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via Opera Pia 11/a, 16145 Genova, Italy

(ricevuto l’1 Marzo 2000; approvato il 17 Aprile 2001)

Summary. — The time evolution equation of the reduced density matrix of a quan-
tum system composed of one or many particles subjected to a conservative force field
and interacting with a thermal bath has been derived. This result is achieved by
analogy with classical models based upon the Langevin and Fokker-Planck equa-
tions. According to the Langevin approach, the interaction is modelled by means
of a random force field and a viscous friction term. We generalise this classical
approach introducing suitable operators that describe the quantum evolution of a
system weakly coupled to a thermal bath. In particular, we define a kind of friction
operator that can be thought as the quantal counterpart of the classical Langevin
term corresponding to the viscous force. The proposed approach has the invaluable
advantage of yielding a handy differential equation to model the quantum interaction
between a system and a thermal bath.

PACS 42.50.Lc – Quantum fluctuations, quantum noise, and quantum jumps.
PACS 05.30 – Quantum statistical mechanics.
PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics.
PACS 05.10.Gg – Stochastic analysis methods (Fokker-Planck, Langevin, etc.).

1. – Introduction

The behaviour of a microscopic physical system during its time evolution is of general
interest in many fields ranging from theoretical physics to advanced technology and bi-
ology. Various attempts to analyse the coherent and incoherent evolution of the system
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paper to His beloved memory.
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due to the coupling with the external thermal bath have been developed in the fields
of magnetic resonance [1, 2], atomic excitation [3], laser [4, 5], as long as in molecular
electronics [6], quantum computing [7, 8], and bioelectromagnetics [9, 10]. Thus, it is
a common problem of many disciplines to analyse quantum systems driven away from
thermal equilibrium. The most useful tool for handling the quantum thermal relaxation
is the reduced density matrix [11], because it allows the introduction of mixed states
describing a system coupled to a thermal bath as functions of the system state variables
only. The evolution equation concerning the density matrix of a physical system in ther-
mal contact with a reservoir, the so-called Generalised Master Equation (GME), can be
found in literature [12, 13]. This topic has already been covered by many authors and
from many points of view. Following a well-known procedure introduced by Levi-Civita
(1896), Caldirola gives a detailed model for the analysis of the nonconservative quantum
systems, leading to the so-called Caldirola-Kanai equation [14,15]. An alternative method
to derive quantum kinetic equations utilises the Feynman-Vernon forward-backward path
integral; this approach has been adopted by Caldeira and Leggett [16] and more recently
used by different authors [17,18]. In the present work, we propose an explicit time evolu-
tion equation for the reduced density matrix, which will enable us to make all the physical
prediction about measurements bearing only on the particle system. It is obtained by
tracing out the environment state variables in the global density matrix that describes as
a single global system the system of particle under consideration together with the atoms
which generate the force field acting on the particles and with the reservoir. Therefore,
the reduced density matrix describes the thermal relaxation of a system, that we assume
to be composed by one or more particles, subjected to a conservative time-invariant force
field and embedded in a thermal bath. This seems to be a plausible approach to handle
the complexity of the interaction of a system with a reservoir. The thermal coupling,
i.e., energy and momentum transfers with the reservoir, is accounted for by introducing
white Gaussian noise to emulate the direct interactions with particles, and viscous drag
to emulate indirect interactions. This goal is achieved by analogy with classical models
based upon the Fokker-Planck equation [19] associated to the Langevin equation. Our
final differential equation is shown to be fully compatible with GME and thus it leads to
the same kind of time evolution. The comparison with the above-mentioned results [12]
clarifies that while the GME is useful, in principle, for a wide range of applications, it
does not provide a closed form expression for its characteristic parameters. Conversely, in
our approach a plausible and explicit model for the interaction is adopted, in such a way
that a closed form expression for the quantum relaxation parameters, as functions of the
classical ones, i.e. collision frequency and diffusion coefficient, can be found in closed form.

2. – Classical noise and friction

As an introduction to the sections devoted to quantum-mechanical considerations, let
us review some classical well-known results, related to a set of N identical particles con-
sidered as material points. Let m be their mass and qi, pi (i = 1, . . . , 3N) their canonical
coordinates and conjugate momenta, respectively. We assume that the reference frame
is Cartesian, so that the qi’s actually are the values of the Cartesian coordinates x, y, z
of the N particles and the pi’s are their momentum components.

Let us suppose, furthermore, that the N material points are subjected to a potential
energy U(q1, q2, . . . , q3N ) and that they are in contact with a thermal bath. This latter
can be thought as a large ensemble of other particles, or more complex subsystems, which
interact with the given N particles. With the above assumptions, the interaction can
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be modelled by two kinds of forces according to the classical Langevin scheme: viscous
friction and white Gaussian noise. It turns out that Gaussian noise forces describe
the direct interaction of each particle of the ensemble of N particles, composing the
system under consideration, with the surrounding particles (or subsystems) composing
the thermal bath. Conversely, friction is responsible for the energy loss of the system
due to transfer of momentum from its N particles and those belonging to the thermal
bath, from the closest ones to the system to the farther away ones (indirect interaction).

The time evolution of the system of N particles can be obtained, in a classical me-
chanics scheme, from the well-known Langevin set of generalised Hamiltonian equations




q̇k =
pk

m
,

ṗk = − ∂U

∂qk
− βpk +

√
Dmnk(t),

(1)

where β is a viscous friction coefficient, D is the diffusion constant and each nk is a
white-noise term. The ensemble properties of noise are described by the expectation
values below

E{nk(t)} = 0,(2)
E{nj(t1)nk(t2)} = 2δjkδ(t1 − t2).(3)

The term
√

Dmnk(t) is the component of the noise force along the k-th coordinate; more
precisely we have q1 = x1, q2 = y1, q3 = z1, q4 = x2, q5 = y2, q6 = z2 and so on; this
means that if s = 1, 2, 3 and u = 1, . . . , N , we have that k = 3(u−1)+s is the component
along the s-axis (x, y, z for s = 1, 2, 3, respectively) of the particle u.

The canonical coordinates in this case assume the character of stochastic processes
because of the very presence of the noise. Therefore, it is plausible to describe the system
evolution by means of the Fokker-Planck equation for the probability density in the phase
space W (q, p, t) [19]

∂W

∂t
=

3N∑
i=1

{
∂U

∂qi

∂W

∂pi
− pi

m

∂W

∂qi
+ βW + βpi

∂W

∂pi
+ Dm2 ∂

2W

∂p2
i

}
,(4)

or, introducing the Poisson brackets,

∂W

∂t
=

{
H0,W

}
+ β

3N∑
i=1

{
qi, piW

}
+ Dm2

3N∑
i=1

{
qi, {qi,W}},(5)

where

H0 =
3N∑
i=1

p2
i

2m
+ U

(
q1, q2, . . . , q3N

)
(6)

is the system Hamiltonian in the absence of interaction with the thermal bath.
On the right-hand side of eq. (5) it is easy to identify, respectively, the Liouville term,

responsible for the evolution of the isolated system and the friction and noise terms.
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Equation (5) above admits the stationary asymptotic solution (or, otherwise stated,
has the solution for t → ∞) given by

Weq(p, q) =
exp[−(β/mD)H0]∫∫

R6N exp[−(β/mD)H0]dq dp
,(7)

where R6N stands for the whole 6N -dimensional phase space.
If we introduce the temperature T of the thermal bath, by means of the Einstein

relationship [19]

KBT =
Dm

β
,(8)

where KB is the Boltzmann constant, eq. (7) becomes the well-known Boltzmann distri-
bution

Weq(p, q) =
1
Z

exp
[
− 1

KBT
H0

]
,(9)

where Z is the classical partition function

Z =
∫∫

R6N

exp
[
− 1

KBT
H0

]
dq dp.(10)

3. – Quantum noise

If we do not consider the friction term in eq. (5) we obtain the following equation:

∂W

∂t
=

{
H0,W

}
+ Dm2

3N∑
i=1

{
qi, {qi,W}},(11)

which classically describes a system perturbed by noise forces.
Now, we aim to find out the quantum equivalent of eq. (11); in order to do this, we

firstly introduce in the Hamiltonian an effective potential energy which mimics the noise
forces, according to the technique used by Abragam [1], in such a way as to obtain a
formal Hamiltonian accounting for interaction with the thermal bath

H = H0 +
3N∑
i=1

√
Dmqini(t).(12)

In quantum dynamics, the time evolution of a system can be described by the statistical
operator ρ, which fulfils the well-known Liouville-Von Neumann equation

dρ
dt

=
1
ih̄

[H, ρ].(13)

More precisely, this equation holds for closed systems. In order to deal with the system
interacting with the thermal bath, we adopt [1] eq. (13) with the Hamiltonian given
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by eq. (12). This amounts to formally handle the system as a closed one, taking into
account that its true characteristic to be actually open is emulated by means of the
“noisy” potential energy. From eqs. (12) and (13) it follows that

dρ
dt

=
1
ih̄

[H0, ρ] +
√

Dm

ih̄

3N∑
i=1

[qi, ρ]ni(t).(14)

This is a Langevin-type, stochastic differential equation involving operators. It can
be handled as an ordinary differential system involving functions once one chooses the
well-known superoperator technique, in which conventional operators are represented as
vectors in an operator space whilst commutators, since they act as linear operators in
such a space, are referred to as superoperators. So doing, eq. (14) above can be recast
into the following mathematical form:

dρ
dt

= Aρ +
∑

i

ni(t)(Biρ) =
[
A +

∑
i

ni(t)Bi

]
ρ,(15)

where now ρ is interpreted as a vector in the operator space, A is the linear superoperator
corresponding to the commutator (1/ih̄)[H0, •] and B is another superoperator, corre-
sponding to (

√
Dm/ih̄)[qk, •]. Moreover, one can represent the operator space through a

suitable orthonormal basis, so that in eq. (15) ρ can be interpreted as a column vector
and A, B as matrices. This double way of interpreting ρ, either as an operator or as a
vector, is rather useful.

If we consider ρ as a vector, then eq. (15) is again an ordinary vector differential
stochastic equation containing multiplicative noise. Its analysis can again be accom-
plished by means of an appropriate Fokker-Planck equation [19].

Now, the true reduced density matrix (or vector, as above said) of interest is not
actually this ρ per se: clearly, what is relevant, for a description of the interaction of
the N -particle system with the thermal bath, is the average or expectation value of this
reduced density, needed to smooth the fluctuations due to noise.

The following fundamental theorem can be proved (see appendix): the evolution
equation for the expectation value of ρ = ρ(t) in eq. (15) with Gaussian noise fulfilling
eqs. (2) and (3), is given by

d
dt

E{ρ(t)} =
[
A(t) +

∑
i

[
Bi(t)

]2]
E{ρ(t)}.(16)

Applying this theorem to eq. (14) it is easy to obtain the equation for the expectation
value of ρ, i.e. E{ρ}:

d
dt

E{ρ} =
1
ih̄

[
H0, E{ρ}] − m2D

h̄2

3N∑
i=1

[
qi,

[
qi, E{ρ}]] .(17)

Doing the formal substitution {•, •} → (1/jh̄)[•, •] described, for instance, by Messiah [20]
and Schiff [21], this relationship becomes strictly analogous to eq. (11).

We wish to put in evidence the fact that eq. (17) has been obtained on a rigorous
basis and that the analogy with eq. (11) has been made just to enforce the validity and
understanding of our result.
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Besides, it is worthwhile to point out an intrinsic limitation of this model: it has
been developed by using white noise, thus completely uncorrelated. This is just an
approximation equivalent to the Markovian process hypothesis for the thermal interaction
process. A better model should take into account noise forces with finite correlation time.
The above-discussed approximation is, however, considered satisfactory for the pourpose
of this work.

4. – Quantum friction

Now we deal with the problem of finding a suitable quantum analogous for the friction
term in eq. (5). The addition of such a contribution in eq. (17) is unavoidable also
because in that equation E{ρ}, per se, does not evolve to any asymptotic distribution
while it should evolve toward thermodynamic equilibrium value E{ρeq}. Without the
friction term, the mean energy would grow linearly with respect to the time variable, its
time derivative being Dm. Therefore, we further exploit the analogy: the commutators
substitute the Poisson brackets, a factor 1/ih̄ apart. Unfortunately no strict analogous
is known for the product pkW . On the other hand, we can assume that a possible and
plausible choice is a symmetrized term of the form 1/2(ΘkE{ρ} + E{ρ}Θk), where Θk

are some suitable Hermitian operators that should play the role of pk in the analogy.
Under these assumptions the complete final form of eq. (5) becomes

d
dt

E{ρ}=
1
ih̄

[
H0, E{ρ}]+

β

2ih̄

3N∑
i=1

[
qi,ΘiE{ρ} + E{ρ}Θi

]−Dm2

h̄2

3N∑
i=1

[
qi,

[
qi, E{ρ}]].(18)

A suitable Θk operator must fulfil the following physical constraints:
– It must be Hermitian in order to guarantee the hermiticity of the reduced density

matrix.
– It must lead to an asymptotic state described by the quantum Boltzmann distribu-

tion

E{ρeq} =
1
Z

exp
[
− 1

KBT
H0

]
,(19)

where Z is the quantum partition function

Z = Tr
{

exp
[
− 1

KBT
H0

]}
.(20)

– It must be in some way strictly analogous to the linear momentum pk, and possibly it
must become coincident with pk in same specific conditions.

Thus, fulfilling the asymptotic behaviour given by eq. (17), we obtain the following
constraint:

Θke
−(H0/KBT ) + e−(H0/KBT )Θk =

2mKBT

h̄
i
[
qk, e

−(H0/KBT )
]
, ∀k.(21)
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Actually, this is a kind of a Lyapunov equation [22], in the unknown Θk, whose solution,
as one easily verifies, is

Θk =
2mKBT

h̄
i

∫ +∞

0

exp
[ − ξe−(H0/KBT )

][
qk, e

−(H0/KBT )
]

exp
[ − ξe−(H0/KBT )

]
dξ.(22)

This is the first integral form for the quantum friction operators.
A possible way to show how close is this operator to pk is to derive another expression

as follows. Let us introduce the Heisenberg picture Õ for any operator corresponding to
the time-independent operator O in the Schroedinger picture. Therefore letting

{
Θ̃k = e+i(H0/h̄)tΘke

−i(H0/h̄)t,

p̃ke
+i(H0/h̄)tpke

−i(H0/h̄)t,
(23)

in the Heisenberg picture eq. (21) becomes

Θ̃k + e−(H0/KBT )Θ̃ke
+(H0/KBT ) =

2mKBT

h̄
i
(
q̃k − e−(H0/KBT )q̃ke

+(H0/KBT )
)
.(24)

Recalling the well-known identity, which holds true for any couple of operators A, Q,

eAtQeAt = Q + [A,Q] +
1
2!

[
A, [A,Q]

]
+ · · · ,(25)

we apply it to the two terms with exponentials appearing in eq. (24). Then, eq. (24)
becomes

Θ̃k + Θ̃k +
[
− H0

KBT
, Θ̃k

]
+

1
2!

[
− H0

KBT
,

[
− H0

KBT
, Θ̃k

]]
+ · · · =(26)

=
2mKBT

h̄
i

(
q̃k − q̃k +

[
− H0

KBT
, q̃k

]
− 1

2!

[
− H0

KBT
,

[
− H0

KBT
, q̃k

]]
+ · · ·

)
.

For any linear time-independent operator Õ in Heisenberg picture, the following equation
holds true:

[
− H0

KBT
, Õ

]
=

ih̄

KBT

dÕ
dt

.(27)

When this rule is applied to eq. (26), letting Õ = Θ̃k, in the left-hand side and Õ = q̃k on
the right-hand side, one identifies the Taylor series expansions of Θ̃k and q̃k with respect
to time, in such a way that eq. (26) becomes

Θ̃k(t) + Θ̃k

(
t +

ih̄

KBT

)
=

2mKBT

h̄
i

[
q̃k(t) − q̃k

(
t +

ih̄

KBT

)]
.(28)

It must be noticed that in the present form the operators involved in eq. (28) have either
real or complex arguments: this is an analytic continuation from real to complex time.
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Equation (28) can be easily handled, if one uses Fourier transform (with respect to
time).

So doing, we obtain

θ̃k(Ω) =
2mKBT

h̄
iQ̃k(Ω) tgh

(
Ωh̄

2KBT

)
= P̃k(Ω)

tgh(Ωh̄/2KBT )
Ωh̄/2KBT

,(29)

where Ω is the variable in the transformed domain and θ̃k, Q̃k, P̃k are the transforms of
Θ̃k(t), q̃k(t), p̃k(t), respectively.

Applying the inverse Fourier transform and going back to the Schroedinger picture,
we reach the second integral form for Θk:

Θk =
1

2π

∫∫
R2

e+i(H0/h̄)ξpk e−i(H0/h̄)ξ e−iΩξ tgh(Ωh̄/2KBT )
Ωh̄/2KBT

dξ dΩ.(30)

In eqs. (29) and (30) it is quite easy to foresee the closeness between Θk and pk, but this
becomes far clearer when we express Θk in the energy eigenstate basis:

(Θk)nm =
2mKBT

h̄
i(pk)nm tgh

(
En − Em

2KBT

)
= (pk)nm

tgh((En − Em)/2KBT )
(En − Em)/2KBT

,(31)

where {En} is the set of the eigenvalues of H0.
If we consider the energy representation of a system without eigenvalue degeneracy,

both formulas (22) and (30) lead, after some calculations, to the expression (31). In
other cases, e.g., when some eigenvalues are degenerate or when we have to deal with
any different basis, expression (22) is more useful than eq. (30) to obtain a set of closed
form expressions for the friction operator entries. Conversely, as we will explain in the
next section, formulas (29) and (30) are very useful in giving a physical interpretation of
the friction operators.

For example, if we consider the one-dimensional harmonic oscillator with Hamilto-
nian H = p2/(2m) + (1/2)mω2q2 and we use the energy representation related to the
eigenvalues En = (n + 1/2)h̄ω, we easily obtain Θ = p tgh(h̄ω/2KBT )/(h̄ω/2KBT ). In
this very simple case the operator Θ is directly proportional to p by means of a constant
factor tgh(h̄ω/2KBT )/(h̄ω/2KBT ).

5. – Physical interpretation of friction operator

In a closed system the mean value of any observable can be expressed as follows:

〈O(t)〉 = Tr(Oρ) =
∑
mn

Omnρnm(t) ,(32)

in any given basis.
In energy representation it becomes

〈O(t)〉 =
∑
mn

Omn exp
[
En − Em

ih̄
t

]
ρnm(0).(33)
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That is to say that the mean value is the sum of a constant term (n = m) and some
other oscillating terms at the frequency

υ =
∣∣∣∣En − Em

h

∣∣∣∣.(34)

All these terms are multiplied by a factor proportional to Omn.
Now we define a macroscopic observable as the one lacking of any high-frequency

term, whichever the initial conditions ρ(0) are [23].
Thus, we assert that, in energy representation, for the operator O corresponding to

such an observable, there holds

Omn
∼= 0 if |n−m| > M,(35)

where M is any given positive integer.
In other words, the observable corresponding to O is slowly varying, lacking of any

rapid fluctuations, and thus nearly diagonal in energy representation.
Accordingly, if we damp the very off-diagonal entries in the energy representation

of a generic operator, we “kill” the high-frequency contributions to its time evolution
and, therefore, we take its macroscopic counterpart. We shall show later that similar
properties hold also in the case of a system in thermal contact with a bath. To sum
up, if we look at eq. (29) or (31) we easily understand that the operators Θk are the
corresponding of pk “filtered” in such a way that high frequencies are damped by a factor
tgh(hυ/2KBT )/(hυ/2KBT ), and thus Θk are the macroscopic counterpart of pk. We
would like to remark that the lower the temperature, the narrower the filtering is. This
is reasonable because mesoscopic and macroscopic kinetic phenomena have noticeable
amount of fluctuations in high-temperature condition.

6. – Comparison with the GME

In this section we will show that eq. (18) is a specific case of the GME [12]. In fact,
eq. (18) can be recast into the following form:

d
dt

E{ρ} =
1
ih̄

[
H0, E{ρ}] + R

(
E{ρ}),(36)

where R is our version of the relaxation superoperator

R
(
E{ρ}) =

β

2ih̄

3N∑
i=1

[
qi,ΘiE{ρ} + E{ρ}Θi

] − Dm2

h̄2

3N∑
i=1

[
qi,

[
qi, E{ρ}]].(37)

The energy representation of eq. (36) is

[
d
dt

E{ρ}
]

nm

=
1
ih̄

(
En − Em

)
E{ρnm} +

∑
k,j

RnmkjE{ρkj},(38)
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where the relaxation matrix is

Rnmkj = −δmj

∑
l

Γ+
nllk + Γ+

jmnk + Γ−
jmnk − δnk

∑
l

Γ−
jllm(39)

and the complex damping parameters are

Γ−
abcd =

KBTβm

h̄2

3N∑
i=1

(qi)ab(qi)cd
exp[−(Eb − Ea)/2KBT ]
cosh((Eb − Ea)/2KBT )

,(40)

Γ+
abcd =

KBTβm

h̄2

3N∑
i=1

(qi)ab(qi)cd
exp[+(Ed − Ec)/2KBT ]
cosh((Ed − Ec)/2KBT )

.(41)

Moreover, as it can be easily proved, our expression for the relaxation matrix fulfils the
following properties:

∑
m

Rmmpn = 0, ∀pn,(42)

R∗
pmjn = Rmpnj , ∀pmjn,(43)

Rmmmm < 0, ∀m,(44)

Rmmnn > 0, ∀mn,m �= n.(45)

Equations (38) and (39) represent rigorously the form of the GME as it can be found in
the literature [12], where the relaxation matrix fulfils the same properties (42)-(45). In
addition, eqs. (40) and (41) give a close form of Γ± in the case of a system whose energy
exchange with a reservoir is modelled by friction and noise.

7. – Secular approximation

As is shown in the literature [12] the GME can be simplified by means of the so-called
secular approximation.

This approximation leads eqs. (38) and (39) to the Pauli master equation for the
populations:

(
d
dt

E{ρ}
)

nn

=
∑

i

WniE{ρii} −
(∑

i

Win

)
E{ρm}(46)

and to the following equation for the coherence terms:

[
d
dt

E{ρ}
]

nm

=
1
ih̄

(En − Em)E{ρm} − γnmE{ρnm},(47)

where Wni are the transition probabilities

Wnm = Γ+
mnnm + Γ−

mnnm(48)
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and

γnm =
∑

k

Γ+
nkkn − Γ+

mmnnΓ−
mmnn +

∑
k

Γ−
mkkm .(49)

According to our model, their close form relationships with the qi are

Wnm =
2KBTβm

h̄2

3N∑
k=1

|(qi)mn|2 exp[(Em − En)/2KBT ]
cosh((Em − En)/2KBT )

,(50)

γnm =
KBTβm

h̄2 ×(51)

×
∑
k,j

[
|(qi)nj|2 exp[(En−Ej)/2KBT ]

cosh((En−Ej)/2KBT )
+|(qi)mj|2 exp[(Em−Ej)/2KBT ]

cosh((Em−Ej)/2KBT )

]
−

−2KBTβm

h̄2

∑
k

[
(qi)mm(qi)nn

]
.

The matrix entries W−1
nm and γ−1

nm play the role of quantum relaxation times.
As one can see, eq. (50) is a specific case of the Fermi golden rule for open systems,

where

Wnm

Wmn
=

exp[−(En/KBT )]
exp[−(Em/KBT )

.(52)

Observing eqs. (46) and (47) one can also agree that the comments at the end of sect. 5
are still acceptable in the case of systems coupled with a thermal bath, because the
modification of the harmonic spectrum is negligible.
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Appendix

Multiplicative noise in Langevin-type equations

In this appendix we prove a theorem that allows to derive the expectation value of a
state vector, which evolves in time fulfilling a Langevin equation driven by multiplicative
Gaussian noise.
Theorem: The evolution equation for the expectation value of ρ in eq. (15) with Gaussian
noise subjected to eqs. (2) and (3) is

d
dt

E{x} = AE{x} +
∑

i

B2
i {x}.(A.1)
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Proof : By using eq. (15) and the properties of the noise, the corresponding Fokker-Planck
equation [19] is

d
dt

W (x, t) = −
∑

i

∂

∂xi

{[∑
j

aijxj +
∑
k,j,p

bkpjxpbikj

]
W

}
+(A.2)

+
∑
i,j

∂2

∂xi ∂xj

{[ ∑
k,n,m

binkxnbjmkxm

]
W

}
,

where [A]ij = aij and [Bj ]nm = bnmj .
The expectation value of a column vector component is given by

E{xb(t)} =
∫
Rn

xbW dx.(A.3)

By differentiating with respect to the time, using eqs. (A.3) and (A.2) and recalling the
well-known property

∫
Rn

Θ(x)
∂λ(x)
∂xk

dx = −
∫
Rn

λx
∂Θ(x)
∂xk

dx,(A.4)

one obtains, after some straightforward calculations, the final relationships
∫
R4

xb
dW
dt

dx =
∑

j

abj

∫
R4

xjW dx+
∑
k,j,p

bkpjbbkj

∫
R4

xpW dx, ∀b.(A.5)

This is the explicit form of the projection of eq. (A.1) on a given basis.
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