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Spin variable approach for the statistical
mechanics of folding and unfolding chains

Stefano Giordano

The force–extension response of chains composed of bistable (or multistable) units strongly depends on

the applied boundary conditions. As a matter of fact, isotensional conditions (soft devices) lead to a

plateau-like response, whereas isometric conditions (hard devices) lead to a sawtooth-like pattern. We

develop an equilibrium statistical mechanics methodology, based on the introduction of a set of discrete

or spin variables, which is able to describe the thermal and mechanical properties of a folding and

unfolding chain under arbitrary external conditions. In particular, we will work within the Gibbs and

Helmholtz ensembles, which correspond to soft and hard devices, respectively. We introduce a one-

dimensional system composed of multistable units and a bistable freely jointed chain. For both systems

we obtain explicit expressions for the force–extension relation and we study the spinoidal behavior

induced by the isometric conditions.

1 Introduction

In recent years, the folding and unfolding of single macro-
molecules have been largely investigated through atomic-force
microscopes (AFMs), laser optical tweezers (LOTs) and magnetic
tweezers (MTs), which are able to apply external forces directly
to chemical entities.1–5 In particular, single-molecule micro-
manipulation has been largely employed for biopolymers such
as proteins,6–10 RNA,11,12 and DNA.13–18 The direct quantification
of the elasticity of individual molecules (force spectroscopy)
has for the first time allowed the investigation of the thermo-
dynamics and the statistical mechanics of small systems.19,20 In
addition, this approach permitted detecting the length of
domains in proteins,21 and identifying an individual block in a
copolymer chain,22 with an efficiency similar to that of nuclear
magnetic resonance or X-ray crystallography. The mechanical
manipulation of molecular chains has also been achieved by
micro-electro mechanical systems (MEMSs), such as silicon
nanotweezers (SNTs),23 recently used to evaluate DNA damage
under ionizing radiation.24,25

Force spectroscopy methods offer the possibility of directly
measuring the force–extension response of macromolecules
and therefore have stimulated the development of theoretical
approaches to predict and compare their thermo-mechanical
properties.26–28 Classical theories include the freely-jointed chain
(FJC) model26,29 (describing, e.g., single-stranded DNA and RNA)
or the worm-like chain (WLC) model14,28,30 (well representing

the double-stranded DNA behavior), and several enriched
generalizations.31–35

Mechanically induced unfolding of monomers or molecular
elements of a chain (overstretching regime) is a fundamental
phenomenon encountered across the scales from polypeptides to
cytoskeletal actin networks and nucleic acids. From the chemical
point of view, it is based on the conformational transformation
of a molecular structure exhibiting two (or more) metastable
configurations. On the other hand, from the mechanical point of
view, it can be represented by an interaction potential composed
of two (or more) potential wells, corresponding to the stable
conformational states. As said above, the unfolding process can
be experimentally examined by measuring the force–extension
relation using force spectroscopy techniques (see Fig. 1 for
the AFM scheme). Devices employed have different equivalent

Fig. 1 Representation of the unfolding process of a macromolecular
chain realized through AFM. The sequence of folded and unfolded
domains is tethered onto a given substrate on one side, and stretched
by the AFM cantilever on the other side. A laser–detector system is able to
measure the cantilever displacement.
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stiffnesses, being in the 10�4–1 pN nm�1 range for optical or
magnetic tweezers, and in the 10–102 pN nm�1 range for the
AFM.4 Therefore, depending on the equivalent stiffness of the
device, the stretching experiment corresponds to a situation
placed in between the Gibbs and Helmholtz ensembles of the
statistical mechanics. In particular, experiments performed at
constant applied forces (extremely soft devices) correspond to the
Gibbs statistical ensemble (see Fig. 2a), and experiments per-
formed at prescribed displacements (extremely hard devices) are a
realization of the Helmholtz statistical ensemble (see Fig. 2b).36–38

Typical experimental force–extension curves are also shown in
Fig. 2. The Gibbs (plateau-like) response can be interpreted by
supposing that the conformational change occurs simulta-
neously for all the domains at a given threshold force (cooperative
process).15,16,39–41 On the other hand, the Helmholtz (sawtooth-
like) response shows that the domains unfold progressively
in reaction to the increasing extension (non-cooperative
process).6,8,42–44

It is important to remark on the meaning of the word
‘cooperativity’ in this context. Here we introduce this word to
underline the synchronization of the unfolding process. Usually in
biology, the word ‘cooperativity’ is introduced when the transition

of one element affects the transition of the others. In this
context, we have no interactions among the elements and we
simply observe if the unfolding processes take place at the same
time or not. We maintain the use of the term ‘cooperativity’ to be
coherent with the existing literature on this subject.

Several theoretical models have been proposed to better
understand the force-induced transformations under the two
different conditions mentioned above. For example, the plateau-
like response observed for double-stranded DNA has been
studied through thermodynamic approaches,45,46 and using
molecular dynamics simulations,47 leading to interpretation of
the overstretching transition as a melting transition. However,
another statistical analysis supported the conformational trans-
formation from double-stranded DNA to a new form named
stretched-DNA, or S-DNA.48 Recent results show that the stress
induced unfolding of double-stranded DNA leads to melting or
S-DNA depending on the relative contents of Adenine–Thymine
(AT) and Guanine–Cytosine (GC) pairs.40 In addition, a statistical
mechanics study on the force–extension behavior of folding poly-
mers has been applied to different nucleic acid configurations.49

The plateau-like response has also been observed for long
polysaccharides, such as dextran,36,42 and interpreted by means
of a continuous two-state model.50

Similarly, some theories have been developed to explain the
sawtooth-like response observed in other experiments. A model
has been proposed for macromolecules unfolded in AFM,
and validated for titin and RNA hairpins.51 An equilibrium
statistical mechanics theory has been developed by introducing
a Landau-like free energy, eventually predicting a series of first-
order phase transitions in correspondence to the unfolding
processes.52 Another approach is based on the minimization of
the total energy of a two-state system and it is in good agree-
ment with the sawtooth pattern observed in titin experiments.53

Besides, the mechanical unfolding of proteins has been studied
by introducing interactions among individual domains described by
the Ising model.54 Furthermore, force–extension curves with marked
picks have been theoretically predicted in force spectroscopy of
polymer desorption.55 Finally, an exhaustive understanding of
chain behaviors driven by hard or soft devices has been achieved
by analysing discrete systems with folding/unfolding units,56,57

Fermi–Pasta–Ulam chains of bistable elements,58 and structures
undergoing discrete phase transformations.59

It is important to remark that the differences between the
force–extension curves measured under Gibbs or Helmholtz
conditions can be noticed only for a moderately small number
N of domains of the chain under consideration (small systems).
Indeed, for a large number of domains, i.e. in the thermo-
dynamic limits (ideally with N - N), the different Gibbs and
Helmholtz statistical ensembles are equivalent and they are
described by the same constitutive force–extension response.31,60–62

As discussed above, several models exist to describe the
response of folding/unfolding chains within either the Gibbs or
the Helmholtz ensemble. We propose here a universal statistical
mechanics methodology for the analysis of the equilibrium
behaviour of chains composed of bistable (or multistable)
elements and subjected to arbitrary boundary conditions.

Fig. 2 Scheme of the statistical Gibbs (a) and Helmholtz (b) ensembles,
corresponding to the isotensional and isometric conditions applied to a
chain of N domains (with l being the extension of a folded domain). The
plots correspond to typical experimental results measuring the normalized
force versus the normalized extension under the two distinct conditions.
While in the Gibbs ensemble (a) we apply the force f and we measure the
position hzi, in the Helmholtz ensemble (b) we impose the position z and
we measure the force hfi.
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In simple cases our model can be analytically solved for both
the Gibbs and Helmholtz ensembles, eventually giving closed
form expressions useful to better understand the physics
underlying the bistability (or multistability) in complex systems
(at thermodynamic equilibrium).

The idea is as follows. The exact mathematical analysis of a
double-basin energy potential is rather complicated from the
statistical mechanics point of view because of the critical
calculation of the partition function. This point is even more
striking when dealing with the Helmholtz ensemble because
of the particular constraint imposed by the prescribed chain
extension. Therefore, to describe the system more easily, we
define additional internal variables (taking part of the phase
space of the system and considered as standard variables of the
statistical mechanics), which are discrete and behave like spin
variables. These discrete quantities (defined for any element of
the chain) assume a finite number of values and allow us to
identify the basin explored by each element. Consequently,
each basin of the potential energy can now be described by a
simple spring-like (quadratic) potential, thus facilitating the
mathematical analysis of the problem. From the historical
point of view, the first biomechanical analysis based on a spin
variable has been performed to model skeletal muscles.63,64

This formalism has been recently readdressed to study a broad
range of allosteric systems.65,66 It is important to remark that,
as mentioned above, the proposed approach can be adopted
only for systems at thermodynamic equilibrium. Indeed, if we
are interested in the out-of-equilibrium dynamics, the simpli-
fied representation provided by the sequence of basins and
spin variables is not sufficient since the relaxation times of the
system depend on the energy barriers between the potential
wells. This is consistent, e.g., with the Kramers rate formula,
originally formulated to deal with chemical reaction rates.67

Coherently, the rate dependent response of systems with a
nonconvex energy landscape has recently been investigated by
properly considering the energy barriers among the potential
wells.68,69 To conclude, the introduced approach allows strongly
simplifying the analysis of systems with bistable (or multistable)
units, eventually giving analytical solutions describing the beha-
vior of the same chain under different boundary conditions or,
equivalently, different statistical ensembles.

While we did not discuss in the present paper the quanti-
tative comparison of our statistical mechanics models with
data from experiments described in the literature, we illustrate
the crucial points of our results, relevant to better interpreting a
given stretching experiment going from the entropic regime up
to the unfolding process.

The structure of the paper is as follows. In Section 2 we
propose the analysis of a simple one-dimensional system
composed of multistable units. We develop the statistical
mechanics analysis under both Gibbs and Helmholtz condi-
tions. In Section 3 we introduce the bistable freely jointed
chain, which is the generalization of the classical FJC model
with bistable elements. For both systems we obtain explicit
expressions for the force–extension relation under isotensional
and isometric conditions and we study the spinoidal behavior

(negative slope in the force–extension curve) induced by the
isometric conditions. The cooperativeness of the folding/
unfolding process is finally quantitatively measured through
the average value of the spin variables.

2 One-dimensional system

The aim of the present section is to propose a toy-model which can
be analytically solved for both the Gibbs (isotensional) ensemble
and the Helmholtz (isometric) ensemble, eventually giving closed
form expressions useful to better understand the physics of the
phenomena underlying the bistability in complex systems.

We consider a one-dimensional system composed of N
elements with mechanical bistability. It means that each element
of the chain can be described by a symmetric potential energy
function U(x) exhibiting four minima (equilibrium points) at
x = �l and x = �wl, where w represents the elongation ratio
between the unfolded and folded configurations (see Fig. 3).
Moreover, the potential energy assumes the minimum value
U = 0 for x = �l and the minimum value U = DE for x = �wl. In
order to perform a simplified analysis of the system, instead of
considering the complex potential function represented in
Fig. 3 (blue dashed lines), we introduce an additional discrete
variable y, which behaves as a spin. It takes part of the phase
space of the system and, therefore, is a standard variable of the
statistical mechanics. The variable y assumes the values in the
set S = {�1,�w} and is able to identify what basin the system
explores. So, the multimodal energy function is substituted
with the simpler expression

Uðx; yÞ ¼ vðyÞ þ 1

2
k0ðyÞðx� y‘Þ2; (1)

where we consider v(�1) = 0, v(�w) = DE, k0(�1) = k and k0(�w) = h.
The potential energy in eqn (1), by varying the value of the spin
variable in S, generates the four parabolic wells represented
in Fig. 3 (red solid lines). They are able to fully describe the
behavior of the system represented by the multimodal energy
profile when we assume to work at thermodynamic equilibrium.
Similar assumptions have been introduced and analysed in the
recent literature.58,69

We add some comments on the energy profile proposed in
Fig. 3. We introduced four potential wells (two folded and two

Fig. 3 Multistable symmetric potential energy of a single domain (blue
dashed line) and its approximation by means of four parabolic profiles
(red solid lines).
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unfolded) for the following reasons. Since we study a one-
dimensional system, the consideration of positive (x 4 0) and
negative (x o 0) orientations of the elements allows modeling
entropic, enthalpic, unfolding and over-stretching regimes.
Indeed, if we consider the system with the first end-terminal
tethered at x = 0 and the second end-terminal free to fluctuate
(without externally applied forces), we have that the average
value of the position of the second end-terminal is zero because
of the random orientation of the domains (almost domains
folded, 50% towards x 4 0 and 50% towards x o 0). Inciden-
tally, it means that the force–extension curve passes through
the origin of the axes. With a weak applied force (positive or
negative), we are in the entropic regime and we will have a
slight increase of the number of domains oriented in the
direction of the force. Under these conditions, the mechanical
reaction of the system is governed by the stochastic distribution
of the differently oriented domains (entropy) and not by the
actual spring-like behavior of the elements. Then, with a larger
force we act on the real elasticity of the domains (enthalpic
regime) up to the unfolding process and the over-stretching
regime, described below for both isotensional and isometric
conditions.

In other words, the entropic regime corresponds to the
transition between the two branches around x = 0 (with the
same zero energy levels). Then, an enthalpic regime follows and
results in a second transition corresponding to the element
unfolding (with different energy levels 0 and DE). Finally,
another enthalpic behavior corresponds to the over-stretching
regime (also enthalpic). We note that the well identified by
y = �w remains unexplored for positive forces and the well
identified by y = w remains unexplored for negative forces. We
also remark that we have given a different interpretation of the
transition at x = 0 (named entropic since the energy jump is
zero) and the other transition (named unfolding since the
energy jump is DE a 0), although they are represented by the
same physical process (but with different energy jumps).

In conclusion, the four well energy profile is appropriate in
order to correctly represent the entropic behavior of the system
for a weak applied force. This aspect is naturally introduced in
two- or three-dimensional models by the higher dimensionality,
which automatically induces a larger number of degrees of
freedom (see Section 3 for details).

2.1 The Gibbs ensemble

The total potential energy of the system under the Gibbs
condition (isotensional ensemble) is given by

UG
totð~x;~y; f Þ ¼

XN
i¼1

U xi � xi�1; yið Þ � fxN ; (2)

where f is the force applied to the last element, -
x = (x1, x2,. . ., xN)

(continuous variables) and -y = (y1, y2,. . ., yN) (discrete variables).
For this system, we can define the partition function ZG, as follows:

ZGð f Þ ¼
X
y12S
� � �

X
yN2S

ð
<
� � �
ð
<
e
�
UG
tot

kBTdx1 . . . dxN ; (3)

where the variable -
x is integrated, whereas -

y is summed. We
have not considered the kinetic energy entering the total
Hamiltonian of the system since it merely produces a non-
influential multiplicative constant in the partition function.
Indeed, since we use orthogonal coordinates, the kinetic energy
depends only on the linear momentum variables and the
potential energy only on -

x and -
y. Therefore, the two contribu-

tions are fully uncoupled and the integral over the momentum
variables simply generates, as mentioned above, a multiplica-
tive constant in ZG( f ). We can now substitute eqn (2) in eqn (3).
To evaluate the integral we apply the change of variables
x1 � x0 = x1, x2 � x1 = x2,. . ., xN � xN�1 = xN, from which we

get xn ¼
PN
j¼1

xj (with x0 = 0). The change of variables within the

multiple integral must be applied by considering that d-
x = Jd~x,

where the quantity J is the Jacobian of the transformation,

i.e. J = |det[q-
x/q~x]|, where [q-

x/q~x]ij is the matrix of the partial
derivatives qxi/qxj. It is not difficult to prove that J = 1 for our

change of variables and, therefore, we get d~x = d-
x. Hence, we

easily obtain

ZGð f Þ ¼
X
~y2SN

ð
<N
exp

XN
j¼1
�
U xj ; yj
� �
kBT

þ
f xj
kBT

� �( )
d~x

¼
X
y2S

ðþ1
�1

exp �Uðx; yÞ
kBT

þ f x
kBT

� �
dx

( )N

¼
X
y2S

exp �vðyÞ
kBT

� �
Iðf Þ

( )N

;

(4)

where the integral I( f ) is defined as

Ið f Þ ¼
ðþ1
�1

exp �k0ðyÞ
2kBT

ðx� y‘Þ2 þ f x
kBT

� �
dx; (5)

and it can be calculated in the closed form by means of the well-
known expressionðþ1

�1
e�ax

2
ebxdx ¼

ffiffiffi
p
a

r
e
b2

4aða4 0Þ: (6)

We eventually obtain the result

Ið f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT
k0ðyÞ

s
exp

y‘f

kBT
þ f 2

2kBTk0ðyÞ

� �
: (7)

Coming back to the partition function, we have

ZGð f Þ¼ 2pkBTð Þ
N
2
X
y2S

ffiffiffiffiffiffiffiffiffiffiffi
1

k0ðyÞ

s
exp

1

kBT

f 2

2k0ðyÞ
þy‘f �vðyÞ

� �� �( )N

(8)

¼ 8pkBTð Þ
N
2

X
s2f1;wg

ffiffiffiffiffiffiffiffiffiffiffi
1

k0ðsÞ

s
exp

1

kBT

f 2

2k0ðsÞ
� vðsÞ

� �� �
cosh

s‘f

kBT

8<
:

9=
;

N

:

(9)
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The last sum can be evaluated by obtaining

ZGð f Þ ¼ 8pkBTð Þ
N
2DN ; (10)

where

D ¼
ffiffiffi
1

k

r
exp

f 2

2kBTk

� �
cosh

‘f

kBT

þ f

ffiffiffi
1

h

r
exp

f 2

2kBTh

� �
cosh

w‘f
kBT

;

(11)

and f ¼ exp � DE
kBT

� �
. It is important to remark that within the

Gibbs ensemble the elements of the chain do not interact and
this point leads to a partition function which is in the form of
a power with exponent N. A similar result can be found
in eqn (34) of ref. 58, describing the statistical behavior of
a Fermi–Pasta–Ulam chain of bistable elements. Also in this
case a soft device leads to the independence of the
bistable units.

The extension of the chain can be directly calculated through the
expression xN = �qUtot/qf and its average value is therefore hxNi =
h�qUtot/qf i. It can be simply evaluated by means of the partition
function, as hxNi = kBTq/qf (log ZG). The calculation eventually gives

xNh i
N‘

¼
ffiffiffi
1

k

r
exp

f 2

2kBTk

� �
f

k‘
cosh

‘f

kBT
þ sinh

‘f

kBT

� �(

þ wf

ffiffiffi
1

h

r
exp

f 2

2kBTh

� �

� f

w‘h
cosh

w‘f
kBT

þ sinh
w‘f
kBT

� �	

D:

(12)

In the simpler case with k = h, we get

xNh i
N‘
¼ f

k‘
þ
sinh

‘f

kBT
þ wf sinh

w‘f
kBT

cosh
‘f

kBT
þ f cosh

w‘f
kBT

: (13)

We can also calculate the average value of the spin variable
h yi = h yii 8i, which is independent of the element considered in
the chain and is given by

hyi ¼ yih i ¼
N

D
8i; (14)

where

N ¼
ffiffiffi
1

k

r
exp

f 2

2kBTk

� �
sinh

‘f

kBT

þ wf

ffiffiffi
1

h

r
exp

f 2

2kBTh

� �
sinh

w‘f
kBT

;

(15)

and D is given in eqn (11). In the simpler case with k = h, we get

hyi ¼
sinh

‘f

kBT
þ wf sinh

w‘f
kBT

cosh
‘f

kBT
þ f cosh

w‘f
kBT

: (16)

By combining eqn (13) with eqn (16), we immediately obtain
xNh i
N‘
¼ f

k‘
þ hyi or, equivalently,

f ¼ k
xNh i
N
� ‘hyi

� �
: (17)

This constitutive equation represents a spring-like behavior
with an equilibrium length directly modulated by the average
value of the spin variables.

An example of the force–extension response and spin
variable behavior is presented in Fig. 4 for h = k. In the curve

of
f ‘

kBT
versus

xNh i
N‘

we observe a force plateau corresponding to

f � ¼ � DE
ðw� 1Þ‘ or, equivalently,

f �‘

kBT
¼ � DE
ðw� 1ÞkBT

. Similarly,

in the curve of
f ‘

kBT
versus hyi we can identify the regions

h yi= �1 and h yi= �w with a transition corresponding to the
same force f *. The interpretation of this behavior is based on a
cooperative process inducing the transition of all elements of
the chain at the same value of force f *. The cooperative
transition is indeed manifest in both the force–extension curve
and the spin variable behavior. Of course, the slope of the
plateau observed depends on the temperature. Indeed, for
higher values of the temperature the response is smoother
and the elements undergo transitions in a more uncorrelated
fashion. Anyway, the value of the threshold force f * can be
explained as follows. Due to the symmetry of the response,
we limit the following discussion to the region with f 4 0 and
hxNi4 0. We suppose that the system has two potential energies

U1ðxÞ ¼
1

2
kðx� ‘Þ2 � fx and U2ðxÞ ¼ DE þ 1

2
kðx� w‘Þ2 � fx,

corresponding to the potential wells of the system identified

Fig. 4 Responses of the one-dimensional system with multistable
elements under Gibbs conditions (h = k): average spin variable (blue line)
and normalized extension (red line) versus dimensionless force. We
adopted the parameters DE = 30kBT = 12.4 � 10�20 J, w = 8, l = 0.5 nm
and h = k = 2.5kBT/l2 = 0.0414 N m�1 (at T = 300 K). The results are
independent of N within the Gibbs ensemble.
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by y = 1 and y = w. The related equilibrium positions are defined
by qUi/qx = 0 and can be found as x1 = l + f/k and x2 = wl + f/k.
Hence, the unfolded configuration is more stable than
the folded one if and only if U2(x2) o U1(x1), that is to

say, f o
DE

ðw� 1Þ‘, as observed in Fig. 4. Notably, the value of

the plateau force inducing the conformation transition does
not depend on the spring constant, nor on the temperature.
Such a result is readily interpreted in the framework of
the Bell expression, originally derived in the context of the
adhesion of cells.70

2.2 Validation of the model and limits of applicability

In order to validate the introduction of the discrete or spin variables
identifying the energy wells of the system, we analyse using
different methods a real multistable system described by the
following potential energy (we begin with the case where h = k):

UðxÞ ¼

1

2
kðx� ‘Þ2 if 0oxox1;

A� 1

2
k0 x� w0‘ð Þ2 if x1 oxox2;

DE þ 1

2
kðx� w‘Þ2 if x4x2;

8>>>>>>>><
>>>>>>>>:

(18)

defined such that U(�x) = U(x) (see Fig. 3). As before,
we consider a four-well energy profile in a one-dimensional
system to properly introduce the entropic regime. Here k0 4 0,
1 o w0 o w and A represents the energy barrier between
the wells. The conditions of continuity and derivability of U at
points x1 and x2 give the relations

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� DE
p

þ w
ffiffiffiffiffi
A
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� DE
p

þ
ffiffiffiffiffi
A
p ; (19)

1

k0
¼ ‘2ðw� 1Þ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� DE
p

þ
ffiffiffiffiffi
A
p� �2 � 1

k
; (20)

x1 ¼
kþ k0w0
kþ k0

‘; (21)

x2 ¼
kwþ k0w0
kþ k0

‘: (22)

Therefore, once DE, k, w and A are fixed, we can easily find x1,
x2, k0 and w0. The equilibrium thermodynamics of this system
can be studied exactly (without the introduction of the spin
variables) with two fully independent techniques: (i) Monte
Carlo (Metropolis) simulations and (ii) exact calculation of the
partition function. As a check of the procedure, we verified
that the two approaches always give exactly the same results.
Then, both methods have been applied and compared with the
solution of our spin model given in eqn (13) and in Fig. 4. The
results of such comparison can be found in Fig. 5. In particular,
it is important to remark that the perfect agreement has been
observed for any value of the energy barrier A larger than or
equal to the jump energy DE, provided that DE c kBT. As a

matter of fact, the adopted approximation based on the spin
variables is valid only if the temperature is low enough to
clearly identify the folded and unfolded states of the elements
of the chain. Therefore, for the present case with h = k the only
condition to fulfil for the validity of our model is A Z DE c

kBT. Indeed, very high values of temperature may generate
some deviations, but these values of temperature are not
interesting for typical applications to biophysics.

In order to further investigate the limits of applicability of
our model based on discrete or spin variables, we also analyse
the case with h 4 k. An example can be seen in Fig. 6, where we

Fig. 5 Comparison of exact results (Monte Carlo or analytical) for the
potential energy in eqn (18) (green continuous line) and the spin variable
expression given in eqn (13) (red dashed line). We adopted the same
parameters of Fig. 4 (in particular, we assumed h = k). The perfect agree-
ment has been found for any value of A Z DE provided that DE c kBT.

Fig. 6 Responses of the one-dimensional system with multistable
elements under Gibbs conditions (h 4 k): average spin variable (blue line)
and normalized extension (red line) versus dimensionless force. We adopted
the parameters DE = 15kBT = 6.2 � 10�20 J, w = 8, l = 0.5 nm, k = 1.25kBT/
l2 = 0.0207 N m�1 and h = 7.5kBT/l2 = 0.124 N m�1 (at T = 300 K). The
shaded areas represent the regions where the model gives incorrect results.
The response is independent of N within the Gibbs ensemble.
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reported the force–extension response given by eqn (12) and the
spin variable behavior given by eqn (14) for a system with h 4 k.
In the force–extension curve, we observe two force plateaux: the
first one, which corresponds to the correct conformational
transition of the elements of the chain, and the second one,
for large values of the applied force, which is non-physical. It
means that the model, in this case, cannot be applied with
forces exceeding a given threshold. The shaded areas in Fig. 6
represent the regions where the model gives incorrect results.
Also, the spin variable shows the first transition from h yi = 1 to
h yi = w (which represents the correct unfolding) and the second
opposite transition from hyi = w to hyi = 1 (which is non-
physical).

This point is confirmed by an independent analysis based
on the following potential energy (we consider now h a k):

UðxÞ ¼

1

2
kðx� ‘Þ2 if 0oxox1;

A� 1

2
k0 x� w0‘ð Þ2 if x1 oxox2;

DE þ 1

2
h x� w‘ð Þ2 if x4x2;

8>>>>>>>><
>>>>>>>>:

(23)

defined such that U(�x) = U(x) (see Fig. 3). As before, k0 4 0, 1
o w0 o w and A represents the energy barrier. The conditions
of continuity and derivability of U at points x1 and x2 give

ðA� DEÞ w0 � 1ð Þ2�A w� w0ð Þ2¼ 2AðA� DEÞðh� kÞ
hk‘2

; (24)

which is a second degree equation for w0, and

k0 ¼
2Ak

k‘2 w0 � 1ð Þ2 � 2A
; (25)

x1 ¼
kþ k0w0
kþ k0

‘; (26)

x2 ¼
hwþ k0w0
hþ k0

‘: (27)

Therefore, once DE, k, h, w and A are fixed, we can easily find
x1, x2, k0 and w0. As before, the behavior of this system can be
studied exactly (Monte Carlo simulations or exact calculation of
the partition function). This approach has been applied to our
system and compared with the spin model described by
eqn (12) and is presented in Fig. 6. The comparison can be
found in Fig. 7, where we observe that the spin model gives
incorrect results for values of the force exceeding a given
threshold (shaded areas).

This problem can be explained as follows. In Fig. 8 we can
observe the energy potential of one element of the chain (blue
dashed line) given in eqn (23) and the profiles of the energy
wells corresponding to the folded and unfolded configurations,
respectively (we adopted the same parameters of Fig. 6 and 7
and an energy barrier A = 17kBT). The intersection point A
corresponds to the folding/unfolding transition (the first
correct transition already observed in Fig. 6 and 7). On the
other hand, point B corresponds to another potential transition

to the folded configuration, which is non-physical because the

parabolic branch
1

2
kðx� ‘Þ2 does not exist on the right of point

A in a real multistable system. Therefore, in this example, the
results of the spin model are limited to a specific range of the
applied force.

To conclude this discussion, it is useful to better identify the
threshold value of the force, limiting the validity of the model.
Due to the symmetry of the response, we limit the following
analysis to the region with f 4 0 and hxNi 4 0. We suppose
that the system has two independent potential energies

U1ðxÞ ¼
1

2
kðx� ‘Þ2 � fx and U2ðxÞ ¼ DE þ 1

2
hðx� w‘Þ2 � fx.

The related equilibrium positions are defined by qUi/qx = 0
and can be found as x1 = l + f/k and x2 = wl + f/h. Hence, the
second system is favoured with respect to the first one if and
only if U2(x2) o U1(x1); that is to say,

1

2
f 2

1

k
� 1

h

� �
� f ‘ðw� 1Þ þ DEo 0: (28)

If h 4 k and Y = (w � 1)2l2 � 2DE(1/k � 1/h) 4 0 (positive
discriminant), the unfolded configuration is preferred in the
interval

2DE

ðw� 1Þ‘þ
ffiffiffiffi
Y
p o f o

2DE

ðw� 1Þ‘�
ffiffiffiffi
Y
p ; (29)

corresponding to the positions between A and B in Fig. 8. While
the first endpoint of the interval corresponds to the force of the
real folding/unfolding transition, the second endpoint corre-
sponds to the force of the non-physical transition introduced by
the spin method, and it can be considered as the threshold
force defining the region of validity of the proposed model.

Fig. 7 Comparison of exact results (Monte Carlo or analytical) for the
potential energy in eqn (23) (green continuous line) and the spin variable
expression given in eqn (12) (red dashed line). We adopted the same
parameters of Fig. 6 (in particular, we assumed h a k). The green
continuous line is nearly independent of A provided that A Z DE c kBT.
The shaded areas represent the regions where the spin model (red dashed
line) gives incorrect results.
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This kind of limitation on the range of admissible force values
must be carefully taken into account when applying this
technique to multistable chains, especially when we have different
elastic responses of the energy wells composing the system.
However, we finally observe that the proposed spin method offers
a very high accuracy when we remain within the interval of validity
of the approximation. Of course, this limitation on the force range
must be always coupled with the condition A Z DE c kBT,
as previously discussed.

2.3 The Helmholtz ensemble

We consider now the chain of multistable elements with both
end-terminals tethered at the points x0 = 0 and xN = x,
respectively. It means that the total potential energy of the
system can be written as

UH
tot ~x;~y; xNð Þ ¼

XN
i¼1

U xi � xi�1; yið Þ; (30)

where xN = x is the fixed extremity of the chain, -
x = (x1, x2,. . .,

xN�1) (continuous variables) and -
y = ( y1, y2,. . ., yN) (discrete

variables). In eqn (30) the potential energy U(x,y) of a single
element is given in eqn (1). The partition function of this
system can be written as

ZH xNð Þ ¼
X
y12S
� � �

X
yN2S

ð
<
� � �
ð
<
e
�
UH
tot

kBTdx1 . . . dxN�1: (31)

Since xN = x is fixed the direct evaluation of the integral in
eqn (31) is rather difficult. However, by comparing eqn (3) and
(31) we deduce that the two partition functions ZG and ZH are
related through a bilateral Laplace transform, as follows:

ZGð f Þ ¼
ðþ1
�1

ZHðxÞ exp
fx

kBT

� �
dx: (32)

Moreover, if we let f = �iokBT, we simply obtain

ZG �iokBTð Þ ¼
ðþ1
�1

ZHðxÞ expð�ioxÞdx; (33)

which means that the Fourier transform of ZH gives the
analytical continuation of ZG on the imaginary axis. Thus, we
can invert the Fourier transform, by getting

ZHðxÞ ¼
ðþ1
�1

ZG �iokBTð Þ expðioxÞdo: (34)

It means that the behavior of the system in the Helmholtz
ensemble can be studied through eqn (34), which considers the
partition function of the Gibbs ensemble as the starting point.
Anyway, from eqn (10) and (11), we have

ZG �iokBTð Þ ¼ c

ffiffiffi
1

k

r
exp �kBTo2

2k

� �
cosð‘oÞ

(

þ
ffiffiffi
1

h

r
exp �kBTo2

2h

� �
f cosðw‘oÞ

)N

¼ c
XN
p¼0

N

p

 ! ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fp

� exp �1
2
kBT

p

h
þN � p

k

� �
o2

� �

� cospðw‘oÞ cosN�pð‘oÞ;

(35)

where c is an unimportant multiplicative constant. By using the
Newton development

cosn x ¼ 1

2n
e�inx

Xn
t¼0

n
t

� �
e2itx; (36)

we obtain from eqn (34) and (35)

ZHðxÞ ¼ c
XN
p¼0

Xp
q¼0

XN�p
s¼0

N

p

 !
p

q

 !
N � p

s

 !

�
ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fp

�
ðþ1
�1

exp �1
2
kBT

p

h
þN � p

k

� �
o2

� �

� exp ioð2w‘q� w‘pþ 2‘s� ‘N þ ‘pþ xÞ½ �do:
(37)

The integral in eqn (37) can be done with the help of the
standard expression

ðþ1
�1

e�ax
2
eibxdx ¼

ffiffiffi
p
a

r
e�

b2

4aða4 0Þ; (38)

Fig. 8 Plots of the energy potential given in eqn (23) (blue dashed line)
with the same parameters of Fig. 6 and 7 and with a barrier A = 17kBT.
We also plotted the energy profiles corresponding to the wells

1

2
kðx� ‘Þ2

and DE þ 1

2
hðx� w‘Þ2. The intersection points A and B between them

are highlighted.
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eventually obtaining

ZHðxÞ ¼ c
XN
p¼0

Xp
q¼0

XN�p
s¼0

N

p

 !
p

q

 !
N � p

s

 !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

h
þN � p

k

r
ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fpe�j

2

;

(39)

where

j ¼ 2w‘q� w‘pþ 2‘s� ‘N þ ‘pþ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

p

h
þN � p

k

� �s : (40)

It is interesting to remark that the partition function obtained
cannot be written as a power with exponent N. It means
that within the Helmholtz ensemble there is an effective
interaction among the elements. The origin of this interaction
is not explicitly defined in the potential energy of the system
(as, e.g., in the Ising model), but comes from the specific
boundary conditions characterising the Helmholtz ensemble.
Our result can be compared with eqn (20) of ref. 58, obtained
for a Fermi–Pasta–Ulam chain with bistable elements. Also this
work confirms that hard devices lead to an interaction among
elements (see also Fig. 13 of ref. 58 for the comparison of the
mechanical response with soft or hard devices).

Now we can evaluate the average value of the overall force
h f i = �kBTq/qx log ZH applied to the system and the average

value of the spin variables hyi ¼ 1

N

PN
i¼1

yi

� �
describing the

transitions, as follows:

An application of eqn (41) and (42) can be found in Fig. 9
where the average spin variable and the dimensionless force are
represented versus the normalized extension for h = k and N = 5
(with the same parameters used in Fig. 4). For comparison, in
the same figure one can also find the force–extension response
in the Gibbs ensemble. These results show a non-cooperative
behavior characterized by the progressive unfolding of the
domains with the increasing total length of the system. This
is confirmed by the marked picks visible in the Helmholtz

force–extension relation and by the sequence of steps charac-
terizing the average value of the spin variable. To sum up, while
in the Gibbs ensemble all the domains unfold collectively
(cooperative process), leading to a plateau in the force–exten-
sion curve, in the Helmholtz ensemble the domains unfold
individually (non-cooperative process), leading to the sawtooth-
like force–extension curve.

In Fig. 10 we can also find the force–extension curve in the
Helmholtz ensemble for different values of N = 4, 6, 8, 10 and 12.
We note that for an increasing number N of elements, the
Helmholtz response converges to the Gibbs one, by progressively
reducing the pick-to-pick distance in the sawtooth pattern. This
is in perfect agreement with recent results concerning the
ensembles’ equivalence in the thermodynamic limit.61,62

In Fig. 11 one can find the behavior of the system within
the Helmholtz ensemble with increasing values of temperature.

h f i ¼

PN
p¼0

Pp
q¼0

PN�p
s¼0

N
p

� �
p
q

� �
N � p

s

� � ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT
p

p

h
þN � p

k

ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fpje�j

2

PN
p¼0

Pp
q¼0

PN�p
s¼0

N
p

� �
p
q

� �
N � p

s

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

h
þN � p

k

r
ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fpe�j2

; (41)

hyi ¼

1

N

PN
p¼0

Pp
q¼0

PN�p
s¼0

N
p

� �
p
q

� �
N � p

s

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

h
þN � p

k

r
ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fpðwp� 2wqþN � p� 2sÞe�j2

PN
p¼0

Pp
q¼0

PN�p
s¼0

N
p

� �
p
q

� �
N � p

s

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

h
þN � p

k

r
ffiffiffiffiffi
1

hp

r ffiffiffiffiffiffiffiffiffiffi
1

kN�p

r
fpe�j2

(42)

Fig. 9 Responses of the one-dimensional system with multistable
elements under Helmholtz conditions for N = 5: average spin variable
(blue line) and dimensionless force (red line) versus normalized extension.
We adopted the parameters DE = 30kBT = 12.4 � 10�20 J, w = 8, l = 0.5 nm
and h = k = 2.5kBT/l2 = 0.0414 N m�1 (at T = 300 K), as in Fig. 4.
For comparison, we also plotted the Gibbs force–extension response
(green dashed line).
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We observe that the picks in the force–extension curves (panel a)
are smeared out by increasing the temperature, as expected since
the fluctuations are able to attenuate the non-cooperative
response. This point can be better observed in terms of effective
elastic stiffness, defined as keff = qh f i/qx (panel b of Fig. 11). For
sufficiently low temperatures, we have force–extension curves
which are nonmonotone and we observe a negative stiffness in
the so-called spinoidal regions, where the slope of the force–
extension curves is negative.68,69 However, it is interesting to
note that a critical temperature T c can be defined by the
condition that the stiffness is always positive for supercritical
temperatures (in the example of Fig. 11, we have T c C 2070 K).
Hence, the real non-cooperative response can be observed only
at subcritical temperatures. The critical temperature can be
viewed as the Curie temperature controlling the ferromagnetic/
paramagnetic transition in magnetism. This analogy has been
recently discussed in the context of the Huxley–Simmons
model.65,66 The decrease of non-cooperativeness can be easily

represented in terms of the average value of the spin variable
(panel c of Fig. 11). Indeed, for increasing temperatures we gradually
lose the staircase shape of the h yi(x) curve, observing a quite
linear growth of h yi versus x for supercritical temperatures.

To characterize this spinoidal behavior, we can consider
panel b of Fig. 11 and we can identify, for a given temperature,
the regions of the x-axis with negative stiffness. This analysis
results in a sequence of intervals (x�i (T),x+

i (T)) with i = 1,. . ., N,
which are represented in Fig. 12 (panel a) versus the tempera-
ture of the system. The blue curves represent the endpoints of
such intervals versus the temperature. We observe that each
interval, corresponding to a given pick of the force–extension
response, becomes degenerate and converges to a single point
x�i (T c

i ) = x+
i (T c

i ) at the specific critical temperature T c
i of the pick

under consideration (red circles in Fig. 12, panel a). Hence, the
global critical temperature of the system is the highest value
among all specific critical temperatures of the picks. For each
interval of the x-axis with spinoidal behavior, we can determine
the corresponding interval on the h f i-axis. The intervals of
force (h f i +

i (T),h f i�i (T)) (i = 1,. . ., N) with spinoidal behavior are
indeed presented in Fig. 12 (panel b) as a function of temperature.
Once again, we can identify the specific critical temperature Tc

i of
each pick of the sawtooth response by observing the degeneration
of the intervals to a single point h f i+i (T c

i ) = h f i�i (T c
i ) (blue circles

in Fig. 12, panel a). Finally, the spinoidal working regions
characterising the critical behavior of the chain can be directly
represented on the (h f i,x) plane, as shown in Fig. 12 (panel c).
Here, the N = 5 solid curves represent the parametric plots of
(h f i+i (T),x�i (T)) and (h f i�i (T),x+

i (T)) (i = 1,. . ., N) for a temperature
range from T = 300 K (blue) to T = T c (red). These curves
correspond to the loci of the maxima and minima of the force–
extension curve with varying temperature. On the same plot,
the dashed (yellow) line represents the force–extension response
for T = 300 K.

3 Bistable freely jointed chain

In this section we elaborate a generalization of the classical
freely jointed chain model in order to introduce the bistable

Fig. 10 Force–extension responses of the one-dimensional system with
multistable elements under Helmholtz (H) conditions for N = 4, 6, 8, 10,
and 12. We also reported the Gibbs (G) response to show the equivalence
of the ensembles in the thermodynamic limit. We adopted the parameters
DE = 30kBT = 12.4 � 10�20 J, w = 8, l = 0.5 nm and h = k = 2.5kBT/l2 =
0.0414 N m�1 (at T = 300 K), as in Fig. 4 and 9.

Fig. 11 Effect of the temperature on the spinoidal behavior in the chain under Helmholtz conditions with N = 5. The average force hfi(x) (panel a), the
effective stiffness keff(x) (panel b), and the average spin variable hyi(x) (panel c) are plotted versus x 4 0 for different values of temperature (T = 600, 900,
1200, 1500, 1800 and 2100 K). We adopted the parameters DE = 12.4 � 10�20 J, w = 8, l = 0.5 nm and h = k = 0.0414 N m�1.
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behavior in the elements of the system. We develop the model
in the three-dimensional space and we suppose that the
potential energy of a single element of the chain is described
by a bistable behavior (see Fig. 13, dashed blue line). The two
potential wells can be represented by

Uð~r; sÞ ¼ vðsÞ þ 1

2
kðsÞ k~r k � ‘ðsÞ½ �2; (43)

where -
r is the vector joining the initial point with the final point

of the element (see Fig. 13, red lines). The parameter s A {0,1}
represents a spin variable identifying two potential wells
explored by the vector -

r. The quantities v(s), k(s) and l(s) stand
for the basal energy, the elastic stiffness and the equilibrium
length of the potential wells, respectively. We remark that, in
the classical freely jointed chain, the elastic stiffness diverges
to infinity or, equivalently, the length of each element is
kept constant. Consequently, the mechanical behavior is
fully governed by entropic forces, with the elastic contribution
being simply absent. Here, for mathematical convenience, it is
better to proceed from eqn (43), with finite elastic constants,

and to analyse the limiting cases in a following phase. We will
study this system within both the Gibbs and Helmholtz
ensembles.

3.1 The Gibbs ensemble

We take into consideration a chain of N elements described by
eqn (43) with a force applied to the last one. Hence, we can
write the total potential energy of the system as

Utotð~q;~s;~f Þ ¼
XN
i¼1

U ~ri �~ri�1; sið Þ � ~f �~rN ; (44)

where -
q = (-r1,. . ., -

rN) is the generalized coordinate vector
containing all positions -

r1,. . ., -
rN, -

s = (s1,. . ., sN) is the vector

of all spin variables, and
-

f is the force applied to the last
element of the chain. The partition function can be therefore
calculated by summing the discrete (spin-like) variables and
integrating the continuous (coordinates) ones, as follows:

ZGð ~f Þ ¼
X

s12f0;1g
� � �

X
sN2f0;1g

ð
<3N

e
�Utotð~q;~s;~f Þ

kBT d~q: (45)

The integral over the vector -
q can be elaborated by means of the

change of variables ~x1 = -
r1 �

-
r0, ~x2 = -

r2 �
-
r1,. . ., ~xN = -

rN �
-
rN�1,

leading to
PN
k¼1

~xk ¼~rN �~r0 and d-q = d~x1. . .d~xN. By fixing -r0 at the

origins of the axes, we obtain

ZG ¼
X

s2f0;1g

ð
<3
exp �Uð

~x; sÞ
kBT

þ
~f �~x
kBT

" #
d~x

8<
:

9=
;

N

; (46)

which means that the partition function is multiplicative with
respect to the elements of the chain. With the system being
spherically symmetric, we can choose an arbitrary direction
for the applied force. Hence, to further simplify eqn (46),

we set
-

f = (0,0, f ) and we change the variables according to
~x = (x cosj sin W,x sinjsin W,x cos W). Since d~x = x2 sinWdxdjdW,

Fig. 12 Critical behavior of the chain with multistable elements. The spinoidal intervals (x�i (T ),x+
i (T )) on the x-axis (panel a), the spinoidal intervals

(hfi+i (T),hfi�i (T)) on the hfi-axis (panel b), and the parametric plots of (hf i+i (T ),x�i (T )) and (hf i�i (T ),x+
i (T )) for T in the range from 300 K to T c (panel c) are

shown. In the latter panel the colour gradation of the parametric plots corresponds to the temperature (blue for T = 300 K and red for T = T c). In the same
panel, the dashed (yellow) line represents the force–extension response for T = 300 K. We adopted the parameters DE = 12.4 � 10�20 J, w = 8, l = 0.5 nm
and h = k = 0.0414 N m�1.

Fig. 13 Potential energy of a single element of the bistable freely jointed
chain (dashed blue curve). The potential wells are approximated through
two parabolic profiles identified by s = 0 and 1.
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J~xJ = x and
-

f�~x = fx cosW, we get the following simpler form of
the partition function

ZG

¼ c
X

s2f0;1g
e
� vðsÞ
kBT

ð1
0

exp � kðsÞ
2kBT

½x� ‘ðsÞ�2
� �8<

: �
sinh

f x
kBT

� �
f x
kBT

x2dx

9>>=
>>;

N

;

(47)

where c stands for a noninfluential multiplicative constant.
As already observed for the one-dimensional model, within the
Gibbs ensemble the elements of the chain do not interact and
this point leads to a partition function which is in the form of a
power with exponent N.

Now, we can explicitly specify the properties of the
two potential wells, namely v(0) = 0, l(0) = l, k(0) = K and
v(1) = DE, l(1) = wl, k(1) = K, where w is the ratio between the
unfolded and folded equilibrium lengths. Then, we get

ZG ¼ c

ð1
0

e
� K
2kBT

½x�‘�2
sinh

f x
kBT

� �
f x
kBT

x2dx

8>><
>>:

þf
ð1
0

e
� K
2kBT

½x�w‘�2
sinh

f x
kBT

� �
f x
kBT

x2dx

9>>=
>>;

N

;

(48)

where f ¼ exp � DE
kBT

� �
. This form of the partition function

can be used to perform the limit for K approaching infinity,
useful to properly define the bistable freely jointed chain. To
this aim, we can use the Dirac delta function propertyffiffiffi

a
p

r
e�a x�x0ð Þ2 �!

a!1
d x� x0ð Þ, eventually yielding

ZG ¼ c
sinh y

y
þ wf

sinh wy
y


 	N

; (49)

where we introduced the dimensionless force y ¼ ‘f

kBT
. When

we remove the bistability from the system, the second term in
eqn (49) vanishes, and we obtain

ZG ¼ c
sinh y

y


 	N

; (50)

which is the classical partition function of the freely jointed chain
model.26,29,31 The force–extension response for the bistable
freely jointed chain can be found through the standard relation

hri ¼ kBT
@ logZG

@f
, producing the important result

hri ¼ N‘

LðyÞ þ w2fLðwyÞsinh wy
sinh y

1þ wf
sinh wy
sinh y

; (51)

where LðyÞ ¼ coth y� 1

y
is the Langevin function. If we define

the average value of the spin variables as hsi ¼ 1

N

PN
i¼1

si

� �
, it is

not difficult to prove that hsi ¼ �kBT
@ logZG

N@DE
. We can therefore

obtain the second important achievement

hsi ¼
wf

sinh wy
sinh y

1þ wf
sinh wy
sinh y

: (52)

By combining eqn (51) and (52), we can find the relationship

hri = N[(1 � hsi)lL(y) + hsiwlL(wy)], (53)

affirming that the average extension of the bistable system is given
by a linear combination of the responses of an FJC model with
length l and an FJC model with length wl, with the coefficients
being controlled by the average value of the spin variable. In other
words, when hsi varies from 0 to 1 the element unfolds progressively
with an effective equilibrium length increasing from l to wl.

An application of eqn (51) and (52) is shown in Fig. 14,
where the average normalized extension and the normalized
spin variable are represented versus the dimensionless force. In
the force–extension curve, we observe a cooperative behavior
characterized by the collective unfolding of all domains at the

threshold value of the dimensionless force
f �‘

kBT
¼ DE
ðw� 1ÞkBT

,

as predicted in Section 2.1. This behavior is confirmed in the
spin variable curve, where a clear transition from 0 to 1 is
exhibited for the same threshold value of the force. Since
we have developed the theory in the limit of K - N, in the
bistable freely jointed chain model we cannot observe a second
transition for a larger force, as in the case shown in Fig. 6 of

Fig. 14 Average normalized extension (red line) and normalized spin
variable (blue line) versus the dimensionless force for the bistable
freely jointed chain under Gibbs conditions. We adopted the parameters
DE = 30kBT and w = 3 (at T = 300 K). The curves are independent of N
within the Gibbs ensemble.
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Section 2.2. Therefore, the results are correct for any value of
the applied force.

3.2 The Helmholtz ensemble

We consider now the chain of bistable elements with both end-
terminals tethered at the points -

r0 =
-

0 and -
rN = -

r. It means that
the total potential energy of the system can be written as

UH
tot ~q;~s;~rNð Þ ¼

XN
i¼1

U ~ri �~ri�1; sið Þ; (54)

where -
rN = -

r is the fixed extremity of the chain, -
q = (-r1,. . ., -

rN�1) is
the generalized coordinate vector containing all positions -r1,. . .,
-rN�1, and -s = (s1,. . ., sN) is the vector of all spin variables. In
eqn (54) the potential energy U(-r,s) of a single element is given in
eqn (43). The partition function of this system can be written as

ZH ~rNð Þ ¼
X

s12f0;1g
� � �

X
sN2f0;1g

ð
<3ðN�1Þ

e
�
UH
tot ~q;~s;~rNð Þ
kBT d~q: (55)

By comparing eqn (45) and (55), we deduce that the two partition
functions ZG and ZH are related through a three-dimensional
bilateral Laplace transform, as follows:

ZGð~f Þ ¼
ð
<3
ZHð~rÞ exp

~r � ~f
kBT

 !
d~r: (56)

Moreover, by considering the spherical symmetry of the problem
we easily obtain the relationship

ZHðrÞ ¼ c

ðþ1
�1

ZGðiZÞ
Z
r
sin

Zr
kBT

dZ; (57)

and by substituting eqn (49) we get the important integral
expression

ZHðrÞ ¼ c

ðþ1
�1

sin y

y
þ wf

sin wy
y


 	N
y

r
sin

ry

‘
dy: (58)

Interestingly enough, when we remove the bistable behavior of
the elements, we find the partition function

ZHðrÞ ¼ c

ðþ1
�1

sin y

y


 	N
y

r
sin

ry

‘
dy; (59)

which has been largely studied by Rayleigh,71 Polya,72 Treloar,73 and
Wang and Guth,74 to analyze the behavior of chains and chain
networks. Here, we elaborate eqn (58) in order to obtain a closed
form expression useful to better explain the chain behavior within
the Helmholtz ensemble. The function to integrate in eqn (58) is
regular on the real axis and analytical on a strip |Imy| o M for an
arbitrary M A <. Then, instead of integrating on the whole real axis
we can use the path G shown in Fig. 15. Therefore, we can write

ZHðrÞ ¼ �ic
ð
G

sin y

y
þ wf

sin wy
y


 	N
y

r
ei
ry
‘ dy: (60)

By developing the power in the previous expression and by using the
expansion

sinn x ¼ 1

ð2iÞne
inx
Xn
t¼0

n
t

� �
ð�1Þte�2itx; (61)

we obtain

ZHðrÞ ¼
c

2NiNþ1r

XN
k¼0

XN�k
p¼0

Xk
q¼0

N

k

 !
N � k

p

 !

�
k

q

 !
ð�1ÞpþqðwfÞk

ð
G

e�iLy

yN�1
dy;

(62)

where we defined

L ¼ k�N þ 2p� wkþ 2wq� r

‘
: (63)

We prove in Appendix A that

ð
G

eiay

ym
dy ¼

0 if a4 0

�2pim am�1

ðm� 1Þ! if a � 0

8><
>: ; (64)

and then we find from eqn (62) the result

ZHðrÞ ¼
pc

2ðN�1ÞðN � 2Þ!r
XN
k¼0

XN�k
p¼0

Xk
q¼0

N

k

 !
N � k

p

 !

�
k

q

 !
ð�1ÞpþqðwfÞkð�LÞN�21ðLÞ;

(65)

written in terms of the Heaviside step function 1(x), defined
as 1(x) = 1 if x Z 0, and 1(x) = 0 if x o 0. Similarly to the

Fig. 15 Definition of the contour G on the complex plane.

Fig. 16 Average dimensionless force (red line) and average spin variable
(blue line) versus normalized extension for the bistable freely jointed chain
under Helmholtz conditions. We adopted the parameters DE = 30kBT, w =
3 and N = 20 (at T = 300 K). We also plotted for comparison the force–
extension Gibbs response (dashed green line).
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one-dimensional case, this partition function cannot be written
as a power with exponent N. It means that within the Helmholtz
ensemble there is an effective interaction among the elements
induced by the boundary conditions.

The knowledge of the partition function allows us to obtain
the force–extension response through the expression

h f i ¼ �kBT
@ logZH

@r
; (66)

and the average value of the spin variable, as follows:

hsi ¼ 1

N

XN
i¼1

si

* +
¼ � 1

N
kBT

@ logZH

@DE
: (67)

Of course, both h f i and hsi could be written in the closed form
by performing the derivatives indicated. However, for the sake
of brevity, we omit this development and we show an example
of application of eqn (66) and (67) in Fig. 16. In the force–
extension response, we can note the typical sawtooth curve
corresponding to a non-cooperative process. It means that the
domains unfold individually, one by one, as also confirmed by
the average value of the spin variable, which exhibits a series of
steps corresponding to each unfolding process.

In Fig. 17 we can also find the force–extension curve in the
Helmholtz ensemble for different values of N = 10, 15 and 20. We
note that for an increasing number N of elements, the Helmholtz
response converges to the Gibbs one, by progressively reducing
the pick-to-pick distance in the sawtooth pattern. Once again,
this confirms the equivalence of the ensembles in the thermo-
dynamic limit, as recently demonstrated for a large class of non-
confined polymer chains.61,62

The temperature behavior of the bistable freely jointed chain
and its spinoidal character can be studied as described in
Section 2.3 for the simpler one-dimensional model. The corres-
ponding results are shown in Fig. 18. Also in this case, the picks
of the sawtooth curve are less pronounced for high tempera-
tures. Therefore, the spinoidal intervals in the force–extension
response, with negative elastic stiffness, degenerate to single
points for specific critical temperatures (see Fig. 18). In parti-
cular, we plotted the sequence of intervals (x�i (T),x+

i (T)), with
i = 1,. . ., N, as a function of temperature in the 300 K o T o
2500 K interval. We observe that each interval degenerates to
a single point x�i (T c

i ) = x+
i (T c

i ) at the specific critical temperature
T c

i of the pick under consideration. Of course, T c = maxi{T c
i }.

For each interval of the x-axis with spinoidal behavior,
we can determine the corresponding interval on the h f i-axis.
Therefore, we also show the parametric plot of (h f i+i (T),x�i (T))
and (h f i�i (T),x+

i (T)) (i = 1,. . ., N) for a temperature range from

Fig. 17 Force–extension responses of the bistable freely jointed chain with
under Helmholtz (H) conditions for N = 10, 15, and 20. We also reported the
Gibbs (G) response to show the equivalence of the ensembles in the
thermodynamic limit. We adopted the parameters DE = 30kBT and w = 3.

Fig. 18 Temperature behavior and spinoidal character of the bistable freely jointed chain. The spinoidal intervals (x�i (T ),x+
i (T )) on the x-axis for 300 K o

T o 2500 K (panel a), and the parametric plots of (hf i+i (T ),x�i (T )) and (hf i�i (T ),x+
i (T )) for T in the range from 300 K to T c (panel b) are shown. In the latter

panel the colour gradation of the parametric plots corresponds to the temperature (blue for T = 300 K and red for T = T c). In the same panel, the dashed
(yellow) line represents the force–extension response for T = 300 K. We adopted the parameters DE = 12.4 � 10�20 J, l = 0.5 nm and w = 3.
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T = 300 K (blue) to T = T c (red). These curves correspond to the
loci of the maxima and minima of the force–extension curve
with varying temperature.

4 Conclusions

In this paper we introduced an equilibrium statistical mechanics
methodology able to describe the thermal and elastic behavior of
chains composed of bistable (or multistable) elements. Each
element of the chain is associated with a discrete quantity (spin
variable), whose values identify the (two or more) basins of the
energy landscape. This approach permits considering simple
quadratic forms for the energy wells, thus simplifying the
calculus of the pertinent partition functions. Therefore, this
technique can be applied to both isotensional and isometric
conditions, which are the limiting cases employed in real force
spectroscopy experiments. Besides, they correspond to the Gibbs
and Helmholtz ensembles of the statistical mechanics. The
closed form expressions for the corresponding partition func-
tions are useful to directly evaluate the force–extension curves in
good qualitative agreement with the plateau-like response and
the sawtooth pattern observed in real measurements, under
isotensional and isometric conditions, respectively. Moreover,
the partition functions are necessary to evaluate the average
values of the spin variables, which correspond in our system
to the occupancy states of the potential energy basins. As a
consequence, the variations of these average values with the
applied force (Gibbs ensemble) or with the prescribed exten-
sion (Helmholtz ensemble) allow us to give a quantitative
interpretation of the cooperative or non-cooperative response
of the folding–unfolding process. As a matter of fact, a single
transition in the average spin variable reveals a cooperative
process characterized by a simultaneous folding/unfolding of
the bistable units. On the other hand, a stepwise behavior
reveals a non-cooperative process, where the units fold/unfold
sequentially under the external action. Therefore, the average
values of the spin variables represent a quantitative measure
of the cooperativeness, which is a crucial point for the physical
interpretation of the folding/unfolding processes. It is impor-
tant to remark that some limitations can be considered to the
range of admissible forces for the spin model, especially when
we deal with a multi-basin energy profile described by differ-
ent elastic responses. On the other hand, the approximation
introduced by the use of the spin variables leads to a very high
accuracy when we remain within the limits of applicability
of the model.

Concerning the partition function within the Gibbs ensem-
ble, we remark that its calculation can be directly performed in
consequence of the introduction of the spin variables, which
simplifies the mathematical form of the multi-basin energy
landscape. Conversely, within the Helmholtz ensemble the
partition function calculation is more involved because of the
condition imposed prescribing the extension of the chain. To
overcome this issue, we take advantage of the Laplace trans-
form relationship existing between the Gibbs and Helmholtz

partition functions. This property is usually employed to
demonstrate the equivalence of the different statistical ensem-
bles in the thermodynamic limit. Indeed, it is not difficult to
prove that for non-confined polymer chains the Laplace trans-
formation of the partition functions turns into the Legendre
transformation of the corresponding thermodynamic poten-
tials for a large number of elements of the chain. Moreover, the
Legendre transformation between the thermodynamic poten-
tials leads to the same constitutive equation within different
statistical ensembles, that is to say, to the equivalence of the
ensembles.61,62 Differently, in our approach we exploit the
Laplace transformation between the partition functions as an
explicit method to make the calculation of the Helmholtz
partition function easier. Instead of integrating the coordinates
pertaining to all the chain elements, we can reduce the integra-
tion to only one variable (force or extension), describing the
Laplace transform itself.

The proposed approach opens the possibility of studying
more general situations, as summarized below. As discussed in
the Introduction, the real force spectroscopy experiments
are placed in between the Gibbs and Helmholtz statistical
ensembles, depending on the device stiffness.37 While in this
work we dealt only with the limiting cases corresponding to the
two pure statistical ensembles (soft or hard devices), it is
possible to generalize the theory by considering a finite elasti-
city for the adopted device, thus defining a continuous class
of statistical ensembles. Another important generalization
concerns the type of interaction between contiguous chain
elements. We considered here freely jointed chains with bist-
ability. It is important to improve the theory by introducing
semi-flexible chains, characterized by a specific persistence
length. This point could lead to the definition of the bistable
worm-like chain, which is the more appropriate model to
describe the DNA over-stretching and the unfolding of several
proteins.1 From the statistical mechanics point of view, it
means that one should study the Ising model with bistable or
multistable magnetization. A further perspective concerns
the dynamics of such folding/unfolding systems. While the
dynamics of the occupancy state of the basins of the energy
landscape have recently been studied,68 it would be interesting
to study the complete dynamics of the system, including
the continuous coordinates and the discrete spin variables.
This point will encourage the study of stochastic processes
composed of a mixing of continuous and discrete variables. In
particular, we will envisage the development of Langevin and/or
Fokker–Planck equations with mixed variables.

Finally, it is interesting not only to observe that the statis-
tical mechanics of folding/unfolding processes for understand-
ing the behavior of bistable chains but also to model other
biological phenomena such as cell adhesion, flip-flopping of
macromolecular hairpins and other allosteric transitions where
the bistability is driven by biochemical actions.66 Moreover, a
sawtooth pattern appears in the force–extension response of
several non-biological systems undergoing discrete phase
transformations: ferromagnetic alloys, nano-indented sub-
strates and plastic materials.59,69
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Appendix
A An integral evaluation

We calculate here the integral
Ð
G
eiay

ym
dy over the contour G

shown in Fig. 15. To begin with, we suppose a A < and
a 4 0. In this case, we observe that on the imaginary axis we
have eiay = e�aImy, which is a decreasing to zero function for
Imy 4 0. So, we consider the contour in Fig. 19 and we writeþ

GR[CR

eiay

ym
dy ¼ 0; (68)

since the function is holomorphic within GR , CR. We
also have ð

GR

eiay

ym
dyþ

ð
CR

eiay

ym
dy ¼ 0: (69)

Since lim
R!1

Ð
CR

eiay

ym
dy ¼ 0 for the Jordan lemma and GR - G

when R - N, we obtain the first resultð
G

eiay

ym
dy ¼ 0 if a4 0: (70)

We consider now the case with a o 0. On the imaginary axis
we have eiay = e�aImy, which is a decreasing to zero function for
Imy o 0. Therefore, we introduce the contour shown in Fig. 20.
The function is not holomorphic within GR , CR

0 since it
presents a pole of order m for y = 0. Hence, we haveþ

GR[CR
0

eiay

ym
dy ¼ �2piRes

eiay

ym
; 0


 	
; (71)

or ð
GR

eiay

ym
dyþ

ð
CR
0

eiay

ym
dy ¼ �2piRes

eiay

ym
; 0


 	
: (72)

Since a o 0, for the Jordan lemma we have lim
R!1

Ð
CR
0
eiay

ym
dy ¼ 0.

Moreover, the residue can be calculated as follows:

Res
eiay

ym
; 0


 	
¼ 1

ðm� 1Þ! limy!0

dm�1

dym�1
ym

eiay

ym

� �

¼ ðiaÞ
m�1

ðm� 1Þ!:
(73)

Summing up, we easily obtain the second result

ð
G

eiay

ym
dy ¼ �2pim am�1

ðm� 1Þ! if a � 0: (74)

To conclude, eqn (70) and (74) prove eqn (64) of the main text.
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