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Two-state theory of single-molecule stretching experiments
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We present a statistical mechanics analysis of the finite-size elasticity of model polymers, consisting of domains
that can exhibit transitions between more than one stable state at large applied force. The constant-force (Gibbs)
and constant-displacement (Helmholtz) formulations of single-molecule stretching experiments are shown to
converge in the thermodynamic limit. Monte Carlo simulations of continuous three-dimensional polymers of
variable length are carried out, based on this formulation. We demonstrate that the experimental force-extension
curves for short and long polymers are described by a unique universal model, despite the differences in chemistry
and rate-dependence of transition forces.
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I. INTRODUCTION

Dynamic force spectroscopy by means of the atomic-force
microscope (AFM), laser- or magnetic-tweezers apparatus,
or the biomembrane force probe allows the direct probing
of the elasticity of individual molecules, and as such has
rapidly become a mainstay of biophysical research [1–4].
These mechanical devices are quite different from one another,
one prominent difference being their equivalent stiffness, in
the range of 10−4 − 1 pN/nm for tweezers, versus 10 −
102 pN/nm for the AFM [4]. The typical experiment is a
mechanically induced unfolding of a biological polymer made
of N domains, e.g., a polysaccharide such as dextran [5], a
protein such as titin [6], a DNA or RNA strand [7], and so on.
As a function of increasing force levels, different mechanical
response regimes are observed, beginning with the entropic
unfolding of the polymer chain, now well understood in terms
of simple worm-like chain (WLC) or freely jointed chain (FJC)
models [8]; to the linear-elastic extension of the straightened
chain; to the so-called overstretching, typically interpreted as
a conformational transformation of the domain geometry; up
to the eventual fracturing of the polymer.

Several theoretical models have been introduced to shed
light on the force-induced transformations, notably in DNA.
For example, a macroscopic thermodynamics analysis led to a
melting interpretation of the overstretching transition [9], with
double-strained DNA (dsDNA) separating into noninteracting
single-strained DNA (ssDNA) strands. This model was sub-
sequently extended in order to consider different conditions
of temperature, pH, and ionic strength [10]. However, a
more recent thermodynamics analysis [11] compared DNA
melting with the conformational transformation from dsDNA
to a supposed stretched-DNA, or S-DNA form, and found
the latter to be in much better agreement with available
experimental data. However, recent experimental results show
that when the content of Adenine-Thymine (AT) pairs is
high, a force-induced denaturation (melting) is observed; by
contrast, sequences with a prevalence of Guanine-Cytosine
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(GC) pairs are found to undergo an overstretch transition into
a distinct base-paired form [12]. Comparisons of experimental
results with ad-hoc models have been also drawn for analyzing
structural transitions of simultaneously twisted and stretched
DNA molecules [13]. Some other general properties of bistable
systems have been studied through the Fermi-Pasta-Ulam
chain model [14,15], by a two-state FJC polymer [16,17],
and by the so-called discrete persistent chain that borrows
features from both the FJC and the WLC chain models [18].
Also, atomic-scale computer simulations based on molecular
dynamics have been used to analyze physicochemical details
of different polymers and biomolecules: as an example
concerning the DNA mechanics, it has been shown that the
double helix can be extended to twice its normal length
before its base pairs break [19]. Moreover, the force needed
to completely separate the two strands has been numerically
determined [20], and some noncanonical forms generated by
DNA stretching and compression have been predicted [21].

In spite of the richness of experimental results and the
large number of models devoted to explain specific situa-
tions, a universal theoretical approach able to describe the
different observed responses is not yet available. Typically,
the experimental results can be subdivided in two separated
classes showing cooperative and noncooperative mechanically
induced unfolding. Any of the above-discussed polymer mod-
els is able to explain only one of these two observed responses.
We are, therefore, interested in developing a unifying model
capturing at the same time the main features of both behaviors.

In this context, we provide a robust microscopic statistical
mechanics foundation to the interpretation of the overstretch-
ing regime (or conformational transitions regime), which we
describe in terms of the internal dynamics of a chain of two-
state systems undergoing a conformational transformation,
as described by the double-well potential in Fig. 1. For
the sake of argument we call “folded” and “unfolded” the
two conformations; however, the transformation occurs, more
generally, between two principal local minima of the domain
free-energy hypersurface (e.g., for DNA it could as well
represent the melting transition [22]). Then, we first develop a
theoretical model describing experiments at constant applied
force (a realization of Gibbs ensemble statistics) and we show
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FIG. 1. (Color online) Potential energy function with an energy
barrier. Folded and unfolded configurations of the domains are
schematically represented.

that the conformational change must occur simultaneously for
all the domains at a given threshold force.

On the other hand, experiments performed at constant
displacement are a realization of the Helmholtz ensemble of
statistical mechanics. In our previous work [23], we showed
that the outcome of the two types of experiment converge
in the thermodynamic limit of infinite chain length, N → ∞.
Moreover, the equivalence of the different statistical ensembles
in the thermodynamic limit (for Gaussian polymers and chains
of rigid rods) is largely discussed in Ref. [24]. On the
contrary, if the thermodynamic limit is not reached, it has
been shown that different boundary conditions (Helmholtz
and Gibbs ensembles) imposed for stretching the polymer lead
to different force-extension curves [23–27]. In practice, real
experiments always fall in between these two ideal extremes.
Therefore, here we focus on the intermediate cases described
by finite values of the kc/k ratio, k and kc being the equivalent
spring constant (i.e., stiffness) of the domain and of the pulling
device, respectively. We demonstrate by means of Monte Carlo
simulations that the typical “sawtooth” pattern [6], observed
for the unfolding of large protein domains (such as the Ig
units in titin), and the “plateau” or kink [5,7], observed in the
overstretching of DNA and polysaccharides (e.g., dextran),
have a common origin in the size-dependence of the polymer
response to the external force, the plateau shape being attained
in the limit of large N . On the same grounds, at a fixed number
N of domains, the transition from the “plateau” (cooperative)
to the “sawtooth” (noncooperative) response is recovered
for increasing values of kc/k. Notably, such a behavior of
the force-extension curves is universal with respect to the
specification of any additional parameters, such as chemical,
structural, or mechanical constants of the domains.

II. THEORETICAL MODEL AND CALCULATIONS

We work out a simple model containing the minimal
ingredients fully describing the overall complex behavior of
a polymer chain. It consists of an N -domain, nonbranched
chain clamped at one end, able to describe conformational
transitions across an energy barrier. The internal state of

each domain is described by a potential energy V (x), which
exhibits two minima corresponding to the lengths x = xf

(folded conformation) and x = xu (unfolded conformation),
connected via an energy barrier M at x = x0 (see Fig. 1). The
energy is written as a C2 piecewise function, constructed by
imposing continuity and differentiability at the joining points
x1 and x2:

V (x) =

⎧⎪⎨
⎪⎩

1
2k(x − xf )2 0 < x < x1

− 1
2k(x − x0)2 + M x1 < x < x2

1
2k(x − xu)2 + �E x > x2.

(1)

For chosen values of the lengths xf and xu, the
domain spring constant k, and the energy difference
�E between the two conformations, the other parame-
ters are simply given by: δ = xu − xf , x0 = (xu + xf )/2 +
2�E/(kδ), M = (k/4)[δ/2 + 2�E/(kδ)]2, x1 = xf + δ/4 +
�E/(kδ), and x2 = xu − δ/4 + �E/(kδ). Therefore, this
model properly gives a barrier with xf < x0 < xu only
for |�E| � kδ2/4. The model is based on the equilibrium
statistical mechanics and, therefore, it should be applied to
the case of very slow stretching cycles or for all transitions
occurring much faster than the characteristic velocity of the
experiment.

A. The Gibbs ensemble: Cooperative response

Upon application of a constant force f to the end of the
polymer identified by the position vector �rN = (xN,yN,zN )
(the other end being fixed in the origin), the statistics of the
fluctuating chain is a realization of the Gibbs ensemble [23].
The partition function in thermodynamic equilibrium is given
by Zf (f,T ) = ∫∫

�N
e−h̃/kBT dqNdpN , with �N = R6N . The

augmented Hamiltonian h̃ includes the classical kinetic energy
of the domains with mass m, their total potential energy, and a
term, −f zN , describing the applied force along the z axis [23].
In the framework of the present minimal model, the partition
function can be explicitly calculated as

Zf (f,T ) =
(

2πm

β

)3N/2 (
2π

βf

)N

[�(βk,βf,xf ,0,x1)

+ e−βM�(−βk,βf,x0,x1,x2)

+ e−β�E�(βk,βf,xu,x2, + ∞)]N, (2)

with β = (kBT )−1 and

�(α,γ,x0,a,b) = 2
∫ b

a

xe− α
2 (x−x0)2

sinh (γ x)dx. (3)

The function � can be written as

�(α,γ,x0,a,b) = I (α,γ,x0,a,b) − I (α, − γ,x0,a,b), (4)

where the integral I can be calculated in closed form

I (α,γ,x0,a,b) =
∫ b

a

xe−α(x−x0)2
eγxdx

= eγx0e
γ 2

4α

{
1

2α
(e−A2 − e−B2

)

+
√

π

α

γ + 2αx0

4α
[Erf(B) − Erf(A)]

}
, (5)
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FIG. 2. (Color online) Force-extension curves for the Gibbs
ensemble: normalized force f/fβ vs. normalized extension r/(Nxf ).
The black solid lines correspond to different values of the energy
�E = 0, 10, 20, 30, 40, 50 kBT (increasing values from the bottom
up) for a fixed spring constant k = 2000 kBT /(nm)2. The blue dashed
lines correspond to different values of the spring constant k = 10, 15,
30, 100 kBT /(nm)2 (increasing values from the right to the left) for a
fixed value of the energy barrier �E = 30 kBT .

with

A = √
α

(
a − x0 − γ

2α

)
, B = √

α
(
b − x0 − γ

2α

)
. (6)

The extension r at a given force is obtained from the par-
tition function as r = kBT (∂ log Zf /∂f ). Since the extension
is linearly dependent on N , the data for chains of different
lengths can be scaled to a single curve upon diving by N .

Figure 2 shows the results of the normalized force-extension
curves, f/fβ (where f −1

β = βxf ), in terms of r/(Nxf ) for
different values of the energy barrier �E = 0, 10, 20, 30,
40, 50 kBT (black solid lines) at a fixed value of k =
2000 kBT /(nm)2, and for different values of the spring constant
k (blue dashed lines) at a fixed value of �E = 30 kBT . As an
example, we also adopted xu = 3xf or, equivalently, δ = 2xf .
Both sets of curves display a force plateau at f � �E/δ, for
any �E > 0, with a normalized width equal to δ. In our model,
the plateau indicates a transition in the polymer conformation,
meaning that for f < �E/δ each domain is found in the folded
conformation at x = xf , while for f > �E/δ domains are in
the unfolded conformation at x = xu; i.e., the ensemble of
domains respond cooperatively to the external force. Notably,
the value of the plateau force inducing the conformation
transition does not depend on the spring constant, k, nor on
the temperature. Such a result is readily interpreted in the
framework of the Bell expression [28], as the threshold value
of force necessary to make the unfolding rate equal to the
(reverse) folding one, i.e., lowering the difference �E to zero.

As an example of application, in the case of dsDNA, which
displays a plateau at f = 65 pN with a δ ≈ 2.4 Å, our criterion
gives an energy estimate �E = 3.8 kBT . Here, the value of f

is the observed transition force and the parameter δ represents
the measured length rise per base pair in the transition from
dsDNA to its stretched version (experimentally estimated
[7,22] to be a factor of ∼1.7 larger than the normal value
of 3.4 Å [29,30]). It turns out that the above theoretical

�E = 3.8 kBT fits quite well with the available experimental
data [22,31]. On the other hand, the difference of extension
between dsDNA and ssDNA is characterized by a smaller
factor of ∼1.5 [7] and the energetic difference �E is about
2.5 kBT (per base pair) [32,33]. Since 2.5 kBT < 3.8 kBT the
process should be interpreted as a melting transition (at lower
energy and therefore preferred). As a matter of fact, there is
a wide debate on the interpretation of the dsDNA transition
by means of a melting process or through the emerging of
a stretched (S-DNA) structure; the problem is still awaiting
conclusive experimental evidences. In our context we have
simply used the experimental data (f,�E,δ) of the transition,
which are valid independently of the real nature of the process.
To further show the complexity of this problem, we also
note that it has been recently approached by analyzing the
behavior of DNA sequences with controlled base content [12].
It has been proved that when the AT content is around
70% the application of a force of about 62 pN generates
a denaturation (melting) with an extension factor of ∼1.7.
Conversely, sequences with GC content of 60%, under the
same force, show a reversible transition into a new stable
structure extent by a factor ∼1.5 [12]. Unfortunately, no
energetic data are available to make a comparison with our
theory.

A similar plateau was observed for other long chain
polymers, such as dextran with N = 275, xf = 0.5 nm,
xu = 0.56 nm, �E = 13.2 kBT [5], for which the simple
criterion f ≈ �E/δ gives plateau forces in the range of ≈900
pN, as indeed observed [34].

From the theoretical point of view, another description
of the cooperative response can be found in Refs. [16–18].
Nevertheless, our formulation is appropriate to obtain the
force-extension curves also under Helmholtz conditions, as
described below.

B. The Helmholtz ensemble: Noncooperative response

While Gibbs ensemble statistics are sampled with a constant
applied force, a dual situation can be realized by imposing the
extension, i.e., by controlling the polymer end-to-end distance.
The statistics of the fluctuating polymer in this latter scheme
is a realization of the Helmholtz ensemble. As shown in
Ref. [23], the corresponding partition function Zr cannot be
written in closed form and, as opposed to the Gibbs case,
the corresponding extension r is nonlinearly dependent on
N . However, we showed that the partition functions in the two
ensembles are formally related via a Laplace transform, and we
demonstrated [23] that they lead to a common force-extension
curve in the thermodynamic limit.

It should be noted that any AFM or tweezers experiment
falls in an intermediate regime between the two ideal extremes,
of purely constant force or constant extension, since either
constraint on the terminal domain of the chain is mediated
by a mechanical device (such as the AFM cantilever, or the
laser-bound microsphere, plus a molecular spacer providing
adhesion). The device is characterized by its own effective
elastic constant kc, which is coupled in series to the chain of
domain springs k. In the limit of a soft device, kc/k →0, the
statistics of the coupled system reduces to the Gibbs ensemble
for the isolated molecule fluctuating under a constant force.
On the other hand, for a very stiff device, kc/k → ∞, one
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recovers the Helmholtz ensemble for the isolated molecule
held at a fixed extension by the fluctuating force [35].

To describe such a situation, we adopt a Monte Carlo (MC)
numerical approach, simulating the stretching of the chain
produced by a device with a proper adjustable elastic stiffness.
Compared to previous MC simulations of the polymer stretch-
ing [36–39], we adopted a scheme ensuring a very efficient
exploration of the bimodal configuration space [40,41]. While
in the Metropolis method one usually adopts a single step size
for each MC move [23], in the present simulations we added
a second step size, equal to δ = xf –xu [40]. The first step size
is used for most moves, while the second one is sampled for
a small fraction of the moves, ensuring the overcoming of the
barrier at any temperature, while still preserving the detailed
balance [41].

In Fig. 3, top panel, we report the results of the MC
simulations at T = 293 K, for decreasing values of the kc/k

ratio, from 0.05, that is well within the Helmholtz statistics
regime, down to 1 × 10−4, i.e., approaching Gibbs ensemble
statistics. The remaining parameters are set to N = 4, �E =
30 kBT , xf = 2.5 nm, xu = 3xf , and k = 100 kBT /nm2,
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FIG. 3. (Color online) Monte Carlo force-extension curves at T =
293 K, for: (top panel) different decreasing values of the device
spring constant kc = 5, 2, 1, 0.5, 0.01 kBT /(nm)2 (from the top
down) and N = 4; (lower panel) increasing number of domains N =
4,30,300 with kc = 2 kBT /(nm)2 (bottom panel). The red dashed
line corresponds to the Gibbs ensemble. The remaining parameters
are �E = 30 kBT , xf = 2.5 nm, xu = 3xf , and k = 100 kBT /(nm)2.

which can be considered representative of a medium-sized,
multidomain chain protein. At large values of kc/k, the
domains exhibit a sequence of independent conformational
transitions to the unfolded configuration, generating a series
of N peaks (sawtooth pattern), which closely resemble the
experimental results obtained for short chains (e.g., a titin
fragment with N = 8, xf = 4 nm, xu = 32 nm, �E = 11.1
kBT [34]). For kc/k → 0, the peak-to-valley width, �f , of
the sawtooth shrinks and the curve approaches the kc = 0
cooperative plateau of Gibbs statistics. In substantial agree-
ment with this finding, pulling experiments on native titin by
means of optical tweezers [42], having a very small equivalent
kc compared to the AFM one, do not reveal the sawtooth
pattern, but rather a smooth, monotonic branch reminiscent of
the horizontal plateau.

On the other hand, a similar asymptotic trend is observed
(Fig. 3, bottom panel) when the chain length, i.e., the number
of domains, is increased, at a fixed value of kc/k. As N

increases, the width �f is decreased until, at a large enough
N , the force-extension curves approach again the plateau
curve of the Gibbs ensemble. It is worth noting that a similar
trend was observed in experiments performed on native titin,
comprising several hundreds of Ig domains, for which the
width �f was of the order of 80 pN [6], compared to the
much shorter 8-monomer titin, for which �f > 200 pN.
The experiments performed on dextran, a long polysaccharide
with N = 275 [5,34], whose response to the applied force
shows a plateau closer to the typical DNA-like behavior, can
also be rationalized on this basis. In summary, we proved that
the macroscopically different behavior of small-N polymers
(such as titin) versus long polymers (such as dextran, DNA),
as well as experiments done on a same polymer but with
devices having widely different stiffness, can be interpreted
with the very same unifying model, interpolating between the
two extremes of pure Gibbs or Helmholtz statistics.

A similar dependence of the results on the type of
loading devices has been found in recent literature for a one-
dimensional chain of bistable elements [14,15]: the authors
prove that the system “snaps” for a soft device, while it
“pops” for a hard device. Our results extend these previous
ones by considering thermal fluctuations in the whole three-
dimensional space.

As observed by several authors, each branch of the sawtooth
pattern can be nicely fitted by a sequence of FJC, or WLC
curves (see Fig. 4, left panel, dashed lines) with a proper
value of the persistence length, up to the unfolding of each
domain (see, e.g., titin [6], spectrin [43], fibronectin [44],
synaptotagmin [45]). Beyond this point, the force relaxes to a
smaller value, until the next curve is met and the force can start
rising again upon increasing displacement. By considering
Fig. 4 (left panel), we determine the position rn of the peaks as
follows: in correspondence of the nth peak, we have n − 1
domains in the unfolded configuration (extension xu) and
N − n + 1 domains in the folded configuration (extension xf ).
Therefore,

rn

Nxf

= 1 + (n − 1)(xu − xf )

Nxf

, (7)

for n = 1,...,N (n = N + 1 corresponding to the final
asymptote). We also note that the increasing parts of the
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FIG. 4. (Color online) Left panel: definition of �f and θ for a typical force-extension curve with N = 4. Dashed lines for the growing
branches fitted to FJC with increasing contour length. Central panel: plot of log(�f/fβ ) vs. log(N ) for kc = 1 kBT /(nm)2 and k/kc = 20, 30,
100 (blue, red and black lines, respectively; we used natural logarithms). Right panel: plot of tan(θ ) vs. kc for N = 4 and the same k values.
Remaining parameters: �E = 30 kBT , xf = 2.5 nm, xu = 3xf and T = 293 K.

force-extension curve (dashed lines in Fig. 4, left panel) can be
represented by polymers with N domains described by simple
harmonic potentials V (x) = (1/2)k(x − rn/N )2.

Since the physical origin of the growing branch of the curves
is well understood on the basis of FJC or WLC models, we
analyzed the decreasing branch, as identified by the common
width �f and angle θ in Fig. 4 (left panel), which were
extracted from our MC simulations as a function of N and
kc/k.

By looking at Fig. 4 (center), the peak-to-valley width
shows a power-law decrease with the chain length, �f ∼
N−α , the exponent α = 1.3 being remarkably independent
on the kc/k ratio. This finding indicates that attainment of
the thermodynamic limit is mainly dictated by the thermal
force scale, fβ , and to a much lesser extent by other structural
and chemical details of the polymer. It is worth noting that
the value of the exponent is in agreement with previous
results on monostable FJC and WLC models with extensible
bonds [23].

The last plot on the right of Fig. 4 reports the behavior of
tan(θ ) as a function of the device stiffness, kc. The observed
linear dependence is another remarkable result, completely
describing the transition between the two extremes (Gibbs
and Helmholtz ensembles), while taking into account all the
intermediate cases. For kc/k → ∞, we have tan(θ ) → −∞
or, equivalently, θ → π/2. In other words, the decreasing

branches of the force-extension curve must be exactly vertical
in the case of the Helmholtz ensemble. Notably, both the values
of �f and θ are fully prescribed; i.e., the entire shape of
the force-extension curve is uniquely defined, once the free
parameters of the model are specified.

III. CONCLUSIONS

In conclusion, we described the statistical mechanics of
chain polymers composed by domains with two stable states,
subject to a pulling force by a molecular-scale mechanical
device. We showed that for short chain length, or large
stiffness of the device, the domain response is uncorrelated and
originates the typical sawtooth force-extension curve observed
in many experiments. On the other hand, upon increasing
chain length, or vanishing device stiffness, the response is
cooperative and results in the plateau-like curve, also observed
in other experiments. Despite the simplicity of the model, such
a framework provides a unified picture for such apparently
contrasting experimental situations.
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