unfolding pathway for a given chain. It 
is worth noticing that the symmetry breaking can be also obtained 
with non-local interactions between the units of the chain [39,40]. 
In this Letter, we propose a mathematical model explaining the 
origin of the symmetry breaking in heterogeneous chains and we 
prove that the unfolding pathway is described by the ascending 
order of the energy jumps between folded and unfolded states. 
It means that the system implements a statistical sorting proce-
dure. To give a complete picture of this process, we also define 
and apply the concept of identifiability of the unfolding pathway. 
This concept is based on the statistical character of the (in general 
nonunique) unfolding pathway and quantifies to what extend it is 
possible to determine the most probable pathway, i.e. the most 
likely observed sequence of unfolding processes in a given ex-
periment. We discuss some examples based on deterministic and 
random sequences of heterogeneous energy jumps, to show the 
generation of an unfolding pathway and the meaning of its identi-
fiability.

2. The Gibbs ensemble

We consider a one-dimensional chain aligned with the x-axis 
of a reference frame and made of N units, which are bistable (in 
each direction, x > 0 and x < 0) and therefore can be either folded 
or unfolded (in each direction). We consider a unit length � in the 
folded state and a length χ� in the unfolded one (χ > 1). The 
potential energy of the units is described by

Ui(x, yi) = vi(yi) + 1

2
ki (x − yi�)

2 , (1)

where vi(±1) = 0 and vi(±χ) = �Ei are the energy jumps be-
tween folded and unfolded states (arbitrarily varying with i). The 
parameters ki represent the elastic constants of the units, which 
are independent of the folded or unfolded state but possibly het-
erogeneous along the chain. Moreover, yi is the spin variable and 
assumes the values in S = {±1,±χ}. The value of yi ∈ S allows 
the identification of the energy well (quadratic potential) explored 
by the i-th unit (see Fig. 3 in Ref. [33]). We remark that the poten-
tial energy in Eq. (1) is symmetric with respect to the coordinate 
x, thus describing the folding-unfolding process in both direction 
of x > 0 and x < 0 [33].

While the model should be three-dimensional to exactly rep-
resent, e.g., the behavior of real macromolecules, we adopt a one-
dimensional scheme for the sake of simplicity. In this regard, the 
passage at x = 0 is somewhat unphysical, but we will study ex-
tensions and forces only in the positive direction. Since we con-
sider a one-dimensional system, we introduced four potential wells 
(two folded and two unfolded). Indeed, the consideration of pos-
itive and negative orientations of the elements allows modeling 
entropic, enthalpic, unfolding and over-stretching regimes, as dis-
cussed in Ref. [33]. It is also important to underline that the ap-
proximation introduced by the spin variables allows us to perform 
an analytic study of the system under the hypothesis of thermo-
dynamic equilibrium [33–35,37,38]. However, if we consider the 
out-of-equilibrium regime, the dynamics of the folding-unfolding 
process is also influenced by the energy barrier between the states, 
as classically described by the reaction-rate Kramers theory [41]. 
Concerning the Gibbs ensemble (isotensional condition imposed 
by soft devices), the total potential energy of the one-dimensional 
system is given by

U G
(�x, �y, f

)= N∑
Ui (xi − xi−1, yi) − f xN −

N∑
gi yi, (2)
i=1 i=1
where x0 = 0 and f is the force applied to the last element 
of the chain. Here, we defined �x = (x1, ..., xN ) ∈ RN and �y =
(y1, ..., yN) ∈ SN . Moreover, the quantities gi represent an external 
field �g directly acting on the configurational state of the elements 
(it acts as a chemical potential) [34]. While we will consider �g = 0
in the applications described in this Letter, the vector �g is very 
important from the mathematical point of view, to easily calculate 
the heterogeneous average values of the spin variables (see Eqs. (7)
and (11) below). Therefore, we can write the partition function in 
the Gibbs ensemble by summing the discrete spins and integrating 
the continuous coordinates

ZG( f ) =
∑
y1∈S

...
∑

yN∈S

∫
R

...

∫
R

e
− UG

(�x,�y, f
)

K B T dx1...dxN . (3)

We underline that the use of the spin variables, with the inte-
gration over all the phase space, corresponds to a multivalued 
energy function. This approach must be therefore justified and this 
is numerically done in the recent literature [30,33]. We let now 
x1 − x0 = ξ1, x2 − x1 = ξ2, ..., xN − xN−1 = ξN , from which we get 
xN =∑N

j=1 ξ j , with x0 = 0. Hence, we obtain

ZG( f ) =
N∏

i=1

⎧⎨
⎩
∑
yi∈S

e
− v(yi )

K B T Gi

⎫⎬
⎭ , (4)

where

Gi =
∫
R

exp

[
−1

2

ki

K B T
(ξi − yi�)

2 + f ξi

K B T
+ gi yi

K B T

]
dξi . (5)

This integral can be straightforwardly evaluated and we get

ZG( f ) = (8π K B T )N/2

(
N∏

i=1

1√
ki

)
exp

(
N f 2

2K B T keff

)
(6)

×
N∏

i=1

[
cosh

(
� f + gi

K B T

)
+ φi cosh

(
χ

� f + gi

K B T

)]
,

where φi = e
− �Ei

K B T are the Boltzmann factors calculated with the 
energy jumps �Ei and 1/keff = (1/N) 

∑N
i=1

1
ki

is the inverse of the 
effective stiffness. The macroscopic behavior of the chain is de-
scribed by the force-extension response and by the average value 
of the spin variables, which can be obtained through the Gibbs 
partition function as follows [33,34]

〈x〉 = K B T
∂

∂ f
log ZG , and 〈 yi 〉 = K B T

∂

∂ gi
log ZG . (7)

When the external field �g is zero, these results may be evaluated 
as follows

〈x〉 = N f

keff
+ �

N∑
i=1

sinh
(

� f
K B T

)
+ χφi sinh

(
χ� f
K B T

)
cosh

(
� f

K B T

)
+ φi cosh

(
χ� f
K B T

) , (8)

〈 yi 〉 =
sinh

(
� f

K B T

)
+ χφi sinh

(
χ� f
K B T

)
cosh

(
� f

K B T

)
+ φi cosh

(
χ� f
K B T

) . (9)

While the first expression represents the macroscopic mechanical 
response of the system, the second one describes the configura-
tional state (folded or unfolded) of the units in terms of the ap-
plied force. Interestingly enough, Eqs. (8) and (9) can be combined 
to give 〈x〉 = N f

keff
+ � 
∑N

i=1〈 yi 〉, which represents a spring-like be-
havior with the equilibrium length controlled by the spin variables. 
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An application of Eqs. (8) and (9) can be found in Figs. 1b, 1c, and 
1d, where the force-extension relation, the average spin variables 
and the quantities ∂〈 yi 〉/∂〈x〉 versus 〈x〉 are represented for a ho-
mogeneous chain with �Ei = �E ∀i (blue curves). These results 
describe a synchronous unfolding of the units for a given threshold 
force given by f ∗ = �E/[(χ − 1)�] [18,33,42]. It is a well known 
behavior observed in DNA [12–14], and other molecules of biolog-
ical origin [43,44]. A second example can be found in Figs. 1j, 1k, 
and 1l, where the same quantities have been shown for a het-
erogeneous chain, as represented in Fig. 1i. In this case, while 
the force-extension curve is only slightly modified, the spin vari-
ables assume different behaviors for the different units, proving 
the emergence of an unfolding pathway induced by the hetero-
geneity of the metastable states energy levels. Also, the blue curve 
in Fig. 1k shows the mean value of the numbered curves and is 
similar to the Gibbs response of the homogeneous case. This is true 
since we used the same parameter χ for all the units of the chain. 
It is important to remark that, for an heterogeneous parameter χ , 
we can have a different behavior between 〈yi〉 of the homogeneous 
chain and 1

N

∑〈 yi 〉 of the heterogeneous chain. To conclude, we 
observe that the quantity ∂〈 yi 〉/∂〈x〉 can be considered as an ap-
proximated measure of the probability density of the position x at 
which a transition occurs between the states of the i-th unit (see 
below for details). Therefore, Fig. 1l confirms the identification of 
a unfolding sequence induced by the heterogeneity. The analysis of 
the Gibbs ensemble is the starting point for studying the behavior 
of the Helmholtz ensemble, which is the core of our investigation 
as discussed below.

3. The Helmholtz ensemble

We are now interested in the case of a two-state heterogeneous 
one-dimensional chain within the Helmholtz ensemble (isometric 
condition imposed by a prescribed extension). To analyze this sys-
tem, we use the Fourier relation linking the Gibbs and Helmholtz 
partition functions [45,46]

Z H (x) =
+∞∫

−∞
ZG(−iωK B T )exp(iωx)dω. (10)

Since the direct calculation of Z H (x) is a very complicated theoret-
ical problem, we use Eq. (10) to determine the mathematical form 
of Z H (x) on the base of the analytic continuation of the previously 
obtained function ZG ( f ) (with imaginary values of f ) [45,46]. The 
aim of this section is to describe the macroscopic behavior of the 
chain given by the average quantities [33,34]

〈 f 〉 = −K B T
∂

∂x
log Z H , and 〈y j〉 = K B T

∂

∂ g j
log Z H . (11)

Therefore, we develop both Z H and ∂ Z H (x)
∂ g j

(with �g = 0), as follows

Z H (x) =
+∞∫

−∞
e
− Nω2 K B T

2keff eiωx
N∏

i=1

(a + φib)dω, (12)

∂ Z H (x)

∂ g j
= − i

K B T

+∞∫
−∞

[
sinω� + φ jχ sinωχ�

]

× e
− Nω2 K B T

2keff eiωx
N∏

k=1,k �= j

(a + φkb)dω, (13)

where we omitted the unimportant multiplicative constant and we 
defined a = cosω� and b = cosωχ�. Hence, we calculate
N∏
i=1

(a + φib) = aN + aN−1b
∑

j

φ j + aN−2b2 1

2

∑
i �= j

φiφ j

+ aN−3b3 1

3!
∑

i �= j,i �=k, j �=k

φiφ jφk

+ ... + bNφ1 × ... × φN =
N∑

k=0

aN−kbk Sk, (14)

with S0 = 1 and

Sk = 1

k!
∑

ja �= jb∀a �=b

φ j1 × ... × φ jk . (15)

The quantities Sk are called elementary symmetric polynomials 
in the variables φ1, ..., φN . To determine Sk , we take the sum of 
all products of the elements of the k-subsets of the N variables 
φ1,...,φN (a k-subset is a subset of a set of N elements contain-
ing exactly k elements). Therefore, the sum in Eq. (15) is evaluated 
over 

(N
k

)
terms. It follows that the direct calculation of these quan-

tities is computationally expensive because of the very large num-
ber of permutations. Nevertheless, the complexity can be reduced 
by introducing the so-called power sums, defined as

Ph =
N∑

t=1

φh
t =

N∑
t=1

e
− h�Et

K B T , (16)

where, by definition, P0 = N . These quantities can be easily calcu-
lated for h = 1, ..., N , and the direct relation between the power 
sums and the elementary symmetric polynomials is given by the 
following determinant [47,48]

Sk = 1

k! det

⎡
⎢⎢⎢⎢⎢⎣

P1 1 0 ... 0 0
P2 P1 2 ... 0 0
P3 P2 P1 ... 0 0
... ... ... ... ... ...

Pk−1 Pk−2 Pk−3 ... P1 k − 1
Pk Pk−1 Pk−2 ... P2 P1

⎤
⎥⎥⎥⎥⎥⎦ , (17)

which can be used to efficiently evaluate the expressions of Z H

and ∂ Z H
∂ g j

. The result given in Eq. (17) is an alternative form of 
the so-called Newton identities or Newton-Girard formulae [49,50]. 
Interestingly enough, other relations between the partition func-
tion calculation and certain symmetric polynomials have been dis-
cussed for ideal quantum gases [51]. We start with the calculation 
of Z H (x) and we can write

Z H (x) =
N∑

k=0

Sk

+∞∫
−∞

e
− Nω2 K B T

2keff eiωxaN−kbkdω. (18)

Here, the trigonometric functions in a and b can be expanded 
through complex exponential functions and the powers can be de-
veloped by the binomial theorem. The remaining integral is of the 

form 
∫ +∞
−∞ e−αx2

eiβxdx =
√

π
α e− β2

4α , and therefore we eventually get 
the first result

Z H (x) = 1

2N

√
2πkeff

N K B T

N∑
k=0

N−k∑
s=0

k∑
q=0

Sk

(
N − k

s

)(
k

q

)

× e
− keff[x+�(2s−N+k+2χq−χk)]2

2N K B T , (19)

where the Sk coefficients are calculated by means of Eq. (17). Con-
cerning the calculation of ∂ Z H (x) , we have
∂ g j
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∂ Z H (x)

∂ g j
= − i

K B T

N−1∑
k=0

S( j)
k

+∞∫
−∞

[
sinω� + φ jχ sinωχ�

]

× e
− Nω2 K B T

2keff eiωxaN−1−kbkdω, (20)

where we defined

S( j)
k = 1

k!
∑

ja �= jb∀a �=b, jc �= j∀c

φ j1 × ... × φ jk . (21)

The quantities S( j)
k (k = 1, ..., N − 1) are defined similarly to the 

quantities Sk (k = 1, ..., N) but are based on the set containing all 
φ1, ..., φN except φ j . They can be simply calculated with the same 
technique based on the determinants, as shown in Eq. (17). We 
first determine the power sums

P ( j)
h =

N∑
t=1, t �= j

φh
t =

N∑
t=1, t �= j

e
− h�Et

K B T , (22)

and then we determine the elementary symmetric polynomials 
through the following determinant

S( j)
k = 1

k! det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P ( j)
1 1 0 ... 0 0

P ( j)
2 P ( j)

1 2 ... 0 0

P ( j)
3 P ( j)

2 P ( j)
1 ... 0 0

... ... ... ... ... ...

P ( j)
k−1 P ( j)

k−2 P ( j)
k−3 ... P ( j)

1 k − 1

P ( j)
k P ( j)

k−1 P ( j)
k−2 ... P ( j)

2 P ( j)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Straightforward calculations allow to put Eq. (20) in the explicit 
form

∂ Z H (x)

∂ g j
= 1

K B T

N−1∑
k=0

[(
βk + χγkφ j

)
S( j)

k

]
, (24)

where the coefficients βk and γk are given by

βk = 1

2N

√
2πkeff

N K B T

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k

q

)
(25)

×
[

e
− keff[x+�(2s−N+k+2χq−χk)]2

2N K B T − e
− keff[x+�(2s−N+2+k+2χq−χk)]2

2N K B T

]

and

γk = 1

2N

√
2πkeff

N K B T

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k

q

)
(26)

×
[

e
− keff[x+�(2s−N+1−χ+k+2χq−χk)]2

2N K B T

− e
− keff[x+�(2s−N+1+χ+k+2χq−χk)]2

2N K B T

]
.

From Eqs. (11) and (19) we can finally determine the force-
extension response (〈 f 〉 versus x) as

〈 f 〉 = keff
∑N

k=0
∑N−k

s=0
∑k

q=0 Sk
(N−k

s

)(k
q

)
e
− keffϕ

2

2N K B T ϕksq

N
∑N

k=0
∑N−k

s=0
∑k

q=0 Sk
(N−k

s

)(k
q

)
e
− keffϕ

2

2N K B T

, (27)

where ϕksq = x + �(2s − N + k + 2χq − χk) and the coefficients Sk

are given in Eq. (17). Similarly, the expression for the average spin 
variable 〈y j〉 can be obtained from Eqs. (11) and (24) as
〈y j〉 =
∑N−1

k=0

[(
βk + χγkφ j

)
S( j)

k

]
Z H

, (28)

where the coefficients S( j)
k are given in Eq. (23).

Although the quenched disorder strongly complicates the anal-
ysis of the system within the Helmholtz ensemble, the application 
of the determinant expression in Eq. (17) or Eq. (23) (determin-
ing the elementary symmetric polynomials Sk or S( j)

k related to 
the Boltzmann factors with arbitrary energy jumps) allows for an 
analytic treatment of the problem. In particular, we are able to ob-
tain the partition function in Eq. (19) (along with its derivative in 
Eq. (24)) in closed form and to derive expressions for the macro-
scopic observables.

A first simple application of these results can be found in 
Fig. 1b and 1c, where we plot 〈 f 〉 and 〈yi〉 versus the pre-
scribed extension x for a homogeneous chain under isometric con-
dition (red curves). The behavior of 〈 f 〉 and 〈yi〉 can be inter-
preted through a sequential unfolding of the units. This response 
is in good qualitative agreement with several force-spectroscopy 
measurements performed on proteins and other macromolecules 
[52–56]. We also plotted ∂〈yi〉/∂x versus x in Fig. 1d. This quan-
tity satisfies two crucial properties: firstly, 

∫ +∞
0 (∂〈yi〉/∂x)dx =

〈yi〉(+∞) − 〈yi〉(0) = χ (which means that it can be normalized); 
secondly, 〈yi〉 is always non-decreasing, leading to a non-negative 
function ∂〈yi〉/∂x. Hence, it follows that ∂〈yi〉/∂x can be used as 
a quantity approximately measuring the probability density of the 
position x at which a transition occurs between the states of the 
i-th unit. We remark that it is not a rigorous statement but a 
useful practical approach to quantify the statistics of the unfold-
ing processes. Fig. 1d shows that at each transition occurrence the 
switching probability is the same for all units of the homogeneous 
chain. Therefore, no unfolding pathway can be identified.

We describe now the behavior of a heterogeneous chain, as rep-
resented in Fig. 1e. While the force-extension curve in Fig. 1f is 
slightly modified with respect to Fig. 1b, we observe that the het-
erogeneity of the chain, which is a quenched disorder embedded 
in the system, is able to perform a symmetry breaking generating 
an unfolding pathway. Indeed, the numbered curves of the average 
spin variables in Fig. 1g are able to precisely identify what unit is 
unfolded at each transition, indicating the actual sequence of un-
folding processes. Interestingly enough, the red curve in the same 
panel shows the average value of these numbered curves and is 
similar to the Helmhotz response of the homogeneous case. This 
is true since we used the same parameter χ for all the units of 
the chain. It is important to remark that, for an heterogeneous pa-
rameter χ , we can have a different behavior between 〈yi〉 of the 
homogeneous chain and 1

N

∑〈 yi 〉 of the heterogeneous chain. Im-
portantly, it follows that through the spin variables, we can now 
analyze the unfolding pathway generated by the heterogeneity. 
This is further confirmed by the plots of ∂〈yi〉/∂x in Fig. 1h, where 
each curve is characterized by one pronounced peak correspond-
ing to the actual switching, and other smaller peaks measuring 
the uncertainty in the pathway identification (see next section for 
details). Moreover, the numerical results show that the unfolding 
pathway corresponds to the ascending order of the values �Ei . 
This implies that the equilibrium statistical mechanics of this sys-
tem implements a statistical sorting procedure. This result is inde-
pendent of the heterogeneity of the elastic constants ki since 〈 f 〉
and 〈y j〉 depend only on the effective stiffness keff .

4. Unfolding pathway identifiability

While the described identification of the unfolding pathway 
may seem a simple and expected result, it is important to observe 
that: (i) the model elaborated mathematically explains how the 
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Fig. 2. Identifiability I defined as in Eq. (30) as function of the distribution of 
the energy jumps �Ei (described by the parameter ε) and the temperature T . 
We adopted the following parameters: N = 5, � = 0.5 nm, T0 = 300 K, χ = 7, 
ki = 0.04 N/m ∀i, �Ei

K B T0
∈ {α,α ± ε,α ± 2ε} with α = 30 and ε variable.

bistable chain can implement the above introduced statistical sort-
ing procedure, and the same methodology can be also applied to 
more realistic situations with additional heterogeneous geometri-
cal and/or physical parameters; (ii) the knowledge of the average 
spin variables given in Eq. (28) is also useful to quantitatively eval-
uate the identifiability of the most probable unfolding pathway, 
i.e. of the most likely observed unfolding sequence in a given ex-
periment. This concept measures to what extend we are able to 
identify the most probable unfolding pathway, which represent 
the sequence of unfolding process observed the largest number of 
times if we conduct several identical experiments.

For the sake of brevity, we develop this concept only by consid-
ering the Helmholtz ensemble. If we look at the density-like curve 
∂〈yi〉/∂x for a given unit, see Fig. 1h, the identifiability can be de-
fined as the relative difference between the largest peak and the 
second largest peak. Indeed, this difference measures the capabil-
ity to properly identify the transition of that unit with respect to 
the other ones. Consequently, if we consider the i-th unit, we can 
define

Ii =
Fm

{
∂〈yi〉
∂x

}
− Sm

{
∂〈yi〉
∂x

}
Fm

{
∂〈yi〉
∂x

} , (29)

where Fm and Sm are operators extracting the largest peak and 
the second largest peak, respectively, of a given function. The iden-
tifiability of the whole unfolding process can be therefore defined 
by the average value of these quantities over the N units

I = 1

N

N∑
i=1

Ii . (30)

We first apply this concept to a chain composed of N =
5 units with uniformly distributed energy jumps �Ei/(K B T ) ∈
{α,α ± ε,α ± 2ε}, where the parameter ε measures their disper-
sion. The resulting identifiability I can be found in Fig. 2, where 
it is plotted versus ε and parametrized by the temperature T . We 
note that I = 0 for the homogeneous case with ε = 0, and I → 1
for increasing value of ε, being the limiting value I = 1 related 
to the pathway identification without uncertainty. We also observe 
that increasing values of the temperature reduce the identifiability, 
for a constant ε. This is coherent with the idea that the thermal 
fluctuations are able to reduce the knowledge on the configura-
tional state of the system.

A more complex example deals with a nonlinear distribution of 
energy jumps of the units. More specifically, we can consider an 
exponential distribution described by �Ei = Peiϕ + Q, where P
and Q are fixed by imposing the values �E1 and �E N , ϕ is a free 
parameter defining the nonlinearity of the energy jumps, and i is 
the index enumerating the units. It means that the distribution of 
energy jumps can be written as

�Ei = �E1
(
eNϕ − eiϕ

)+ �E N
(
eiϕ − eϕ

)
eNϕ − eϕ

. (31)

As a particular case, we observe that if ϕ → 0, we obtain the lin-
ear distribution of energy jumps �Ei = �E1 +�E N (i − 1)/(N − 1), 
already considered in the previous analysis. The results based on 
these assumptions can be found in Fig. 3. In panels a) and b) one 
can find the average spin variables and their derivatives, respec-
tively, for the case with ϕ = −1. In this case, the energy jumps are 
given by a nonlinear concave distribution, as plotted in panel c). 
Similarly, in panels d) and e), we show the results for ϕ = 1, cor-
responding to a nonlinear convex distribution, which is shown in 
panel c), as well. Finally, in panel f) the identifiabilities are rep-
resented for each unit and for the whole chain. It is important 
to observe that the nonlinearity of the energy jumps is reflected 
in the spread or dispersion of the values Ii , especially for ϕ ap-
proaching ±1. Indeed, it is more difficult to identify the unfolding 
pathway of units with similar energy jumps (see, e.g., I4 and I5
for ϕ = −1 or I1 and I2 for ϕ = +1) than the unfolding path-
way of units with largely spaced energy jumps (see, e.g., I1 and 
I2 for ϕ = −1 or I4 and I5 for ϕ = +1). We also note that in the 
limiting case with ϕ → 0, the distribution becomes linear, as pre-
viously anticipated, and all the quantities Ii assume approximately 
the same value. Coherently, the black curve in panel f), represent-
ing the average value I , shows a maximum for ϕ → 0, proving 
that the largest identifiability is achieved for linearly spaced or dis-
tributed energy jumps.

The applicability of the identifiability concept is twofold. From 
one side, it allows a better understanding of the unfolding path-
ways of proteins and other bio-macromolecules, typically mea-
sured through force-spectroscopy techniques. In particular, it can 
explain the statistical modifications or variability of the unfolding 
pathway, which is sometimes depending on several experimental 
conditions [57–59]. On the other side, the identificability concept 
may be useful to improve the design of heterogeneous micro-
and nano-systems based on bi-and multi-stability, where folding 
and unfolding sequences represent the response of the system and 
should be therefore stable to temperature variations and to other 
structural or external parameters [60]. The important point for the 
applications is that the identifiability can be calculated for any set 
of parameters describing the chain, and allows therefore a para-
metric analysis of the stability of the most probable unfolding 
pathway, observed when we conduct several identical experiments. 
Even if we limited the analysis of the identifiability only to the 
Helmholtz case, we can compare the two ensembles as follows. 
From panels h) and l) of Fig. 1, it is not difficult to realize that for a 
fixed chain the identifiability in the two ensembles is not the same 
and the Helmholtz ensemble is capable to maximize this quan-
tity. Indeed, the variance of the peaks in panel l) is much larger 
than the variance of the peaks in panel h). This result can be eas-
ily interpreted in terms of the differences between the Helmholtz 
and the Gibbs ensemble. As a matter of fact, also for a simple ho-
mogeneous chain, in the Gibbs ensemble we have a synchronized 
unfolding of the units whereas in the Helmholtz ensemble we have 
a sequential unfolding. Therefore, the Helmholtz unfolding, being 
sequential, is more adapted to separate the unfolding events and 
to eventually improve the identifiability.

To conclude this discussion, we determine I for a bistable 
chain with random energy jumps between the folded and un-
folded states (under isometric conditions). We assume that the 
energy jumps are given by �Ei/(K B T ) = α + δni , where α and 
δ are fixed parameters while ni are independent and uniform ran-
dom variables in the interval (−1, 1). Of course, the parameter δ
measures the stochastic spread of the energy jumps distribution. 
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Fig. 3. Unfolding pathway in heterogeneous chains with nonuniform distribution of energy jumps. We adopted the distribution �Ei = Peiϕ + Q with P = (�EN −
�E1)/(eNϕ − eϕ) and Q = (�E1eNϕ − �EN eϕ)/(eNϕ − eϕ) (see Eq. (31)). Panels a) and d): average spin variables 〈yi〉 for ϕ = ±1. Panels b) and e): derivatives ∂〈yi〉/∂x for 
ϕ = ±1. Panel c): distributions of the energy jumps for −1 ≤ ϕ ≤ +1 and with �E1 = 30K B T and �EN = �E5 = 38K B T . Panel f): identifiabilities Ii and I versus ϕ . We 
adopted the following parameters: N = 5, � = 0.5 nm, T = 300 K, χ = 7, and ki = 0.04 N/m ∀i.

Fig. 4. Unfolding pathway in randomly heterogeneous chains. Panel a): average spin variables 〈yi〉. Panel b): derivatives ∂〈yi〉/∂x. In both panels, 50 Monte-Carlo realizations 
have been plotted (thin lines) together with their average values (thick lines) for a system with �Ei/(K B T ) = α + δni , where ni are independent and uniform random 
variables in the interval (−1, 1). Panel c): identifiability I versus δ. We plotted 100 Monte-Carlo realizations (red circles) and the average value (black solid line). We 
adopted the following parameters: N = 5, � = 0.5 nm, T = 300 K, χ = 7, ki = 0.04 N/m ∀i, α = 30 and δ = 10 (in panels a) and b) only).
We generate a given number of chains (Monte-Carlo realizations) 
using the previous rule to assign the energy jumps of the units. 
Then, we sort the units in each chain in such a way as to have 
the energy jumps in ascending order. This is simply useful to eas-
ily compare the spin variables of different chains, corresponding 
to units of the same ordered position. For any chain, we are able 
to calculate the average spin variables 〈yi〉 and their derivatives 
∂〈yi〉/∂x with respect to the increasing extension x of the chain. 
Consequently, for each chain, we can determine the corresponding 
identifiability through Eq. (30). These calculations can be repeated 
for all generated Monte-Carlo realizations and the means values 
can be eventually evaluated (sampling Monte-Carlo approach). The 
results can be found in Fig. 4. In panel a) and b) we show the aver-
age spin variables 〈yi〉 and their derivatives ∂〈yi〉/∂x, respectively, 
for 50 Monte-Carlo realizations of the system. The results of the 
single realizations (thin solid lines) are plotted together with their 
sample mean values (thick solid lines). We can see that, with the 
adopted parameters, the average spin variables allow the unfold-
ing pathway identification also with random energy jumps. While 
panels a) and b) of Fig. 4 concern a fixed value of δ, we can per-
form a more complete analysis where δ is variable over a given 
range. Hence, being the standard deviation of the energy jumps 
σ�Ei = K B T δ/
√

3 proportional to δ, we plot in panel c) the identi-
fiability I versus δ. We used 100 Monte-Carlo realizations for each 
value of δ (20 values of δ in the range [0, 10]), represented by the 
red circles in panel c), and we calculated the sample mean val-
ues of the identifiability, represented by the solid black line. We 
repeated the whole protocol several times and we proved that the 
solid black line, describing the behavior of I , remains stable within 
an maximal error bar of around ±0.1. It means that the Monte-
Carlo sample with 100 chains is large enough to give acceptable 
results. We observe that, for random chains, relatively large values 
of δ < α are necessary to obtain a good average identifiability of 
the unfolding path.

5. Conclusions

We considered the statistical and mechanical behavior of het-
erogeneous chains of bistable units. Since this system is paradig-
matically important to represent several situations of practical in-
terest, we thoroughly analyzed its behavior in both isotensional 
and isometric conditions.

The most important achievement concerns the exact calcula-
tion of the partition function (and related quantities) within the 
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Helmholtz ensemble (isometric condition). In this case the hetero-
geneity represents a quenched disorder, whose analysis is a diffi-
cult task of the statistical mechanics. We obtained the closed form 
expression of the partition function thanks to the Laplace-Fourier 
relation between Z H and ZG [45,46] and using the determinant 
form of the so-called Newton-Girard formulae [47–50]. This orig-
inal approach represents the core of our analysis. We observed 
that for a homogeneous chain, no unfolded pathway can be iden-
tified since all units have the same switching probability at each 
transition occurrence. On the other hand, the heterogeneity breaks 
this symmetry and we can identify an unfolded pathway, which 
is described by the ascending order of the energy jumps between 
folded and unfolded states of each unit. It means that the sys-
tem implements a statistical sorting procedure when we simply 
prescribe an increasing distance between first and last units. Since 
this process has a statistical character, we can define the concept of 
identifiability, which measures the capability to identify the most 
probable unfolding pathway. This concept has been applied to de-
terministic (linear and exponential) and random distributions of 
energy jumps. The results of this work can be applied to the better 
interpretation of the force spectroscopy measurements of biologi-
cal macromolecules [57–59] and to the accurate design of micro-
and nano-systems based on bistable chains with specific properties 
[60].

The model introduced in this investigation is rather simple. 
This choice permits to better discuss the theoretical origin of the 
unfolding pathway and its statistical character. Nevertheless, the 
model can be further improved to take into account other relevant 
physical and geometrical features. For instance, concerning the ap-
plication to macromolecules, the method here introduced can be 
generalized to deal with three-dimensional bistable freely jointed 
chains, which have been recently studied only with homogeneous 
units [33]. Moreover, the same techniques can be applied to de-
scribe the behavior of polymer chains with extensible units [34]. 
Although we considered here only heterogeneous energy jumps 
and elastic constants, we envisage to generalize this approach also 
to other parameters characterizing the units (e.g., �, χ and so on). 
Further investigations will concern the out-of-equilibrium regime 
of these systems. Indeed, recent works have provided evidence 
that the traction velocity applied to the chain with an hard device 
plays an important role in defining the unfolding pathway [61–64]. 
Therefore, it is important to fully analyze the interplay between 
the distribution of energy jumps and the applied traction velocity 
on the unfolding pathway. To do this the Langevin methodology 
will be combined with the spin variables technique in order to 
fully describe the dynamics of the system.
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