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Abstract – The elastic behavior of the external surface of a solid body plays a key role in nanome-
chanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understand-
ing, many surface elasticity features remain unexplored: some of them are here addressed by
blending together continuum elasticity and atomistic simulations. A suitable readdressing of the
surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates
and to investigate the dependence of the surface elastic parameters on the mean and Gaussian
curvatures of the surface. In particular, we predict the radial strain induced by surface effects in
spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters
are nearly independent of curvatures and, therefore, of the surface conformation.
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The elastic behavior a solid body is ruled over by its
bulk-like properties. This is reflected by the cardinal equa-
tion valid in its volume region Ω [1]

∂Tik

∂xk

+ bi = ρ
∂2Ui

∂t2
, (1)

where ρ is the volume mass density, Tik(�r, t) is the
three-dimensional Cauchy stress tensor, Ui(�r, t) is the
displacement vector, bi(�r, t) is the applied body force,
�r = (x1, x2, x3) is the position vector within Ω and t
is time (latin indexes indicate vector components). The
corresponding continuum constitutive equation is written
in the general form T̂ = f(Ê) [2], provided that the

strain tensor Ejh = 1

2
(

∂Uj

∂xh
+ ∂Uh

∂xj
) is defined assuming

the small deformation approximation. For a homogeneous
and isotropic linear elastic body a universal constitutive
equation is obtained

Tij = 2μEij + λδijErr, (2)

where λ and μ are referred to as the bulk elastic con-
stants [1,2]. Bulk linear elasticity is basically all contained
in eqs. (1) and (2).

The surface Σ behaves differently from the volume Ω it
delimits. This is inherently related to the very structure
of a surface, where atoms are under-coordinated. They
are, therefore, forced to relax in order to recover, at least

partially, the bulk-like value of their configurational en-
ergy. Unlike consequences of the relaxation processes
occur perpendicular to the surface or parallel to it: in
the first case, atoms mostly relax inwards towards the
bulk, while atomic rearrangements on the surface are con-
strained by their mutual interactions. This results in the
onset of a surface tension, at work even in the absence
of any loading, which has no counterpart in bulk elastic-
ity [3,4]. Because of this, surface elasticity is a much more
challenging problem for theory than its bulk equivalent.

As a matter of fact, the actual features of a general
surface constitutive equation are still a matter of inves-
tigation [5]. In particular, when a given material is con-
sidered, the dependence of the surface elastic parameters
on the mean and Gaussian surface curvatures remains
unexplored. Surface mechanics originates from the pio-
neer works by Laplace [6], Young [7], and Poisson [8],
where the surface tension for fluids was introduced and
the corresponding boundary-value problems were consid-
ered. Later, Gibbs generalized the notion of surface ten-
sion in the case of solids [9,10]. More recently, the seminal
work by Gurtin and Murdoch [11,12] has paved the way
to the modern description of the surface elasticity within
the framework of rational mechanics. While several dis-
tinct approaches can be found in the literature [13–17],
a unifying and comprehensive review can be found in
ref. [18]. The requirement of a robust understanding of
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Fig. 1: (Colour online) Definition of (a) the three-dimensional
stress tensor T̂ transmitting forces through a surface Υ (ele-
ment dS) and (b) the two-dimensional stress tensor Ŝ transmit-
ting forces across a line γ (element dℓ). The forces are applied
to the regions pointed by the vectors − �NΥ or −�nγ .

surface elasticity and stress fields has been recently called
for by the need to understand and control a large vari-
ety of nano-scale physical phenomena, including: surface
evolution [19], reconstruction and growth of surfaces [20],
alloy segregation [21], phase transformation [22], stiffness
of cantilever beams and films [23–25], contact mechanics
with surface tension [26], capillarity effects in an elastic
fluid [27–29], and mechanical behavior of nanocompos-
ites [30–32], to name just a few.

This state of affairs motivates the present readdressing
of the surface elasticity problem by treating Σ as a smooth
Riemannian manifold and by adopting arbitrary curvilin-
ear coordinates [33–35]. Upon derivation of the surface
counterparts of eq. (1), we consider a linear and isotropic
constitutive behavior (formulated in terms of two surface
moduli λs and μs, and an intrinsic surface stress T0) and,
eventually, we work out a useful form of the balance equa-
tions for body and surface forces. The resulting contin-
uum picture is then applied to predict the radial strain ǫR

in spherical and cylindrical nanoparticles, differing as for
the topological features of their surface. Atomistic sim-
ulations are next used to accomplish two tasks, namely:
i) to calculate the actual value of λs, μs, and T0 in a
realistic case with planar surfaces; ii) to compute ǫR in
variously sized and curved particles with no assumption
on the underlying constitutive elastic behavior. Finally, a
comparison is drawn between the continuum predictions
for ǫR and atomistic results for silicon nanoparticles, en-
lightening the possible dependence of λs, μs, and T0 on
curvature.

Any curved surface Σ can be described in parametric
form by �r = �r(α1, α2) where α1 and α2 are real pa-
rameters. We define the metric tensor (first fundamen-
tal form) gij = ∂�r

∂αi
· ∂�r

∂αj
, measuring the lengths over the

surface via dℓ2 = gijdαjdαj (implicit sum over repeated
indices) [33,34]. The inverse metric tensor ghk is defined
by gikgkj = δi

j . While the tangent base is composed of

vectors �ei = ∂�r
∂αi

, the cotangent one contains the vectors

�e i = gij�ej . A vector �v defined over Σ can be therefore rep-
resented as �v = vi�ei = vi�e

i, where vi are the controvariant
components and vi are the covariant ones. Moreover, we
can easily prove that ‖�ei‖ =

√
gii and ‖�e j‖ =

√

gjj [34].
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Fig. 2: (Colour online) A solid body of volume Ω is delimited
by a surface Σ. For both entities the pertinent elastic fields and
material parameters are indicated. The parallelogram OACB

on Σ is used to derive the balance equations. On each surface
point the base {�e1, �e2, �N} is defined and used, e.g., to represent
the −T̂ �N stress vector locally applied to Σ.

We properly define the stress tensor for volumes and
surfaces as follows (see fig. 1 for details). A solid ma-

terial Ω is able to transmit a force d�F through the area
element dS of a given surface Υ by means of a (three-
dimensional) stress tensor T̂ (measured in units [N/m2])

defined as d�F = T̂ �NΥdS (with �NΥ unit vector such as
�NΥ ⊥ Σ) [1,2]. Moreover, a surface Υ in the solid ma-

terial is able to transmit a force d�f through the linear
element dℓ of a given line γ ∈ Υ by means of a (two-
dimensional) stress tensor Ŝ (measured in units [N/m])

defined as d�f = Ŝ�nγdℓ (with �nγ unit vector such as �n ⊥ γ
and �n ‖ Υ) [9,11].

Now, we take into account a solid body of volume Ω
delimited by a surface Σ (see fig. 2). Then we consider
on Σ the point O ≡ �r(α1, α2) and the parallelogram
composed of the point O and the neighbouring points
A ≡ �r(α1 + dα1, α2), B ≡ �r(α1, α2 + dα2) and C ≡
�r(α1 + dα1, α2 + dα2). We observe that OA =

√
g11dα1

and OB =
√

g22dα2. Also, we note that �e 2 ⊥ �e1 and
�e 1 ⊥ �e2. We now determine the total force applied to the
parallelogram OACB. It is composed of surface terms and
volume terms.

We start by considering the surface contributions to the
force, i.e., the force applied from the region of Σ external
to OACB to the region OACB itself. Of course, there
are four surface terms corresponding to the infinitesimal
segments OA, AC, CB and OB. For each term we use
the expression d�f = Ŝ�nγdℓ, previously introduced. We
begin by calculating the force transmitted through the
segment OA, which can be written as df i

OA = Sijnjdℓ,
where dℓ =

√
g11dα1 and �n = − 1√

g22
�e 2. It means that,

on the cotangent base, we have n1 = 0 and n2 = − 1√
g22

.

Hence, we can write

d�fOA = −
(

S12

√

g11

g22
�e1 + S22

√

g11

g22
�e2

)

dα1. (3)

Since
√

g11

g22 =
√

g22

g11 =
√

g11g22 − g2
12 =

√
g, we have the
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simplified expression

d�fOA = −
(

S12�e1 + S22�e2

)√
gdα1. (4)

To obtain d�fCB we can use the expression for d�fOA, with
opposite sign and calculated in (α1, α2 + dα2). Its first-
order development reads

d�fCB =
(

S12�e1 + S22�e2

)√
gdα1

+
∂

∂α2

[(

S12�e1 + S22�e2

)√
g
]

dα1dα2. (5)

Similar expressions can be found for d�fOB and d�fAC , and
the total surface force on the parallelogram OACB is even-
tually given by

d�fs =
∂

∂αk

(

Sik�ei

√
g
)

dα1dα2. (6)

We now determine the volume force applied to the same
parallelogram OACB. We consider the general expression
d�F = T̂ �NdS, where dS =

√
gdα1dα2 for the infinitesimal

parallelogram. The total volume force is generated by
both the regions above (in the direction of �N) and below

(in the direction of − �N) the surface Σ. We define ∆T̂ =
T̂+−T̂−, where T̂± is the value of the volume stress tensor
just above (below) the surface Σ. Hence, we can write

d�fv = ∆T̂ �NdS

=
[

(∆Tn) �N + (∆T 1)�e1 + (∆T 2)�e2

]√
gdα1dα2, (7)

where ∆T 1, ∆T 2 and ∆Tn are the components of the vec-
tor ∆T̂ �N on the base {�e1, �e2, �N}. If the surface Σ is free
(no externally applied forces), we have that T̂+ = 0 and
T̂− = T̂ (internal stress). In this case, the components

(∆T 1,∆T 2,∆Tn) represent the vector −T̂ �N on the base

{�e1, �e2, �N} of the surface Σ, as shown in fig. 2.
The Newton equation for the portion of surface within

the parallelogram OACB can be finally written as d�fs +

d�fv = σ
√

gdα1dα2
∂2 �U
∂t2

, where σ is the surface mass den-

sity and �U represents the displacement vector. Its value
�U = �U(�r(α1, α2), t) over the surface Σ can be repre-

sented on the base {�e1, �e2, �N} as �U = un(α1, α2, t) �N +
ui(α1, α2, t)�ei. Therefore, the motion equation can be
rewritten as

∂Sik

∂αk

�ei + Sik

{

s
ik

}

�es + Sikfik
�N + Sik

{

j
kj

}

�ei

+(∆Tn) �N + (∆T i)�ei = σ
∂2un

∂t2
�N + σ

∂2ui

∂t2
�ei. (8)

Here, we used the Gauss formula [33]

∂�ei

∂αk

=
∂2�r

∂αi∂αk

=

{

s
ik

}

�es + fik
�N, (9)

and the property ∂
√

g/∂αk =
√

g{ j

kj
} [34], where the

quantity { s

ik
} is the Christoffel symbol and the tensor

fik = ∂2�r
∂αi∂αk

· �N is the shape tensor (second fundamen-

tal form) of the surface [33]. We can now separate the
components in eq. (8), eventually obtaining the equations

Sik
‖k + ∆T i = σ

∂2ui

∂t2
, (10)

Sikfik + ∆Tn = σ
∂2un

∂t2
, (11)

where Sik
‖k is the covariant divergence of the Cauchy sur-

face stress tensor Sij . These equations represent the bal-
ance of forces on Σ, i.e., the surface counterpart of eq. (1)
holding within the volume Ω (see fig. 2). More specifi-
cally, eq. (10) describes the in-plane equilibrium, whereas
eq. (11) describes the out-of-plane equilibrium.

The local stress on the surface must be related to the
local surface deformation through a constitutive law. So,
we need to define the strain tensor over the surface. When
the surface is deformed by the displacement �U , the metric
tensor becomes g′kh = ∂�r′

∂αk
· ∂�r′

∂αh
, where �r′ = �r+�U . The cal-

culation can be performed through the Gauss formula in

eq. (9) and the Weingarten formula ∂ �N
∂αk

= −fksg
sp�ep [33].

The result, to the first order in �U , is

g′kh = gkh − 2unfkh + gihui
‖k + gikui

‖h, (12)

where we used the covariant derivative of a vector ui
‖k.

The variation of the first form can be therefore writ-
ten as g′kh = gkh + 2εkh, where we introduced the two-
dimensional strain tensor

εkh = −unfkh +
1

2

(

gihui
‖k + gikui

‖h

)

. (13)

The geometrical meaning of εkh can be deduced by eval-
uating the relative variation of length in a given direc-
tion over the surface, under the applied displacement
�U . Indeed, we easily get dℓ′−dℓ

dℓ
∼= εkhdtkdth, where

dtk = dαk/
√

gijdαidαj is the unit vector along which
we measure the length variation. So, eq. (13) represents
the standard definition of strain tensor, allowing the de-
termination of length variation in a given spatial direc-
tion [36–38].

The relation between surface stress and surface strain
(surface constitutive equation Ŝ = g(ε̂)) can be written
for linear and isotropic surfaces as

Sij = −gijT0 +μs(g
irgjs + gisgjr)εrs +λsg

ijgrsεrs, (14)

which is consistent with the tensor character of Sij and
εrs [36–38]. Here λs and μs are the surface elastic con-
stants and T0 is the intrinsic surface stress. These param-
eters are defined coherently with the literature [11,31].

We are interested in a more explicit form of eqs. (10)
and (11) and, therefore, we combine eq. (13) with eq. (14).
We directly obtain

Sij = −gijT0 + μs(−2ungisgjrfrs + gjsui
‖s + giruj

‖r
)

+λs(−ungijgrsfrs + gijur
‖r). (15)
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Now, we have to substitute this result in eqs. (10) and (11).
To begin, we elaborate Sijfij , as follows:

Sijfij = −f i
i T0 + μs(−2unf i

rf
r
i + fs

i ui
‖s + fr

j uj

‖r
)

+λs(−unf i
i f

j
j + f i

i u
r
‖r). (16)

Then, we can calculate f i
i and we get

f i
i = gijfij = Tr(Ĝ−1F̂ ) = λ1 + λ2 = 2H, (17)

where Ĝ and F̂ are the matrix representation of the first
and second forms, respectively, λ1 and λ2 are the principal
curvatures, and H = (λ1 +λ2)/2 is the mean curvature of
Σ [33,35]. Moreover, we also calculate f i

rf
r
i by obtaining

f i
rf

r
i = gisgjrfrsfij = Tr

[

(Ĝ−1F̂ )2
]

= λ2
1 + λ2

2

= (λ1 + λ2)
2 − 2λ1λ2 = (2H)2 − 2K, (18)

where K = λ1λ2 is the Gaussian curvature of Σ [33,35].
Hence, the final form of Sijfij is the following:

Sijfij = 2
{

−HT0 + μsf
r
i ui

‖r + λsHur
‖r

+2un

[

Kμs − H2(λs + 2μs)
]}

. (19)

The calculation of Sik
‖k can be performed by observing

that the covariant derivative follows the Leibniz prod-
uct law and that the Ricci lemma can be applied for the
covariant derivatives of the metric tensor (gij‖k = 0 or

gij

‖k
= 0) [34,35]. Straightforward calculations deliver the

result

Sik
‖k = −2un‖j(μsf

ij + λsHgij)

−un(2μsf
ij

‖j
+ λsg

ijgrsfrs‖j)

+μs(g
jsui

‖sj + giruj

‖rj
) + λsg

ijur
‖rj . (20)

Summing up, we can rewrite eq. (10) in the form

σ
∂2ui

∂t2
= −2un‖j(μsf

ij + λsHgij)

−un(2μsf
ij

‖j
+ λsg

ijgrsfrs‖j)

+μs(g
jsui

‖sj + giruj

‖rj
)+λsg

ijur
‖rj +∆T i, (21)

and eq. (11) as follows:

σ
∂2un

∂t2
= 2

{

−HT0 + μsf
r
i ui

‖r + λsHur
‖r

+2un

[

Kμs − H2(λs + 2μs)
]}

+ ∆Tn. (22)

Equations (21) and (22) are the surface counterparts of
eqs. (1) and (2) and must be considered as the proper
boundary conditions for any elastic problem defined in
the region Ω. We remark that the static version of
eq. (22) with λs = 0 and μs = 0 represents the Young-
Laplace equation 2HT0 = ∆Tn, describing the capillary
pressure difference sustained across the interface between

two static fluids [6,7]. It si important to remark that
eqs. (21) and (22) are in perfect agreement with the
Gurtin-Murdoch theory (under the assumption of small
deformation elasticity) [11,12]. Nevertheless, we presented
here an original and simpler derivation of these balance
equations, and their explicit form in curvilinear coordi-
nates, only based on the displacement components, is well
suited for direct applications and numerical implementa-
tions. Moreover, they have the advantage to introduce the
surface curvatures in natural way, simplifying the analysis
of specific cases, as discussed below.

The parameters λs, μs and T0 are specific of each mate-
rial forming the surface Σ with its given curvature. Some
results for metals can be found in the literature [39,40].
Anyway, their systematic knowledge (even in the simpler
model systems) is still missing and they are typically used
as parametric values to tune by choice. To the aim of
marking a conceptual step forward we addressed the sur-
face elasticity problem by atomistic simulations. We se-
lected amorphous silicon (a-Si) as show-case system, either
because it is a technologically relevant material in many
nanoscale problems and because the amorphous state of
aggregation represents the atomistic counterpart of an
isotropic elastic continuum. In other words, a-Si fully
exploits the constitutive assumptions of eq. (14). More
specifically, by a set of atomistic simulations we at first
determine the bulk moduli λ and μ of a-Si; next we evalu-
ate the corresponding elastic parameters λs, μs and T0 for
its planar surface; eventually we predict the strain distri-
bution in specific a-Si nano-particles (spherical and cylin-
drical) with different curvatures. In order to elucidate the
relationship between the surface elastic parameters and
the surface curvatures, we will compare the continuum
and atomistic results.

The bulk moduli λ and μ have been determined by
means of model potential molecular dynamics (MPMD)
using the LAMMPS [41] package and the environment-
dependent interatomic potential (EDIP) [42]. The EDIP
functional form consists of several coordination-dependent
functions effectively matching Si-Si interactions to any
possible bonding configuration. For this reason, it is par-
ticularly suitable for the description of non-crystalline sys-
tems such as a-Si. A sample A0 was at first generated
by constant-pressure and constant-temperature (NVT)
quenching-from-the-melt protocol applied to a Si sam-
ple consisting in 75 × 75 × 75 replicas of the diamond
unit cell, corresponding to a total number of atoms as
large as 3375000. The corresponding final mass density
of simulated a-Si was 2.29 g/cm3, in perfect agreement
with the experimental values [43]. Then, we applied to
sample A0 both uniaxial (along the [100], [010] and [001]
directions) and hydrostatic deformations with an over-
all strain η varying in the range ±2% at intervals of
0.5%. At each deformation step the sample was fully
relaxed by means of a NVT simulation over 150 ps (we
used Nosé-Hoover thermostatting with a damping param-
eter of 100.0 fs and a time step as small as 1.0 fs) followed

66005-p4
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Fig. 3: (Colour online) Symbols: strain energy Etot obtained by MPMD as a function of the strain η for an a-Si slab subjected to
the hydrostatic deformation (left panel) or the uniaxial deformation (right panel) shown in the insets. Full lines: strain energy
provided by continuum theory and fitted to atomistic data through λs, μs and T0.

by a conjugate gradient optimization. In this case, peri-
odic boundary conditions (PBC) along any direction were
imposed. The optimization procedure of the structures
was considered successful when one of the following cri-
teria was met: i) the change in energy between two con-
secutive iterations was less than etol = 1 × 10−4 eV, or
ii) the maximum force component (corresponding to each
of the atoms) was smaller than ftol = 1× 10−6 eV/Å. We
assessed the numerical convergence of the present mini-
mization algorithm by verifying that the estimated values
of the elastic properties were unchanged by considering
a stricter minimization criterion (etol = 1 × 10−6 eV and
ftol = 1 × 10−8 eV/Å). The calculated values of λ and μ
were 83±2 and 26±1GPa, respectively, in very good agree-
ment with previous results and experimental data [44].

We have thought up the evaluation of λs, μs and T0

through a multi-step procedure, by targeting a planar
slab of thickness h, area S0 and volume V0 = hS0.
Its bulk elasticity is described through the strain ten-
sor Tij = ∂F

∂Eij
, where F is the strain energy density

F = F0 + 1

2
λEiiEjj +μEijEij (F0 is the energy density of

the unstrained solid). The corresponding stress at the top
and bottom surfaces is Sij = ∂γ

∂εij
, where γ is the surface

strain energy density γ = γ0 −T0εii + 1

2
λsεiiεjj + μsεijεij

(γ0 is the corresponding density of the unstrained sur-
face) [45]. By applying a planar strain ε̂ = diag(ε1, ε2)
to the slab, its bulk response takes the form of a de-
formation Ê = diag(ε1, ε2, ξ) and a corresponding stress
T̂ = diag(T1, T2, 0), where ξ is the vertical strain induced
by the Poisson effect. The constitutive eq. (2) provides, af-
ter some algebra, an explicit result for the vertical strain,
namely: ξ = − λ

2μ+λ
(ε1 + ε2). Furthermore, the energy

Ebulk = V0F within the bulk can be fully calculated be-
ing function of λ and μ (previously evaluated), ε1 and ε2

(applied) and F0 (which can be easily found numerically).
The total energy Etot = 2γS0 + FV0 of the slab is as well
obtained through atomistic simulations, while the surface

energy is straightforwardly calculated as Esurf = Etot −
Ebulk. By numerically evaluating such a surface energy
for different applied strains, we can “measure” the elas-
tic surface moduli: atomistic simulation is here conceived
and used as a provider of raw data, in fact a sort of exper-
iment providing rational phenomenology. A first option
sets strain as ε̂ = diag(η, η) (hydrostatic strain) and leads
to the surface energy Esurf = 2S0[γ0−2T0η+2(λs+μs)η

2];
a second option sets ε̂ = diag(η, 0) (uniaxial strain) and
yields Esurf = 2S0[γ0 − T0η + (λs/2 + μs)η

2]. The knowl-
edge of the two curves (in a given range of η) allows to
fit all the parameters describing the surface elasticity: in-
deed, the first curve is fully determined by the set {γ0,
−2T0, 2(λs + μs)}, while the second one engages the set
{γ0, −T0, λs/2 + μs}.

The above procedure has been put at work by load-
ing sample A0 with both hydrostatic and uniaxial defor-
mations (see fig. 3) with a strain η varying in the range
±2% at intervals of 0.5%. In this case we applied PBC
only along the directions parallel to the exposed surface,
while free boundary conditions were set for the normal-
to-surface direction. In order to increase statistics, we
considered three different non-equivalent surfaces of the
simulation supercell: all data have been accordingly aver-
aged over three independent calculations. Eventually we
obtained T0 = −1.28 ± 0.05N/m, λs = −30 ± 5N/m and
μs = −4 ± 2N/m, respectively. As far as concerns T0,
our results are in good agreement with previous ab initio
calculations reporting T0 = −1.5 ± 1.2N/m [46]. This
validation stands for the robustness and reliability of the
present procedure. On the other hand, to the best of our
knowledge this is the first estimate ever of surface moduli
λs and μs in a-Si.

The theoretical picture developed so far enables the de-
termination of the strain distribution in spherical or cylin-
drical nano-particles with given radius R (for the cylinder
we consider the configuration with fixed length). In both
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Fig. 4: (Colour online) Radial strain ǫR for spherical (left panel) and cylindrical (right panel) a-Si nano-particles of radius R

computed atomistically by MPMD (symbols) and predicted by surface continuum elasticity (full lines). Filled areas represent
the prediction range of the continuum model by taking into account the T0, λs and μs confidence interval (±3σ).

geometries, continuum theory provides the radial displace-
ment field as �U = ǫRr �N , where r2 = x2 + y2 + z2 for
the sphere and r2 = x2 + y2 for the cylinder [47,48]. In
both cases ǫR is the unknown radial strain. On both sur-
faces we have un = ǫRR and ui = 0 (i = 1, 2). It is
straightforward to prove that such a strain distribution
exactly fulfills eq. (21) for both spherical and cylindrical
particles. Therefore, the unknown radial strain ǫR can
be determined through eq. (22), which in a static regime
assumes the simplified form

0 = −2HT0 + 4un

[

Kμs − H2(λs + 2μs)
]

+ ∆Tn, (23)

where it has been set ui = 0 (i = 1, 2). For the sphere we

have un = ǫRR, ∆Tn = −T̂ �N · �N = −ǫR(3λ + 2μ), and
the curvatures H = −1/R and K = 1/R2. Hence, eq. (23)
can be solved eventually obtaining the radial strain as

ǫR =
2T0

4(λs + μs) + (3λ + 2μ)R
. (24)

Similarly, for the cylinder we have un = ǫRR, ∆Tn =
−T̂ �N · �N = −2ǫR(λ +μ), H = − 1

2R
and K = 0 driving to

ǫR =
T0

(λs + 2μs) + 2(λ + μ)R
. (25)

Results in eqs. (24) and (25) agree with the previous liter-
ature [49,50] and can be directly compared with atomistic
simulations. In detail, both a spherical and a cylindri-
cal a-Si sample with increasing size were carved out from
the sample A0. In both cases we considered 19 samples
with 2 nm ≤ R ≤ 20 nm and, for cylinders, we set length
to Lz = 40.9 nm. We imposed free boundary conditions
along all directions, but along the cylinder axis where PBC
have been imposed. All the samples have been fully re-
laxed as above. The radial strain ǫR was estimated by

ǫR = 1

N

∑N
i=1

ǫi
R = 1

N

∑N
i=1

Ri−Ri
0

Ri
0

, where N is the num-

ber of atoms in the sample, while Ri
0 and Ri is the distance

of the i-th atom from the sphere center or cylinder axis,
respectively before and after relaxation. For each system
of given dimension we performed 5 independent calcula-
tions: data reported in fig. 4 represent the configurational
averages and are compared with continuum results stated
in eqs. (24) (sphere) and (25) (cylinder). Continuum re-
sults are based on the parameters λs, μs and T0 previously
obtained for the planar slab. The red filled areas represent
the prediction range of the continuum model: this reflects
the dependence of the elastic parameters on local details
of the underlying amorphous structure.

In conclusion, we have worked out a universal local rep-
resentation for the equations describing the elasticity of
any arbitrarily curved solid surface and defined an atom-
istic protocol for determining the relevant elastic parame-
ters. Full agreement between atomistics and continuum is
found for differently shaped a-Si nanoparticles, providing
evidence that the surface elastic parameters are nearly in-
dependent of the surface curvatures. This is a significant
result since the a-Si surface elastic parameters can be eval-
uated for an arbitrarily curved surface and remain valid
for any other surface with different conformation. This
strongly facilitates the analysis of mechanical problems
with surface elasticity.
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(Bachelier Père et Fils, Paris) 1831.
[9] Gibbs J. W., in The Collected Works of J. W. Gibbs,

Vol. 1 (Longmans, New York) 1928, p. 315.
[10] Olives J., J. Phys.: Condens. Matter, 22 (2010) 085005.
[11] Gurtin M. E. and Murdoch A. I., Arch. Ration. Mech.

Anal., 57 (1975) 291; 59 (1975) 389.
[12] Gurtin M. E. and Murdoch A. I., Int. J. Solids Struct.,

14 (1978) 431.
[13] Sharma P., Ganti S. and Bhate N., Appl. Phys. Lett.,

82 (2003) 535.
[14] Chen T., Chiu M.-S. and Weng C.-N., J. Appl. Phys.,

100 (2006) 074308.
[15] Chen T., Dvorak G. J. and Yu C. C., Acta Mech., 188

(2007) 39.
[16] Steigmann D. J. and Ogden R. W., Proc. R. Soc. A,

455 (1999) 437.
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