
Eur. Phys. J. B (2012) 85: 59 DOI: 10.1140/epjb/e2011-20814-5

Conduction degradation in anisotropic multi-cracked materials

S. Giordano and P.L. Palla

http://www.epj.org


Eur. Phys. J. B (2012) 85: 59
DOI: 10.1140/epjb/e2011-20814-5

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Conduction degradation in anisotropic multi-cracked materials

S. Giordanoa and P.L. Palla

Institute of Electronics, Microelectronic and Nanotechnology (IEMN UMR CNRS 8520), Avenue Poincaré,
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Abstract. The electrical and thermal conduction properties of disordered solids and the possible
degradation processes induced by the generation of cracks are central issues in the field of the heterogeneous
materials. However, most of the existing theories are unable to consider an arbitrary density of cracks. We
obtained an exact result for the fields induced within an elliptic anisotropic inhomogeneity embedded in a
different anisotropic (two-dimensional) conductor. Then, we applied it to show that the degradation process
strongly depends on the statistical orientational distribution of defects: in particular we theoretically prove
that parallel cracks lead to the power law decay log σ ∼ − log N while random oriented cracks lead to
the exponential law decay log σ ∼ −N (where σ is the effective conductivity of a region with a large
number N of defects), as recently predicted by numerical findings.

1 Introduction

The problem of finding the effective physical behaviour of
heterogeneous, composite, disordered and defected mate-
rials plays a central role in material science and nanotech-
nology [1,2]. From the theoretical point of view this anal-
ysis can be conducted by means of the combination of two
successive steps: the starting point is the determination of
the physical behaviour of a single particle (or defect) em-
bedded in a given matrix. Once this first problem is solved,
homogenization procedures or effective medium theories
can be applied in order to determine the overall effective
properties [3,4]. They are typically implemented through
some ad hoc averaging processes over the heterogeneous
region. Both the problem of the single inhomogeneity and
that of the heterogeneous structures (dispersions, poly-
crystals etc.) have been largely discussed both for electric
and elastic properties [5–8].

The predictions of homogenization schemes are of pri-
mary importance in several fields, ranging from mate-
rial science, to geophysics, to biology. For example, dis-
persions of cracks can strongly modify the response of
fibre-reinforced materials [9,10]. Other interesting applica-
tions concern the behaviour of rocks, where cracking with
different orientational distribution is originated by ther-
mal gradients or tectonic stresses [11,12]. In addition, non
isotropic fracture mechanisms are relevant in mineralized
tissues like bone and dentin [13,14].

Despite the large number of works dealing with this
subject and the wide interest of the material science com-
munity, the determination of the effective properties for
dispersions with dense populations of inhomogeneities or
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defects is still severely limited both from the numerical
and the theoretical point of view [1,2,6]. In fact, the in-
teractions among the embedded particles are very compli-
cated and their description, in many cases, is beyond the
current methodologies [3,4,15]. Also for the specific case of
multi-cracked materials several results can be found when
the cracks density is not very high [16–18]. Moreover, this
problem is even more difficult if the cracks can be ori-
ented in different ways, generating complex anisotropic
behaviours [19–21].

Recently, it has been observed that the macroscopic
degradation of materials with a large number of cracks is
governed by different laws depending on the orientational
statistical distribution of the cracks within the host ma-
trix [22–27]. More precisely, two different specific decays
of the effective elastic constants have been observed for
dispersions of uniformly random oriented cracks and par-
allel cracks. As a matter of fact, there are indications that
a uniformly random oriented population of cracks leads
to an exponential degradation of the elastic response in
terms of the crack density [22,23] (followed by a percola-
tive behaviour beyond a given percolation threshold) while
a population of parallel cracks leads to a power-law decay
of the effective response [24–27].

This scenario clearly indicates the need for a more
detailed understanding of the degradation behaviour of
multi-cracked materials. In fact, a model of general va-
lidity which explain the degradation behaviour versus the
orientational distribution of cracks is not available in liter-
ature. This corresponds to the content the present paper
where we analyse the conduction properties of a multi-
cracked material with an arbitrary statistical orientation
of defects (ranging from parallel to random distributions).
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Our approach is based on the two-step procedure above
introduced: firstly, we obtain an exact result describing
the electric field behaviour within an elliptic inhomogene-
ity embedded in an anisotropic two-dimensional conduc-
tor. Basically, the solution for the inhomogeneity has been
obtained by the so-called equivalence principle which is
formulated by an inclusion scheme described by a suit-
able eigenfield. The idea has been successfully adopted in
many previous investigations as well, for the pure elec-
tric case [28], for the pure elastic case [29–32] and for
the coupled piezoelectric case [33]. The important point
of the present development lies in the combination of
the anisotropy and the two-dimensionality of the system,
which allow us to obtain a new closed form expression for
the polarisation tensor of the particle. This is a strong ad-
vantage for the following applications since the complex
integral expressions of earlier results are removed. The el-
liptic geometry allows us to use such a result to model a
crack: if one of the principal axes of the ellipse becomes
negligibly small, then the ellipse reduces to a thin crack.
Of course, our results based on the elliptical shape, con-
verge in the limiting case to a linear crack (represented
by a segment on the plane). In some specific cases, dif-
ferent shapes have been considered in earlier literature
(non-elliptic particles [34] and curvilinear cracks [35,36]).

As second step, we adopt an ad hoc iterative tech-
nique considering an increasing number of cracks, lead-
ing to a specific system of nonlinear differential equations
for the effective conductivities of a multi-cracked mate-
rial. By combining the anisotropic character of the sys-
tem with the iterative scheme, we confirm the two differ-
ent degradation behaviours of the effective conductivity
for parallel and random geometries, already observed in
literature [22–27]. Interestingly enough, we have obtained
the complete description of the system for all the orienta-
tional distribution comprised between the two above lim-
iting cases: in other words, we have obtained an unified
formalism ranging from the power law decay to the expo-
nential law decay. To conclude, this approach opens the
possibility to take into consideration arbitrary populations
of cracks and furnishes a physical understanding of the
degradation process.

We underline that in this work we deal with the electric
conduction properties while many previous investigations
have treated the elastic response as well; nevertheless, a
strong connection between the conductivity and the elastic
moduli in composite structures is well known. This rela-
tionship has been formalized in earlier works in order to
obtain some correlations among the effective elastic mod-
uli and the effective conductivity of mixtures [37,38]. In
particular, it has been exactly proved that the effective
conductivity corresponds to the effective bulk modulus, if
the Poisson ratios of the phases are set to zero [39].

The paper is structured in the following way: in Sec-
tion 2, through the Green function for the two-dimensional
electrostatics of anisotropic media, we introduce the con-
cepts of eigenfield and inclusion. In Section 3 we explain
the equivalence principle, which allows us to solve the
anisotropic inhomogeneity problem. Finally, in Section 4,

we show the application of the previous results to the elec-
tric characterization of anisotropic multi-cracked conduc-
tors. Firstly, we develop an homogenization theory which
is valid only for a dilute dispersion of cracks; further, by
means of the iterative technique, which implicitly take into
account the interactions among cracks, we extend the ap-
plicability of the theory to higher values of the crack den-
sity. We finally present a simple method to obtain an esti-
mate of the percolation threshold in the case of randomly
oriented cracks.

2 Inclusions in anisotropic environment

The electrical behaviour of an inhomogeneity is a spe-
cific topic largely discussed in scientific literature: in fact,
the basic solution for an isotropic ellipsoidal particle em-
bedded in an isotropic environment, is a very well-known
result [40,41]. The complete solution (written in integral
form) for the linear and nonlinear anisotropic case has
been recently investigated [28]. Moreover, the analysis of
the electromagnetic behaviour of a bianisotropic inhomo-
geneity has been performed by means of the so-called de-
polarization tensor [42–45]. From the mechanical point of
view, the problem of an elastic inhomogeneity has been
solved by Eshelby by means of a very elegant mathemat-
ical procedure [29–32]. Such a formalism has been fur-
ther generalised to the case of a nonlinear inhomogeneity
[46,47] and many attempts have been proposed to describe
scale effects in nano-particles [48–50].

The first aim of the present work is to discuss an ex-
act result concerning the response of an elliptic particle
embedded in a two-dimensional conducting material. Al-
though the general problem has been largely discussed
in literature as reported above, we have introduced here
a methodology to cope with the completely anisotropic
problem (with different conductivity tensors in the re-
gions inside and outside the particle) in order to obtain
an explicit result in algebraic form. We remark that all
the previous results concerning anisotropic particles were
written in integral form [28,42,43]: the consideration of
the two-dimensional system allows us to remove compli-
cated integrals from the solutions and our achievement is
very convenient for analysing paradigmatic problems re-
lated to heterogeneous and composite structures. At the
same time, however, we can take into account any possible
anisotropy and aspect ratio for the particle. The explicit
expression for the electric field inside the elliptic particle
is very useful for the subsequent applications dealing with
the multi-defected two-dimensional conductor.

A linear anisotropic electric conductor is described by
the standard constitutive equation J = σ̂E where J is
the current density vector, E is the electric field and σ̂
is the conductivity tensor. We define a certain region of
the plane as an inclusion when the constitutive equation,
in that zone, assumes the form J = σ̂ (E − E∗) where
E∗ (x) is an assigned vector function of the position x,
which is named eigenfield (see Fig. 1). We remark that
the concept of inclusion is determined by the presence of
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a given eigenfield, which modifies the constitutive equa-
tion as above discussed, but it is not connected with the
conductivity tensor σ̂, which remains homogeneous in the
entire plane. In this work, in order to indicate spatial vari-
ations of the conductivity tensor, we adopt the term inho-
mogeneity. The problem of an inclusion discussed in the
present section will be used to solve the problem of the
inhomogeneity in the next section.

The eigenfield, defined in some region of the plane,
acts as a sort of source and its effects can be studied as
follows. In a steady state regime we may use the continuity
equation ∇ · J = 0 obtaining ∇ · [σ̂ (E − E∗)] = 0 or,
equivalently, ∇ · [σ̂E] = ∇ · [σ̂E∗]. Now, we can introduce
the potential in the standard way, writing the relation
∇ · [σ̂∇V (r)] = −∇ · [σ̂E∗] or, similarly, the generalized
Poisson equation

σij
∂2V (x)
∂xi∂xj

= −s (x) (1)

where s = ∇ · [σ̂E∗] = σij
∂E∗

j (x)

∂xi
is the source equivalent

to the eigenfield and we have adopted the Einstein summa-
tion rule on the repeated indices. So, we want to analyse
the effects of the presence of a given inclusion (described
by its eigenfield). To begin, we suppose that the eigenfield
is defined in the whole two-dimensional space and, there-
fore, we may solve the generalized Poisson equation (see
Eq. (1)) by means of the Green function defined by

σij
∂2G (x)
∂xi∂xj

= −δ (x) . (2)

We can use the standard two-dimensional Fourier trans-
form converting the function G (x) to G (ω). We simply
obtain

G (ω) =
1

ωiσijωj
(3)

and therefore

G (x) =
1

4π2

∫
�2

1
ωiσijωj

eiω·xdω. (4)

The solution of equation (1) can be written as the convo-
lution

V (x) =
∫
�2

s (x ′)G (x − x ′) dx ′

= σij

∫
�2

∂E∗
j (x ′)
∂x′i

G (x − x ′) dx′. (5)

Now, we can use an integration by part, holding on for
multiple integrals, which can be written as follows∫

�2

ϑ (x)
∂λ (x)
∂ xl

dx = −
∫
�2

λ (x)
∂ϑ (x)
∂ xl

dx (6)

where ϑ (x) and λ (x) are two given functions with suffi-
ciently regular behaviour at infinity (this property is an
immediate consequence of the Gauss-Ostrogradsky the-
orem). The application of equation (6) to equation (5)
simply leads to

V (x) = −σij
∫
�2

E∗
j (x ′)

∂G (x − x ′)
∂x′i

dx ′

= σij

∫
�2

E∗
j (x ′)

∂G (x − x ′)
∂xi

dx′. (7)

If the eigenfield E∗
k (x) is constant in a limited region Ω of

the plane we can say that we are dealing with a uniform
or homogeneous inclusion Ω and the electric potential over
the entire plane become

V (x) = σijE
∗
j

∫
Ω

∂G (x − x ′)
∂xi

dx ′

=
1

4π2
σijE

∗
j

∂

∂xi

∫
Ω

∫
�2

eiω·(x−x ′)

ωkσkhωh
dωdx ′

=
1

4π2
σijE

∗
j

∂

∂xi

∫
�2

eiω·x

ωkσkhωh
Q (ω) dω (8)

where

Q (ω) =
∫
Ω

e−iω·x ′
dx′. (9)

We suppose now that the regionΩ is elliptic and described
by Ω =

{
x : x · â−2x ≤ 1

}
, where â is a symmetric and

positive definite matrix (a11 > 0, a22 > 0 and a11a22 −
a2
12 > 0). For sake of generality we consider an arbitrarily

oriented ellipse on the plane and, therefore, we may have
a12 �= 0 (see Fig. 1). With the change of variable x ′ = ây
the integral for Q (ω) assumes the simpler form

Q (ω) = det â
∫

‖y‖≤1

e−iy·âωdy. (10)

Now we can adopt the standard polar coordinates y =
(R cos θ,R sin θ) on the plane and the exponent term in
equation (10) can be written as

y · âω = R
√

ω · â2ω

(
(âω)1 cos θ√

ω · â2ω
+

(âω)2 sin θ√
ω · â2ω

)
= R

√
ω · â2ω cos (θ − θ0) (11)

where the angle θ0 is defined through cos θ0 = (âω)1√
ω·â2ω

and

sin θ0 = (âω)2√
ω·â2ω

. By letting ψ = θ − θ0 we simply obtain

Q (ω) = det â
∫ 2π

0

∫ 1

0

e−iR
√

ω·â2ω cosψRdRdψ. (12)
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Ω =
{
�x : �x · â−2�x ≤ 1

}�J = σ̂
⎛
⎝ �E − �E∗⎞⎠

�J = σ̂ �E

x1

x2

0

Fig. 1. (Color online) Schematic representation of the ma-
trix/inclusion system defined by the eigenfield E∗ uniformly
distributed inside the ellipse Ω.

We can now use the following integral representation of
the J0(z) Bessel function [51]

J0(z) =
1
2π

∫ 2π

0

eiz cosψdψ. (13)

Thus, we have

Q (ω) = 2π det â
∫ 1

0

J0

(
R
√

ω · â2ω
)
RdR (14)

and finally

Q (ω) = 2π det â
J1

(√
ω · â2ω

)
√

ω · â2ω
(15)

where we have used the standard properties of the Bessel
function J1(z) [51]. So, coming back to equation (8) we
calculate the electric field induced by the uniform inclu-
sion in the entire plane as Ek (x) = −∂V (x) /∂xk, by
obtaining

Ek =
det â
2π

σijE
∗
j

∫
�2

ωiωke
iω·x

ω · σ̂ω

J1

(√
ω · â2ω

)
√

ω · â2ω
dω. (16)

Such an integral can be handled by the introduction of the
polar coordinates ω = (ω cosα, ω sinα) and the definition
of the unit vector n = (cosα, sinα). With these settings
we have ω = ωn and dω = ωdωdα and equation (16)
becomes

Ek (x) =
det â
2π

σijE
∗
j

∫ 2π

0

nink
n · σ̂n

K(α)√
n · â2n

dα (17)

where the integral K contains all the terms depending on
ω and it is is defined below

K(α) =
∫ ∞

0

eiωn·xJ1

(
ω
√

n · â2n
)
dω. (18)

By using formulas 6.671 (1) and (2) of the Gradshteyn-
Ryzhik table of integrals [52] it is simple to verify that, if
x · â−2x ≤ 1 (inside the inclusion), then we simply have
�e {K} = 1/

√
n · â2n, independently of x. It means that

inside the inclusion the induced electric field is uniform
and its components are given by

Ek = SkjE∗
j (19)

where Ŝ is the electric counterpart of the Eshelby ten-
sor [29,30] for the two-dimensional anisotropic conduction.
It is given by

Ŝ =
det â
2π

∫ 2π

0

(n ⊗ n) σ̂
(n · σ̂n) (n · â2n)

dα (20)

where we have defined the tensor product of vector as
(n ⊗ n)ki = nkni. It is important to observe that the
quantity

Ŝσ̂−1

det â
=

1
2π

∫ 2π

0

(n ⊗ n)
(n · σ̂n) (n · â2n)

dα (21)

is a symmetric functional of the two tensors σ̂ and â2 by
construction. This last integral can be evaluated through
the following key result which is proved in Appendix A
(where we will consider η̂ = â2)

1
2π

∫ 2π

0

n ⊗ n

(n · σ̂n) (n · η̂n)
dα =

σ̂−1
√

det σ̂ + η̂−1
√

det η̂
trσ̂ trη̂ − tr (σ̂η̂) + 2

√
det σ̂

√
det η̂

. (22)

The explicit form of the tensor Ŝ can be now written in
a very convenient form through the following considera-
tions. The characteristic polynomial of the matrix η̂ can
be written as

det
(
η̂ − λÎ

)
= det η̂ − λtrη̂ + λ2 (23)

and, therefore, by applying the Cayley-Hamilton theo-
rem (which states that every square matrix satisfies its
own characteristic polynomial) we can write the relation
det η̂− η̂trη̂+ η̂2 = 0 or, equivalently, η̂−1 det η̂ = Îtrη̂− η̂.
Consequently, we obtain the result

trσ̂ trη̂ − tr (σ̂η̂) = tr [σ̂ trη̂ − σ̂η̂]

= tr
[
σ̂
(
Îtrη̂ − η̂

)]
= det η̂tr

(
η̂−1σ̂

)
(24)

which can be used in the denominator of equation (22).
Finally, by combining equations (21), (22) and (24) we
obtain the result

Ŝ =
â−2σ̂ + Î

√
det (â−2σ̂)

tr (â−2σ̂) + 2
√

det (â−2σ̂)
. (25)

This is the most important achievement of the present
Section: when an uniform inclusion of elliptic shape
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Eur. Phys. J. B (2012) 85: 59 Page 5 of 15

Ω =
{
�x : �x · â−2�x ≤ 1

}�J = σ̂i
�E

�J = σ̂ �E

x1

x2

0

Fig. 2. (Color online) Schematic representation of the ma-
trix/inhomogeneity system defined by the different conductiv-
ity tensors σ̂ and σ̂i, outside and inside the ellipse Ω, respec-
tively.

Ω =
{
x : x · â−2x ≤ 1

}
and eigenfield E∗ is embedded

in an anisotropic environment of conductivity tensor σ̂,
inside the particle a uniform electric field E = ŜE∗ is
induced, where the Eshelby tensor Ŝ is given in equa-
tion (25). Interestingly enough, we observe that the be-
haviour of the inclusion is completely controlled by the
product of tensors â−2σ̂. We remark that equation (25) is
very useful for practical calculations since it is in a pure
algebraic form. We also underline that all the expressions,
previously published for the anisotropic Eshelby tensor,
are in integral form [42,43]. When σ̂ = σÎ (isotropic en-
vironment) and a12 = 0 (ellipse with axes aligned to the
reference frame) we obtain

Ŝ =
( a22
a11+a22

0
0 a11

a11+a22

)
(26)

which is a classical result largely discussed in litera-
ture [40,41,58].

3 Equivalence principle

In this Section we show that the previous theory for an in-
clusion is useful to solve the problem of a given anisotropic
inhomogeneity placed in a different anisotropic matrix. In
fact, we will show an equivalence principle that reduces
the analysis of the inhomogeneity behaviour to that of
an inclusion. We consider an elliptic inhomogeneity with
conductivity tensor σ̂i embedded in an anisotropic envi-
ronment with conductivity σ̂ (see Fig. 2). We suppose that
the system is subjected to a remote uniform electric field
E∞. We prove that the presence of an inhomogeneity can
be described by the superimposition of two different sit-
uations A and B. The situation A is very simple because
it considers the effects of the remote field E∞ in an ho-
mogeneous matrix without the inhomogeneity. In such a
case, we simply observe that the density current vector

J∞ = σ̂E∞ remains uniform in the entire plane. The sit-
uation B corresponds to an inclusion scheme where the
eigenfield E∗ is unknown and it can be determined by im-
posing the equivalence between the original problem and
the superimposition A+B. We define J tot and Etot as the
electric quantities in the inhomogeneity problem; the fields
J∞ and E∞ completely describe the situation A; finally,
the problem B is described by the electric variables J and
E. Therefore, we have the superimpositions J tot = J∞+J
and Etot = E∞ +E. Hence, inside the ellipsoid we obtain

σ̂iEtot = σ̂E∞ + σ̂ (E − E∗) (27)
Etot = E∞ + E.

These relationships allow us to calculate the exact value
of the eigenfield E∗ that assure the equivalence between
the initial problem and the model A+B. Since E = ŜE∗
for x ∈ Ω (see Eq. (19)), we may write

σ̂iEtot = σ̂E∞ + σ̂
(
Ŝ − Î

)
E∗ (28)

Etot = E∞ + ŜE∗.

By substituting the second relation in the first one we have

σ̂i

(
E∞ + ŜE∗

)
= σ̂E∞ + σ̂

(
Ŝ − Î

)
E∗. (29)

This is an equation in the eigenfield E∗ that can be easily
solved by obtaining

E∗ =
[(
Î − σ̂ −1σ̂i

)−1

− Ŝ
]−1

E∞. (30)

This is the value of the eigenfield that ensures the validity
of the equivalence principle. Moreover, we calculate the
total electric field Etot induced inside the inhomogeneity.
From the second relation given in equation (28) we derive
E∗ = Ŝ −1 (Etot − E∞) and therefore, from the first one,
we have

σ̂iEtot = σ̂E∞ + σ̂
(
Ŝ − Î

)
Ŝ −1 (Etot − E∞) . (31)

This equation in the unknown Etot can be solved with
straightforward algebraic calculations, arriving at the so-
lution

Etot =
[
Î − Ŝ

(
Î − σ̂ −1σ̂i

)]−1

E∞ (32)

when x ∈ Ω. This is the internal electric field induced in
the elliptic defect: this is a uniform vector field since all the
quantities involved in equation (32) are constants. To con-
clude, the combination of equations (25) and (32) solves
the problem of determining the electric field inside the
inhomogeneity in term of the remotely applied field.

We remark that equation (32) is a standard relation
well known in literature and it appears whenever one ap-
plies the equivalence principle as stated by Eshelby in his
seminal work [29]. This approach is widely utilized rang-
ing from electromagnetism (where it is combined with the
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method of moments [53,54]) and mechanics (where it is the
base in most homogenization schemes [5,6]). Here we have
reported a brief proof of equation (32) simply for giving a
direct connection between the new result stated in equa-
tion (25) and the applications discussed in the following
section.

4 Dispersions of cracks

Typically, when the response of a given inhomogeneity
or defect is known, an averaging process must be cho-
sen for describing the behaviour of a dispersion of par-
ticles in a given matrix: the coupling of the two steps
generates a specific effective medium theory. Probably
the first attempts to model a mixture is given by the
Maxwell theory dealing with a very diluted suspension
of conducting spheres [6,7,55]. A generalization to higher
concentrations is provided by the differential method [56],
which can be also applied to mixtures of ellipsoidal par-
ticles [57–59]. An approach based on the equivalent in-
clusion method has been developed in the framework of
the steady-state thermal conduction [60–62]. Moreover,
some numerical methods have been developed for consid-
ering objects having arbitrary shape [63]. Recent devel-
opments include nonrandom orientational distributions of
ellipsoids [64], variational principles for multiple inclusions
[65], nonlinear anisotropic mixtures [66] and methods for
shape-distributed particles [67]. From the point of view
of the mechanical homogenization theories, some similar
investigations can be found in literature [68,69].

4.1 Dilute model

In our model the single defect is given by a crack on the
plane. From the electrical point of view a crack in a two di-
mensional structure is a segment where the electric current
cannot flow. In the present work, in order to model the flat
shape of a crack, we adopt an elliptic void (zero conduc-
tivity, σ̂i = 0 and J tot = 0) with an axis with infinitesimal
length. Treating the crack as a vacuous ellipse of aspect
ratio approaching zero is very convenient. In fact, we can
derive the needed formulas for a cracked solid through the
limits in the general formulas, concerning elliptic inhomo-
geneities (see previous section). We theoretically analyse
the effects of a given distribution of cracks on the con-
ductivity of a solid. In earlier literature many works have
been devoted to the study of this topic. In such works the
orientational distribution of cracks is typically given by
one of the two most adopted distributions: cracks aligned
with a given direction and cracks uniformly oriented in the
space (see introduction). Here we study a cracked solid
with an arbitrary angular distribution of cracks and ar-
bitrary crack density. The limiting cases of the present
theory are represented by all the defects aligned with a
given direction (order) and all the defects randomly ori-
ented (disorder). We take into account all the intermediate
configurations between order and disorder with the aim
of characterising a material with cracks partially aligned.

x1

x2

P = 0

0 < P < 1
2

P = 1
2

1
2 < P < 1

P = 1

θ = 0

θ

θ

θ

θ

Fig. 3. (Color online) Schematic representation of several dis-
persions of cracks in the anisotropic conductor with conduc-
tivity tensor σ̂. Each sample is characterized by a different
order parameter P corresponding to a particular orientational
distribution of cracks.

In Figure 3 one can find some orientational distributions
between the upon-described limiting cases. As discussed
below, the angular distribution of cracks is statistically
well described by an order parameter P .

We start by considering an elliptic region defined by
Ω0 =

{
x : x · â−2

0 x ≤ 1
}

with the axes a11 and a22 aligned
to the reference frame, so that

â0 =
(
a11 0
0 a22

)
. (33)
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Then, we apply a standard rotation matrix R̂ in order to
obtain an arbitrarily oriented ellipse Ω described by

â−2 = R̂T â−2
0 R̂ (34)

where R̂ depends on the rotation angle θ as follows

R̂ =
(

cos θ − sin θ
sin θ cos θ

)
. (35)

The average value (over the angle θ) of the electric field
induced inside a random oriented void defect can be ob-
tained through the averaging of equation (32) with σ̂i = 0

〈Etot〉 =
〈[
Î − Ŝ

]−1
〉
θ

E∞ .= ŴE∞. (36)

In equation (36) we have also defined the concentration
factor Ŵ , which will be very useful for the following
developments of the homogenization theory. From equa-
tion (25) we simply obtain the tensor Î − Ŝ as follows

Î − Ŝ =
Î
[
tr
(
â−2σ̂

)
+
√

det (â−2σ̂)
]
− â−2σ̂

tr (â−2σ̂) + 2
√

det (â−2σ̂)
(37)

and its inverse as[
Î − Ŝ

]−1

= Î +
â−2σ̂√

det (â−2σ̂)
. (38)

Therefore, the tensor Ŵ defined in equation (36) can be
written in the form

Ŵ = Î +
a11a22√

det σ̂

〈
R̂T â−2

0 R̂
〉
θ
σ̂. (39)

Now, we have to calculate the average
〈
R̂T â−2

0 R̂
〉
θ
. The

angle θ assumes the role of a random variable symmetri-
cally distributed over the range (−π/2,−π/2). The sym-
metry of the probability density assures that the average
value of the product sin θ cos θ (appearing in the product
R̂T â−2

0 R̂) is exactly zero and the result depends only on
the average value of cos2 θ. Therefore, it is useful to define
the following order parameter, which completely describes
the state of order/disorder of the distribution of cracks

P =
〈
1 − cos2 θ

〉
θ

=
〈
sin2 θ

〉
θ
. (40)

It is easy to observe that P assumes special values for
particular angular distributions of cracks: if P = 0 all
the cracks are parallel to the x1-axes (horizontal order), if
P = 1 all the cracks are parallel to the x2-axes (vertical
order) and if P = 1/2 the angle of rotation is uniformly
distributed leading to a state of complete disorder. The
other values cover all the orientational distribution be-
tween the random and the parallel ones (see Fig. 3 for
some examples). Eventually, the definition of P allows us
to write

〈
R̂T â−2

0 R̂
〉
θ

=

(
1−P
a2
11

+ P
a2
22

0
0 P

a2
11

+ 1−P
a2
22

)
. (41)

Therefore, equations (39) and (41) completely define the
mathematical form of the tensor Ŵ .

We are now ready to work out the procedure aimed
at defining the effective behaviour of a multi-cracked ma-
terial. We consider a region S containing N voids (i.e.
cracks). The area of a single ellipse is πa11a22 = πa2e,
where a = a11 is the half-axis along the x1 direction and
e = a22/a11 is the aspect ratio. Therefore, the volume
fraction of the voids is given by c = πNS a

2e. We may
calculate the average value of the electric field over the
multi-cracked material by means of the relation

〈E〉 = c 〈Etot〉+ (1− c)E∞ =
[
(1 − c)Î + cŴ

]
E∞ (42)

where, assuming a small crack density, we have considered
the average electric field outside the inclusions similar to
the remote field E∞. In this approximation (correspond-
ing to a regime of non-interacting voids) each crack is
subjected to the same external load E∞ and it is not af-
fected by other neighbouring cracks. We will generalize the
procedure to larger values of the crack density in further
steps. We, therefore, define σ̂eff as the effective conduc-
tivity tensor of the whole anisotropic mixture by means of
the relation 〈J〉 = σ̂eff 〈E〉. In order to evaluate σ̂eff we
must calculate the average value 〈J〉 of the stress tensor
inside the multi-cracked material. We distinguish the total
area S of the system, the area Se of the embedded elliptic
voids (i.e. the cracks) and the area So of the remaining
space among the voids. We get

〈J〉 =
1
S

∫
S

Jdx =
1
S
σ̂

∫
So

Edx

=
1
S
σ̂

∫
So

Edx +
1
S
σ̂

∫
Se

Edx − 1
S
σ̂

∫
Se

Edx

=
1
S
σ̂

∫
S

Edx − Se
S
σ̂

1
Se

∫
Se

Edx

= σ̂ 〈E〉 − c σ̂ 〈Etot〉 = σ̂ 〈E〉 − c σ̂ŴE∞. (43)

Drawing a comparison between equations (42) and (43)
we may find the expression for the effective conductivity
tensor

σ̂eff = σ̂

{
Î − cŴ

[
(1 − c)Î + cŴ

]−1
}
. (44)

We remark that this result is equivalent to the standard
Mori-Tanaka formalism [6]. In order to recover the shape
of real cracks, we need to elaborate the above formulas in
the limit of vanishing aspect ratio. Since the limit for e ap-
proaching zero is equivalent to the limit for c approaching
zero, we get

lim
e→0

cŴ = lim
c→0

cŴ = Ĝ (45)

where a new tensor quantity Ĝ is defined and its value can
be eventually obtained (by using Eqs. (39), (41) and the
relation c = πNS a

2e) in the form

Ĝ = πa2N

S

(
P 0
0 1 − P

)
σ̂√

det σ̂
. (46)

http://www.epj.org


Page 8 of 15 Eur. Phys. J. B (2012) 85: 59

The exact limiting value (for e→ 0 or c→ 0) of the con-
ductivity tensor derives from equation (44)

σ̂eff = σ̂

{
Î − Ĝ

[
Î + Ĝ

]−1
}
. (47)

This ends the outline of the procedure to follow for a spe-
cific statistical distribution of cracks (for a given value of
P ).

4.2 Iterative and differential methods

We remark that the above equation is valid only for small
crack density. Nevertheless, equations (46) and (47) are
very useful to exploit the iterated homogenization method,
that allows us to generalize our results to larger crack
density values. Let us suppose that the effective conduc-
tivity tensor of a multi-cracked medium (containing an
initial number N of cracks) is known to be σ̂eff (N). If
a small additional number ΔN of cracks is added to the
matrix, then the change in the conductivity is approxi-
mately the same as if they were added to a uniform and
homogeneous matrix characterized by σ̂eff (N). The re-
sulting conductivity will be therefore σ̂eff (N + ΔN) , as
obtained by equations (46) and (47), through the replace-
ments: σ̂ → σ̂eff (N), σ̂eff → σ̂eff (N+ΔN) and N → ΔN ,
i.e.

σ̂eff (N +ΔN) = σ̂eff (N)
{
Î − Ĝ

[
Î + Ĝ

]−1
}

(48)

where

Ĝ = πa2ΔN

S

(
P 0
0 1 − P

)
σ̂eff (N)√
det σ̂eff (N)

. (49)

We obtain a set of difference equations that, in the limit
of vanishingly small ΔN , converges to a set of nonlinear
differential equations

dσ̂eff

dN
= −πa

2

S

σ̂eff

(
P 0
0 1 − P

)
σ̂eff√

det σ̂eff

(50)

with the initial condition σ̂eff (0) = σ̂. If the matrix
conductivity tensor is σ̂ = diag(σ10, σ20) then the ef-
fective conductivity tensor will be of the similar form
σ̂eff = diag(σ1, σ2), and we obtain a couple of nonlinear
differential equations

dσ1

dN
= −πa

2

S
P

σ2
1√
σ1σ2

(51)

dσ2

dN
= −πa

2

S
(1 − P )

σ2
2√
σ1σ2

(52)

with σ1(0) = σ10 and σ2(0) = σ20. This differential prob-
lem completely describe the degradation process of an
anisotropic conductor induced by an arbitrary orienta-
tional distribution of cracks. Hence, it takes into account

both the original conductivity tensor of the matrix and the
order parameter identifying the kind of random dispersion
of defects. It is important to remark that the application of
the iterative or differential technique to the multi-cracked
conductor is possible only through the knowledge of the
exact response of one single defect in an anisotropic en-
vironment (given by Eqs. (25) and (32)); in fact, when
a given crack is added to a given existing distribution
of cracks, it feels an anisotropic environment generated
by the not uniform (for example parallel cracks or crack
nearly aligned in a given direction) random orientation
of the cracks themselves. It happens even if the original
not cracked material is perfectly isotropic. We also prove
that this differential problem is able to explain the dif-
ferences of the degradation behaviour between the cases
with parallel cracks (perfect order) and random orienta-
tion of cracks (complete disorder). In fact, as outlined in
Appendix B, it is possible to obtain the exact solution of
equations (51) and (52) in closed form for an arbitrary
Cauchy initial condition σ1(0) = σ10 and σ2(0) = σ20

(corresponding to the anisotropic matrix conductive be-
haviour). The final expressions can be eventually written
as

σ1 = σ10

4 1−P(
1+

σ10
σ20

)
P−1

√
σ10
σ20

−
√

1−P
P√

σ10
σ20

+
√

1−P
P

e−πa
2 N

S

√
P (1−P )

[
1 −

√
σ10
σ20

−
√

1−P
P√

σ10
σ20

+
√

1−P
P

e−πa2 N
S

√
P (1−P )

]2

(53)

σ2 = σ20

4 P
σ20
σ10

−P
(
1+

σ20
σ10

)
√

σ20
σ10

−
√

P
1−P√

σ20
σ10

+
√

P
1−P

e−πa
2 N

S

√
P (1−P )

[
1 −

√
σ20
σ10

−
√

P
1−P√

σ20
σ10

+
√

P
1−P

e−πa2 N
S

√
P (1−P )

]2 ·

(54)

In the special case with an initially isotropic matrix having
σ10 = σ20 = σ0 we obtain the simpler solution

σ1 = σ0

4 1−P
2P−1

P−
√
P (1−P )

P+
√
P (1−P )

e−πa
2 N

S

√
P (1−P )

[
1 − P−

√
P (1−P )

P+
√
P (1−P )

e−πa2 N
S

√
P (1−P )

]2 (55)

σ2 = σ0

4 P
1−2P

(1−P )−
√
P (1−P )

(1−P )+
√
P (1−P )

e−πa
2 N

S

√
P (1−P )

[
1 − (1−P )−

√
P (1−P )

(1−P )+
√
P (1−P )

e−πa2 N
S

√
P (1−P )

]2 · (56)

By means of these complete solutions it is possible to ob-
tain the behaviour of several limiting cases as reported
in Table 1. In particular we observe that the degrada-
tion of the conductivity with a parallel dispersion of
cracks (in the direction orthogonal to the cracks) follows
a power law of the form log σ1,2 ∼ − logN or, equiva-
lently, σ1,2 ∼ 1/N2. On other hand, the disordered case
(P = σ20

σ10+σ20
if σ10 �= σ20 or P = 1/2 if σ10 = σ20)
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Table 1. Limiting cases obtained from equations (53)−(56) for specific values of the order parameters P . It is important to
observe that the cases of perfect order (P = 0, 1) lead, for large N , to the power law log σ1,2 ∼ − log N while the disordered
case (P = σ20

σ10+σ20
, 1/2) leads to the exponential law log σ1,2 ∼ −N .

Order Isotropic Anisotropic
parameter (P ) matrix (σ10 = σ20 = σ0) matrix (σ10 �= σ20)

P = 0

{
σ1 = σ0

σ2 = σ0

(1+ 1
2 πa2 N

S )2

⎧⎨
⎩

σ1 = σ10

σ2 = σ20(
1+ 1

2 πa2 N
S

√
σ20
σ10

)2

P = σ20
σ10+σ20(

P = 1
2

if σ10 = σ20

)
{

σ1 = σ0e
− 1

2 πa2 N
S

σ2 = σ0e
− 1

2 πa2 N
S

⎧⎨
⎩ σ1 = σ10e

−πa2 N
S

√
σ10σ20

σ10+σ20

σ2 = σ20e
−πa2 N

S

√
σ10σ20

σ10+σ20

P = 1

{
σ1 = σ0

(1+ 1
2 πa2 N

S )2

σ2 = σ0

⎧⎨
⎩

σ1 = σ10(
1+ 1

2 πa2 N
S

√
σ10
σ20

)2
σ2 = σ20
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P
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P

Fig. 4. (Color online) Plot of log10
σ1
σ10

in terms of log10 πa2 N
S

(left panel) and πa2 N
S

(right panel) for the case with σ10 =

σ20 = σ0 (isotropic matrix). Different lines are parametrized by an increasing order parameter 0 < P < 1. The case with P = 0
(horizontal order, dotted-dashed lines) corresponds to the horizontal lines σ1 = σ0 (both in right and left panels); the case with
P = 1/2 (solid lines) leads to an exponential behaviour described by log σ1 ∼ −N (straight line on the right panel); finally, the
case with P = 1 (vertical order, dashed lines) corresponds to power law log σ1 ∼ − log N represented by an asymptotic straight
line on the left panel.

leads to the exponential law log σ1,2 ∼ −N or, equiva-
lently, σ1,2 ∼ exp(−N/N0) with a given N0 (see Tab. 1 for
details). Hence, the present model based on an arbitrary
anisotropic environment, is able to reproduce the differ-
ent degradation behaviours corresponding to the different
orientational distributions [22–25].

One can find the explanation of this point in Figure 4
where we have considered a system with σ10 = σ20 = σ0

(isotropic matrix). We have reported only the results re-
lated to σ1 since those for σ2 are simply symmetrical. The
case with P = 1/2 (solid lines) leads to an exponential be-
haviour represented by a straight line on the right panel
with bi-logarithmic scale; on the other hand, the case with
P = 1 (dashed lines) corresponds to a power law repre-
sented by an asymptotic straight line on the left panel
with semi-logarithmic scale.

Moreover, in Figure 5 we present the results for a
strongly anisotropic environment characterized by σ10 = 1
and σ20 = 100 (in arbitrary units). One can find the
three-dimensional plots of σ1 (left panel) and σ2 (right

panel) versus the order parameter P and the crack den-
sity πa2N

S . In the left panel we can observe that a strong
anisotropy of the matrix amplifies the different behaviour
of the degradation process with different values of the or-
der parameter P . In particular it is evident that when
P = 1 (vertical order) the power law degradation is much
slower than the other cases with an exponential trend.
Finally, in Figure 6 we describe the overall anisotropy of
the multi-cracked conductor through the anisotropy ratio
|σ1−σ2
σ1+σ2

|. Its value has been calculated for the case with
σ10 = 1 and σ20 = 100 (in arbitrary units) and has been
shown versus the order parameter P and the crack density
πa2N

S . It is evident a curved line on the plane (P, πa2 N
S )

where the anisotropy ratio is zero and where the system
is therefore equivalent to an isotropic one. It is simple
to verify that, when σ20 > σ10, the starting point of the
curve for P = 0 occurs at πa2N

S = 2
(
1 −√σ10/σ20

)
, i.e.

at πa2N
S = 9/5 in our case with σ10 = 1 and σ20 = 100.

Such a point can be easily identified in Figure 6. Moreover,
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Fig. 5. (Color online) Three-dimensional plots of σ1 (left panel) and σ2 (right panel) for a strongly anisotropic system with
σ10 = 1 and σ20 = 100 (in arbitrary units). The effective conductivities are shown versus the order parameter P and the crack
density πa2 N

S
.
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Fig. 6. (Color online) Plot of the anisotropy ratio |σ1−σ2
σ1+σ2

|,
measuring the degree of anisotropy of the overall system. It
has been calculated for the case with σ10 = 1 and σ20 = 100
(in arbitrary units) and it has been shown versus the order
parameter P and the crack density πa2 N

S
. It is evident a curved

line on the plane (P, πa2 N
S

) where the anisotropy ratio is zero
and where the system is therefore equivalent to an isotropic
one.

it is also possible to prove that, when πa2N
S → ∞, then

the curve approaches the value P = 1/2, as represented
in Figure 6.

Other relevant applications of iterative (or incremen-
tal) and differential schemes are available in literature
for a variety of heterogeneous structures. The incremental
method converges to the differential one (for a large num-
ber of infinitesimal steps) both in our development and in
reference [70] dealing with bi-anisotropic composites. As
expected, the two approaches may lead to different results
if we consider a finite number of discrete incremental steps
within the iterative scheme [70]. Interestingly, in refer-
ence [71] the incremental formalism is also compared with
the symmetric Bruggeman formalism. There, it has been
proved that if there is a strong contrast between the com-
ponents the two predictions differ significantly. We will

describe an application of this method in the next Section
in order to predict a percolative behaviour.

Finally, it is important to draw some comparisons be-
tween equations (55) and (56) and the following ones pre-
viously obtained in reference [72]

σ1 = σ0e
−πa2 N

S P (57)

σ2 = σ0e
−πa2 N

S (1−P ). (58)

In reference [72] the solutions are approximated and they
do not take into account the anisotropy of the system:
in other words, in reference [72] we have neglected the
fact that when a crack is added to a given population
(through the iterative process), it feels an anisotropic ef-
fective matrix because of the pseudo-random orientation
described by P . On the contrary, in the present investiga-
tion the anisotropic character induced by the not uniform
random orientation of the cracks is properly taken into ac-
count. This is the central point which leads to the correct
degradation behaviour: in particular, the real anisotropic
character is essential for obtaining the power law de-
cay with parallel cracks [24,25]. In fact, equations (55)
and (56) are identical to equations (57) and (58) for
P = 1/2 (without anisotropic effects) and the larger de-
viation is obtained for σ1 when P = 1 and for σ2 when
P = 0 (with the largest anisotropic effects). In Figure 7
one can find the relative percent error e [%] for σ1, ob-
tained comparing equations (55) and (57). The error is
always zero for P = 0 and P = 1/2 and is very high with
large crack density and for P = 1. In fact, equation (57)
is unable to reproduce the expected power law decay of
σ1 for the population of vertical cracks.

4.3 Percolative behaviour

We have described in the previous Section an exponential
degradation of the conductivity for a uniform distribution
of cracks on the plane. For an isotropic matrix we have ob-
tained σeff = σ1 = σ2 = σ0e

− 1
2πa

2 N
S . Therefore, the limit
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Fig. 7. (Color online) Plot of the relative percent error e [%]
for σ1 versus the order parameter P and the crack density
πa2 N

S
, obtained comparing equations (55) and (57). The error

is always zero for P = 0 and P = 1/2 and is very high with
large crack density and for P = 1.

σeff = 0 is only reached for α = πa2N
S → ∞, which means

that this theory does not predict percolation. However, in
reality percolation occurs for α = πa2N

S = 4.49 [25,73];
at this crack density the effective conductivity vanishes.
We propose in this Section a simple explication of this
behaviour by means of the symmetric Bruggeman formal-
ism [74,75]. To begin, we take into consideration a simple
initial situation which is useful for the following deriva-
tion. We consider a strongly dilute dispersion of random
oriented isotropic elliptic particles (aspect ratio e and con-
ductivity σi) embedded in an isotropic matrix σ0 with vol-
ume fraction c. In this case the results of the previous sec-
tions lead to the effective conductivity σeff = F (σ0, σi, c)
given by the following expression

F (σ0, σi, c) = σ0 +
1
2
c (σi − σ0) (59)

×
[

σ0

σ0 + e
e+1 (σi − σ0)

+
σ0

σ0 + 1
e+1 (σi − σ0)

]
.

The symmetric Bruggeman formalism is typically ap-
plied to a mixture of grains (having completely haphaz-
ard distribution of size, position, and shape) made by two
(or more) different media. We consider grained materials
formed by two different phases having conductivities σA
and σB , and volume fractions cA = 1 − c and cB = c, re-
spectively. We suppose that the mixing rule for this system
is given by σeff = G (σA, σB, c). We will assume that the
only structural information about the mixture are c and
the predominant aspect ratios eA and eB for the grains
of the two phases. We remark that in this problem we
may not distinguish between a “matrix” and the “inho-
mogeneities”: accordingly, the concept of “embeddeding”
so usefully developed in the previous sections is no longer
relevant. Nevertheless, it is possible to use equation (59)
for the function F in order to find some properties of a
random mixture, i.e. of the function G. To this aim, let us
examine the situation of the random mixture for very low
values of c: we may think that a low value of c is reached

when the structure contains only very small elements of
the second medium dispersed in the matrix of the first
medium. In this limiting case, equation (59) (obtained for
diluted dispersion of particles) is still valid: so, we may
write down the derivative of G with respect to the volume
fraction c (in the limit of vanishingly small c)

∂G

∂c
(σA, σB, c = 0) =

1
2

(σB − σA) (60)

×
[

σA
σA + eB

eB+1 (σB − σA)
+

σA

σA + 1
eB+1 (σB − σA)

]
.

By using this expression we may solve the complete prob-
lem of a linear random mixture composed by different ho-
mogeneous components randomly mixed together [74,75].
In fact, we may think to add to the overall system (with
conductivity σeff = G (σA, σB , c) where c is now arbitrary)
another grain with volume ΔV 
 V and conductivity σA.
The conductivity of the resulting new mixture can be de-
scribed by homogenization

σAeff = G

(
σeff , σA,

ΔV

ΔV + V

)
(61)

where we have considered a two-phase mixture between
σeff (the original medium) and σA (the added grain).
Since ΔV 
 V , we can expand G up to the first order
in ΔV /(ΔV + V ) and therefore we have

σAeff = σeff +
∂G

∂c
(σeff , σA, 0)

ΔV

V
. (62)

The same result can be obtained by adding a grain having
conductivity σB to the original grained material

σBeff = σeff +
∂G

∂c
(σeff , σB , 0)

ΔV

V
. (63)

At the end of the procedure the unknown function G is
obtained in implicit version

σeff = (1 − c)σAeff + cσBeff (64)

where we have given the probability 1− c to the insertion
of the grain σA and the probability c to the insertion of
the grain σB . By simplifying the previous expression we
have

0 = (1 − c)
∂G

∂c
(σeff , σA, 0) + c

∂G

∂c
(σeff , σB , 0) (65)

which implies, by using equation (60), the most important
result of the effective medium theory, namely

0 = (1 − c)

[
1

σeff

σA−σeff
+ eA

eA+1

+
1

σeff

σA−σeff
+ 1

eA+1

]
(66)

+ c

[
1

σeff

σB−σeff
+ eB

eB+1

+
1

σeff

σB−σeff
+ 1

eB+1

]
.

The solution σeff of the previous equation represents the
value assumed by the function σeff = G (σA, σB, c). Now,
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we may apply this theory to the case of the multi-cracked
conductor by imposing: σA = 0, cA = 1 − c = πa2N

S eA
and eA → 0 for the phase representing the cracks and
σB = σ0, cB = c = 1 − πa2N

S eA and eB = 1 for the ma-
trix. The straightforward substitution of these quantities
in equation (66) leads to the result

σeff =
{
σ0

4−α
4+α if α ≤ 4

0 if α > 4 (67)

where α = πa2N
S . This theory has predicted a percola-

tion threshold corresponding to α = 4, which shows a
quite good agreement with the value reported in literature
α = 4.49 [25,73]. We observe that, while the iterative and
differential methods are able to capture the degradation
trends for different orientational distributions, they are
not able to describe the percolative scenario occurring be-
yond the percolation threshold. Nevertheless, as described
in the present section, the symmetric Bruggeman formal-
ism predicts quite correctly the value of such a percolation
threshold, at least for randomly oriented cracks.

5 Conclusions

In this paper we have analysed the conduction proper-
ties of two-dimensional heterogeneous multi-cracked struc-
tures. In the first part of the work we have obtained a
result concerning an anisotropic single inhomogeneity (of
elliptic shape) embedded in an anisotropic host matrix.
It has been obtained through the Green function for the
two-dimensional anisotropic electrostatics applied to the
concepts of eigenfield and inclusion. This result can be
written in a simple algebraic form allowing for direct appli-
cations to paradigmatic heterogeneous materials. In fact,
in the second part of this work we have studied the con-
duction properties of multi-cracked conductors. An ini-
tial homogenization theory has been developed for deal-
ing with a dilute dispersion of cracks; then, it has been
generalized to higher crack densities through an iterative
scheme which leads to a system of nonlinear differential
equations. Such an approach takes into consideration the
interactions among cracks in an implicit but efficient way.
We have indeed proved that the model is able to explain
the degradation process of a multi-cracked material for dif-
ferent orientational distribution of the cracks within the
host matrix. In particular it predicts an exponential law
for randomly oriented cracks and a power law for paral-
lel cracks, as observed in recent literature. In the case of
randomly oriented cracks we have also presented a simple
technique to evaluate the percolation threshold. A future
investigation will be devoted to the applications of these
methodologies not only to the transport properties but
also to the elastic response of damaged materials.

S. G. acknowledges financial support by “Fondation Centrale
Initiatives” under project “Continuum approach for studying
the static and dynamic behavior of piezo-magneto-elastic com-
posite materials”.

Appendix A: An integral calculation

We want to determine the value of the integral

Î =
1
2π

∫ 2π

0

n ⊗ n

(n · σ̂n) (n · η̂n)
dα (A.1)

for two arbitrary symmetric and positive definite tensors
σ̂ and η̂. We convert the real integral on the range (0, 2π)
to a complex one over the unit circle through the change
of variable z = eiα. Since n = (cosα, sinα) with cosα =
(1/2)(z + 1/z) and sinα = (1/2i)(z − 1/z) we have

n · σ̂n =
1

4z2
Dσ, n · η̂n =

1
4z2

Dη (A.2)

where

Dσ =
(
z2 + 1

)2
σ11 − 2iσ12

(
z4 − 1

)− (z2 − 1
)2
σ22

(A.3)

Dη =
(
z2 + 1

)2
η11 − 2iη12

(
z4 − 1

)− (z2 − 1
)2
η22.
(A.4)

Moreover, the numerator in the integrand can be written
as

n ⊗ n =
1

4z2
N̂ (z) (A.5)

where

N̂ (z) =
(
z4 + 2z2 + 1 i− iz4

i− iz4 −z4 + 2z2 − 1

)
. (A.6)

Hence, since dα = dz/(iz), we obtain

Î =
2
iπ

∫
∂D

N̂ (z)zdz
Dσ(z)Dη(z) (A.7)

where ∂D is the unit circle on the complex plane. In order
to apply the Cauchy residue theorem we start by searching
for the poles of the integrand. We find that Dσ(z) = 0 if

z2 =
−trσ̂ ± 2

√
det σ̂

σ11 − σ22 − 2iσ12
(A.8)

whence, by extracting the square root, we can calculate
four zeros for the polynomial Dσ(z). From equation (A.8)
we directly obtain

|z2| =

√
trσ̂ ∓ 2

√
det σ̂

trσ̂ ± 2
√

det σ̂
(A.9)

and, therefore, the poles within the unit circle |z| < 1 are
two and, more precisely, those corresponding to the plus
sign in equation (A.8). Such two poles, from now on, will
be indicated as zσ1 and zσ2

zσ1,2 = ±
√

−trσ̂ + 2
√

det σ̂
σ11 − σ22 − 2iσ12

. (A.10)
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Similarly, other two poles within the unit circle come from
the polynomial Dη(z) and they will be named zη1 and zη2

zη1,2 = ±
√

−trη̂ + 2
√

det η̂
η11 − η22 − 2iη12

. (A.11)

The application of the residue theorem leads immediately
to

Î = 4
2∑
j=1

Res

[
N̂ (z)z

Dσ(z)Dη(z) , zσj
]

+4
2∑
j=1

Res

[
N̂ (z)z

Dσ(z)Dη(z) , zηj
]

(A.12)

= 4
2∑
j=1

lim
z→zσj

z(z − zσj)N̂ (z)
Dσ(z)Dη(z)

+4
2∑
j=1

lim
z→zηj

z(z − zηj)N̂ (z)
Dσ(z)Dη(z) . (A.13)

By a simple direct evaluation we obtain

lim
z→zσj

Dσ(z)
z − zσj

= 8zσj
√

det σ̂, j = 1, 2 (A.14)

lim
z→zηj

Dη(z)
z − zηj

= 8zηj
√

det η̂, j = 1, 2. (A.15)

Combining these results with equation (A.13) we obtain
a first form for the integral value

Î =
1
2

2∑
j=1

N̂ (zσj)√
det σ̂Dη(zσj)

+
1
2

2∑
j=1

N̂ (zηj)√
det η̂Dσ(zηj)

. (A.16)

Now, since N̂ (z), Dσ(z) and Dη(z) directly depend on z2,
the first couple of terms (j = 1, 2) assume the same value
when calculated for zσ1 or zσ2. The same thing happens for
the second couple of terms and, therefore, we may simplify
equation (A.16) to

Î =
N̂ (zσ1)√

det σ̂Dη(zσ1)
+

N̂ (zη1)√
det η̂Dσ(zη1) . (A.17)

To conclude, a very long but straightforward substitution
of equations (A.10) and (A.11) in equation (A.17) leads to
the result stated in equation (22). Interestingly enough, if
η̂ = Î or η̂ = σ̂ we have the special results

1
2π

∫ 2π

0

n ⊗ n

n · σ̂n
dα =

Î + σ̂−1
√

det σ̂
trσ̂ + 2

√
det σ̂

(A.18)

1
2π

∫ 2π

0

n ⊗ n

(n · σ̂n)2
dα =

σ̂−1

2
√

det σ̂
(A.19)

and applying the trace operator we also have

1
2π

∫ 2π

0

dα

n · σ̂n
=

1√
det σ̂

(A.20)

1
2π

∫ 2π

0

dα

(n · σ̂n)2
=

trσ̂
2 det σ̂

√
det σ̂

. (A.21)

Appendix B: Solution of the differential
problem

We search the solution of equations (51) and (52) with the
initial conditions σ1(0) = σ10 and σ2(0) = σ20. From the
first equation we directly obtain

σ2 =
(
πa2

S

)2
P 2σ3

1(
dσ1
dN

)2 (B.22)

and, substituting equation (B.22) into equation (52) we
have a pure differential equation in the unknown σ1

3
(
dσ1

dN

)2

−2σ1
d2σ1

dN2
−
(
πa2

S

)2

P (1 − P )σ2
1 = 0. (B.23)

This is a second order nonlinear differential equation of
the form F (y, y′, y′′) = 0 (where y = y(x), y′ = dy/dx
and y′′ = d2y/dx2) and, typically, it can be solved by the
transformation y′ = f(y) where the function f is the new
unknown. In our case we therefore let dσ1/dN = f(σ1)
and we develop the second derivative as follows

d2σ1

dN2
=

d

dN

dσ1

dN
=

d

dN
f(σ1) =

df

dσ1

dσ1

dN
= f

df

dσ1
.

(B.24)
By adopting this change of variable, equation (B.23) as-
sumes the form of the following first order differential
equation

df

dσ1
= −1

2

(
πa2

S

)2

P (1 − P )
σ1

f
+

3
2
f

σ1
. (B.25)

This is an homogeneous equation of the type dy/dx =
φ(y/x) and it can be straightforwardly approached
through the introduction of u = y/x, where u(x) is to be
determined. In our case it means that we define u(σ1) =
f(σ1)/σ1 from which we have df/dσ1 = σ1du/dσ1 + u. At
last, equation (B.25) is converted to

2σ1
du

dσ1
= −

(
πa2

S

)2

P (1 − P )
1
u

+ u (B.26)

which is a separable equation leading to∫
2udu

u2 − (πa2

S

)2
P (1 − P )

=
∫
dσ1

σ1
(B.27)

or, equivalently, to

log |u2 −
(
πa2

S

)2

P (1 − P )| = log |σ1| + C. (B.28)

http://www.epj.org


Page 14 of 15 Eur. Phys. J. B (2012) 85: 59

By introducing the integration constant K = exp(C) > 0
we have

u = ±
√
Kσ1 +

(
πa2

S

)2

P (1 − P ). (B.29)

By using the previous definition u(σ1) = f(σ1)/σ1 we
come back to the function f(σ1) = σ1u(σ1). Consequently,
we can write the final differential equation dσ1/dN =
f(σ1): since σ1(N) must be a decreasing function of N
(degradation process) we must choose the minus sign in
the previous solution, by obtaining

dσ1

dN
= −σ1

√
Kσ1 +

(
πa2

S

)2

P (1 − P ). (B.30)

This equation, being again separable, can be integrated∫ σ1

σ01

dσ1

σ1

√
Kσ1 +

(
πa2

S

)2
P (1 − P )

= −N. (B.31)

The integration constant K can be found from equa-
tion (51) written for N = 0

dσ1

dN
(N = 0) = −πa

2

S
Pσ

3/2
10 σ

−1/2
20 (B.32)

combined with equation (B.30), always written for N = 0;
the result is

K =
(
πa2

S

)2

P
1
σ10

[(
1 +

σ10

σ20

)
P − 1

]
. (B.33)

To conclude, equation (B.31) can be simply developed by
recalling that∫

dx

x
√
α+Kx

=
1√
α

log |
√
α+Kx−√

α√
α+Kx+

√
α
| + c (B.34)

for α > 0 (in our case we define α =
(
πa2/S

)2
P (1 − P ))

and for an arbitrary constant c. Therefore, equation (B.31)
can be written as

Y −√P (1 − P )

Y +
√
P (1 − P )

= X (B.35)

where

Y =

√
P
σ1

σ10

[(
1 +

σ10

σ20

)
P − 1

]
+ P (1 − P ) (B.36)

and

X =
P
√

σ10
σ20

−√P (1 − P )

P
√

σ10
σ20

+
√
P (1 − P )

e−πa
2 N

S

√
P (1−P ). (B.37)

equation (B.35) can be inverted resulting in

Y =
1 + X
1 −X

√
P (1 − P ) (B.38)

and σ1 can be obtained from equation (B.36)

σ1 = σ10
Y2 − P (1 − P )

P
[(

1 + σ10
σ20

)
P − 1

]
= σ10

4X
(1 −X )2

1 − P(
1 + σ10

σ20

)
P − 1

. (B.39)

Finally, by substituting equation (B.37) in equation (B.39)
we obtain the complete solution shown in equation (53).
The second solution for σ2 can be simply obtained by in-
verting the subscripts ‘1’ and ‘2’ and the symbols P and
1 − P in the first solution for σ1.
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