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Abstract

The paper deals with the elastic characterisation of dispersions of randomly oriented ellipsoids: we start from th
of strongly diluted mixtures and successively we generalise it with a differential scheme. The micro-mechanical av
inside the composite material is carried out by means of explicit results which allows us to obtain closed-form exp
for the macroscopic or equivalent elastic moduli of the overall composite materials. This micromechanical technique
explicitely developed for describing embeddings of randomly oriented not spherical objects. In particular, this study h
applied to characterise media with different shapes of the inclusions (spheres, cylinders and planar inhomogeneitie
special media involved in the mixture definition (voids or rigid particles): an accurate analysis of all these cases h
studied yielding a set of relations describing several composite materials of great technological interest. The differential
medium scheme (developed for generally shaped ellipsoids) extends such results to higher values of the volume frac
inhomogeneities embedded in the mixture. For instance, the analytical study of the differential scheme for porous
(with ellipsoidal zero stiffness voids) reveals a universal behaviour of the effective Poisson ratio for high values of the p
This means that Poisson ratio at high porosity assumes characteristic values depending only on the shape of the incl
not on the elastic response of the matrix.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In recent years the characterisation of heterogeneous materials has attracted an ever increasing interest. A centr
of considerable technological importance, is to evaluate the effective elastic properties governing the behaviour of a c
material on the macroscopic scale. At present, it is well known that it does not exist a universally applicable mixing
giving the effective properties of the heterogeneous materials as some sort of average of the properties of the c
materials. Actually, the details of the micro-geometry can play a crucial role in determining the overall properties. There
elastic (thermal, electrical and so on) properties of composite materials are strongly microstructure dependent. The rel
between microstructure and properties may be used for designing and improving materials, or conversely, for int
experimental data in terms of micro-structural features. A great number of theoretical formulas have been proposed to
the behaviour of composite materials. A disadvantage of some approximated results is that they do not correspond ta priori
known microstructure; this kind of results may be interpreted and classified only by means of comparison with nu
or experimental data. A different class of theories is rigorously based on realistic microstructures. These are the
Hashin and Shtrikman (1962, 1963) variational bounds, which provide an upper and lower bound for composite m
and the expansions of Brown (1965) and Torquato (1997, 1998) which take into account the spatial correlation functi
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phases. Effective medium theories are commonly used because of their relative simplicity compared to numerical computations:
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typically, they allow a simple determination of the equivalent elastic properties of a composite material. Therefore, it
important to establish the conditions of validity and the microstructures for which the theories yield accurate pred
comparisons with numerical results are necessary and indispensable. So, some efficient numerical algorithms h
produced by Garboczy and Day (1995) and Garboczy and Berryman (2001) to compute the effective linear elastic pro
heterogeneous materials.

Dispersions or suspensions of ellipsoidal inclusions in a homogeneous matrix give a particular example of hetero
materials: these media have been extensively studied both from the electrical and the elastic point of view. We briefly
the earlier literature for electrical and elastic characterisation to draw a comparison between the approaches. From the
point of view, one of the first attempts to characterise electrical dispersions of spheres is that of Maxwell (1881), which
out a famous formula for a strongly diluted suspension.

A better model has been provided by the differential scheme, which derives from the mixture characterisation a
used by Bruggeman (1935) and extensively described by Van Beek (1967). In this case the relations should ma
validity also for less diluted suspensions of spheres. To understand the effects of different shape of the inclusions, e
shaped particles have been considered: the first papers dealing with mixtures of ellipsoids were written by Fricke (192
concerning the electrical characterisation of biological tissues containing spheroidal particles. In recent literature (S
1981; Mendelson and Cohen, 1982; Sen, 1984) several applications of the Bruggeman differential procedure to m
ellipsoids of rotation have been performed in connection with the problem of characterising the dielectric response
saturated rocks. A complete differential theory for generally shaped dielectric ellipsoidal inclusions has been deve
Giordano (2003).

Dealing with elastic characterisation of dispersions (see Walpole, 1981; Hashin, 1983) some similar works ha
developed: the most famous and studied elastic mixture theory regards a composite material formed by spherical
embedded in a solid matrix. This result is attributed to numerous authors (see Hashin, 1983; Douglas and Garboczi,
adapt the dilute formulas to the case of any finite volume fraction a great number of proposals have been made and th
in technical literature. The differential approach is also used in micro-mechanical theories (McLaughlin, 1977; Norris
Avellaneda, 1987): this leads, in the simpler and most studied case (dispersions of spheres), to a pair of coupled d
equations (see McLaughlin, 1977) which may be numerically solved and the results generate the so-called differentia
medium theory.

Drawing a comparison between the literature dealing with the electrical and the elastic mixture characterisation
observe that the case of dispersions of ellipsoidal inclusions has not been completely treated from the elastic poin
and the relative differential effective medium scheme has not been developed. Therefore, we devote this paper to fi
in this topic. In particular we try to characterise a dispersion of randomly oriented elastic ellipsoids embedded in a giv
matrix. We will obtain a theory for very diluted dispersions similar to the electric Maxwell–Garnett–Fricke theory (see M
and Garnett, 1904; Sihvola, 1999) and we will apply the differential procedure to generalise it to higher values of the
fraction of the inclusions. To do this, we generalise the well known micromechanical averaging techniques to obtain a
procedure developedad hoc for embeddings of randomly oriented objects, which is the main purpose of the paper.

2. Theory for strongly diluted dispersions of generally shaped ellipsoids

The elastic properties of two-phase materials depend on the geometrical nature of the mixture (microstructure) a
volume fraction of the two media. Such a composite material can be thought as a heterogeneous solid continuum t
together two homogeneous continua: each part of the media has a well-defined sharp boundary. The bonding at the
remains intact in our models when the whole mixture is placed in an equilibrated state of infinitesimal elastic strain by
loads or constraints. In the present case, the boundary conditions require that both the vector displacement and the s
be continuous across any interfaces. Each separate homogeneous region is characterised by its stiffness tensor, whic
the stress-strain relation. If both materials are linear and homogeneous this relation is given by:

Tij = LsijklEkl, s = 1,2, (1)

whereT is the stress tensor (3× 3 sized),E is the strain tensor (3× 3 sized) andL is the constant stiffness tensor, whi
depends on the medium considered (s = 1,2). For isotropic media this latter is written, for example in terms of the bulk
shear constants, as follows:

Lsijkl = ksδij δkl + 2µs

(
δikδjl − 1

3
δij δkl

)
, s = 1,2, (2)

whereks andµs are the bulk and shear moduli of thes-th medium (s = 1,2) and δnm is the Kronecker’s delta. To solve
mixture problem consists in finding the equivalent macroscopic stiffness tensor for the whole composite material a
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for overall isotropic behaviour, this means that we have to evaluate the equivalentk andµ constants. Here we consider a
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dispersion of randomly oriented ellipsoids and firstly we develop a procedure to evaluate the average value of the str
each inclusion embedded in a given matrix with a bulk strain applied to the overall structure. We start with some de
used to simplify the problem. Instead of describing the strain with the complete symmetric tensor we adopt a colum
which contains the six independent elements in a given order; the same approach is used for the stress (T means transposed):

Ê = [E11 E22 E33 E12 E23 E13]T ; T̂ = [ T11 T22 T33 T12 T23 T13]T . (3)

Adopting this notation scheme the stiffness four-index tensor for the isotropic components is represented by a simpl
with six rows and six columns:

L̂s =




ks + 4
3µs ks − 2

3µs ks − 2
3µs 0 0 0

ks − 2
3µs ks + 4

3µs ks − 2
3µs 0 0 0

ks − 2
3µs ks − 2

3µs ks + 4
3µs 0 0 0

0 0 0 2µs 0 0

0 0 0 0 2µs 0

0 0 0 0 0 2µs



, s = 1,2, (4)

so that the stress-strain relations becameT̂ = L̂
1
Ê in the matrix and̂T = L̂

2
Ê inside each inclusion. To begin the stra

computation, we take into consideration a single ellipsoidal isotropic inclusion (medium 2) added to an isotropic
(medium 1) placed in an equilibrated state of infinitesimal constant elastic strain. In particular we consider an ellipsoid w
a1, a2, a3 aligned with the axesx1 = x, x2 = y, x3 = z of the reference frame with the assumptiona1 > a2 > a3 > 0 and we
define two eccentricities, which describe the shape of the inclusion: 0< e = a3/a2 < 1 and 0< g = a2/a1 < 1. It is important
to notice that the internal strain is constant if the external or bulk strain is constant. Accordingly with the Eshelby (1957
theory (extensively described in Mura, 1987; Nemat-Nasser, 1993) the relationship between the uniform original exter
and the induced internal strain is given by:

Êi = {
I − Ŝ

[
I − (

L̂
1)−1L̂

2]}−1Ê0 = ÂÊ0, (5)

hereI is the identity matrix with size 6× 6, Êi is the internal strain,̂E0 is the original external strain,̂L
1

andL̂2 are the
stiffness tensor of the matrix and the inclusion respectively andŜ is the Eshelby tensor, which depends on the eccentricitie

andg of the ellipsoid and on the Poisson ratioν1 = (3k1 − 2µ1)/[2(3k1 +µ1)] of the matrix (see Mura, 1987, for a comple
description of all the entries and for special cases). Here, we only remember that the general structure ofŜ is given by:

Ŝ =




s1111 s1122 s1133 0 0 0

s2211 s2222 s2233 0 0 0

s3311 s3322 s3333 0 0 0

0 0 0 2s1212 0 0

0 0 0 0 2s2323 0

0 0 0 0 0 2s1313



. (6)

Matrix Â is simply defined by Eq. (5). We remember that Eq. (5) is written taking into account a particular reference
with axes aligned to the three principal directions of the embedded ellipsoid. In these condition matrixÂ has the following
mathematical form:

Â =




A1111 A1122 A1133 0 0 0

A2211 A2222 A2233 0 0 0

A3311 A3322 A3333 0 0 0

0 0 0 A1212 0 0

0 0 0 0 A2323 0

0 0 0 0 0 A1313



. (7)

All the coefficientsAijkl that not appear in Eq. (7) are always zero. With the aim of analysing the behaviour of a mixt
randomly oriented ellipsoids, we need to evaluate the average value of the internal strain inside the ellipsoid over all its
orientations or rotations in the space. To perform this averaging over all the rotations we name the original reference fr
the letterB and we consider another generic reference frame that is named with the letterF .
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The relation between these basesB andF is described by means of a generic rotation matrixR(ψ, θ,ϕ) whereψ, θ and
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ϕ are the Euler angles; we may consider this matrix as the product of three elementary rotations along the axisz, x andz
respectively:

R(ψ, θ,ϕ)=

cosψ −senψ 0

senψ cosψ 0

0 0 1





1 0 0

0 cosθ −senθ

0 senθ cosθ





cosϕ −senϕ 0

senϕ cosϕ 0

0 0 1


 . (8)

Therefore the following relations hold on between the different frames:EB
i = REF

i RT for the internal strain andEB
0 = REF

0 RT

for the bulk strain (here the subscript T means transposed). These expressions have been written with standard nota
strain (3× 3 sized matrix). They may be converted in our notation defining a matrixM̂(ψ, θ,ϕ), 6 × 6 sized, which acts a

a rotation matrix on our strain vectors: so, we may writeÊB
i = M̂ÊF

i inside the ellipsoid and̂EB
0 = M̂ÊF

0 outside it. The

entries of the matrix̂M are completely defined by the comparison between the relationsEB
i

= REF
i

RT andÊB
i

= M̂ÊF
i and

by considering the notation adopted for the strain. Eq. (5) is written on the frameB and therefore it actually readŝEB
i = ÂÊ

B
0 ;

this latter may be reformulated on the generic frameF simply obtaining:

ÊF
i = {

M̂(Ψ, θ,ϕ)−1ÂM̂(Ψ, θ,ϕ)
}
ÊF

0 . (9)

Finally, the average value of the strain inside the inclusion may be computed by means of the following integration ove
possible rotations:

〈
Êi

〉 = 1

8π2

2π∫
0

2π∫
0

π∫
0

{
M̂(Ψ, θ,ϕ)−1ÂM̂(Ψ, θ,ϕ)

}
senθ dθ dϕ dΨ Ê0. (10)

By means of a very long but straightforward integration we have obtained an explicit relation between the extern
Ê0 (= ÊF

0 ) and the average value〈Êi〉 inside the randomly oriented ellipsoid:

〈
Êi

〉 =




α β β 0 0 0

β α β 0 0 0

β β α 0 0 0

0 0 0 α − β 0 0

0 0 0 0 α − β 0

0 0 0 0 0 α − β




Ê0 = B̂ Ê0, (11)

whereα andβ depend only on the coefficientsAijkl :


α = 1

5
A1111+ 1

5
A2222+ 1

5
A3333+ 2

15
A1313+ 2

15
A2323+ 2

15
A1313

+ 1

15
A1122+ 1

15
A1133+ 1

15
A2211+ 1

15
A2233+ 1

15
A3311+ 1

15
A3322,

β = 1

15
A1111+ 1

15
A2222+ 1

15
A3333− 1

15
A1313− 1

15
A2323− 1

15
A1313

+ 2

15
A1122+ 2

15
A1133+ 2

15
A2211+ 2

15
A2233+ 2

15
A3311+ 2

15
A3322.

(12)

This is the main result of this section and it plays a crucial role in the further development of the theory. To sum up, we
the matrixÂ by means of Eq. (5) and then we apply Eq. (12) to average the internal strain over all the possible orient
the ellipsoid. We wish to point out that Eq. (12) is extremely convenient to perform the micro mechanical averaging
it removes the problem of the integral evaluation and allows us to obtain results in closed form. Of course, standa
mechanical techniques are largely discussed and applied in earlier literature (Mura, 1987; Nemat-Nasser, 1993); ho
averaging of the strain over the geometric orientations of the randomly oriented microinclusions, explicitly performed b
of Eq. (12), is an useful result which permits to work out in detail several analysis of various kind of composite mater
explicit result of general validity may be used to avoid the complicated integration over the angles which define the orien
the elastic microinclusions. More precisely, the sums appearing for example in Eqs. (7.4.6a,b) or (7.4.9a,b) (equation n
in the book by Nemat-Nasser, 1993) become integrals for randomly oriented inclusions and the proposed approach
problem of their calculations. With Eq. (12) the sole knowledge of the Eshelby tensor of the inclusion permits, with al
computations, to characterise the overall dilute dispersion of randomly oriented generally shaped ellipsoids. More
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Fig. 1. Structure of a dispersion of randomly oriented ellipsoids. The external surface of the mixture is, e.g., a sphere, which conta
inclusions. The two-phase material is described by the elastic response of each phase, by the volume fraction of the inclusions
characteristic eccentricities of the embedded particles.

definition of the coefficientsα andβ by means of Eq. (12) is useful to introduce the differential scheme for randomly ori
generally shaped ellipsoids in a very simple way (see next sections).

Still now, we have considered a single ellipsoidal particle and we have calculated the averaged internal strain〈Êi 〉 when it
is randomly placed in a matrix with a given constant strainÊ0; from now on, we have to deal with an ensemble of inclusi
randomly oriented and distributed in the solid matrix (see Fig. 1). To begin the analysis of the behaviour of the overall s
first of all, we consider an extremely low value of the volume fraction of the dispersed component so that we may ne
interactions among the inclusions. Therefore, each ellipsoidal particle behaves as a single one in the whole space. Wc
as the volume fraction of the inclusions. Because of the low value ofc we may compute the average value of the elastic st
over the whole heterogeneous material by means of the relation:〈

Ê
〉 = (1− c)Ê0 + c

〈
Êi

〉 = [
(1− c)I + cB̂

]
Ê0, (13)

where we have considered the strain outside the inclusions approximately constant and identical to the bulk strainÊ0 (matrix
B̂ is defined by Eq. (11)). Moreover, we defineL̂eq as the equivalent stiffness tensor of the whole mixture (which is isotr

because of the randomness of the orientations of the inclusions) by means of the relation〈T̂〉 = L̂eq〈Ê〉; to evaluatêLeq we need
the average value〈T̂〉 of the stress inside the random material. So, we defineV as the total volume of the mixture,Ve as the
total volume of the embedded ellipsoids andV0 as the volume of the remaining space among the inclusions (V = Ve∪V0). The

average value of̂T = L̂(r̄)Ê over the volume of the whole material is evaluated as follows(L̂(r̄)= L̂
1

if r̄ ∈ V0 andL̂(r̄)= L̂
2

if r̄ ∈ Ve):

〈
T̂

〉 = 1

V

∫
V

L̂(r̄)Ê(r̄)dr̄ = 1

V
L̂

1
∫
V0

Ê(r̄)dr̄ + 1

V
L̂

2
∫
Ve

Ê(r̄)dr̄

= 1

V
L̂

1
∫
V0

Ê(r̄)dr̄ + 1

V
L̂

2
∫
Ve

Ê(r̄)dr̄ + 1

V
L̂

1
∫
Ve

Ê(r̄)dr̄ − 1

V
L̂

1
∫
Ve

Ê(r̄)dr̄

= L̂
1〈

Ê
〉 + c

(
L̂

2 − L̂
1)〈

Êi

〉 = L̂
1〈

Ê
〉 + c

(
L̂

2 − L̂
1)

B̂ Ê0. (14)

Drawing a comparison between Eqs. (13) and (14) we may find a complete expression, which allows us to esti
equivalent stiffness tensorL̂eq:

L̂eq= L̂
1 + c

(
L̂

2 − L̂
1)

B̂
[
(1− c)I + cB̂

]−1
. (15)
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Eq. (15) may be written in explicit form finding out all the components of the stiffness tensor; with straightforward algebraic
ˆ :

: to sum

li

roscopic

xwell–
it seems

es
ave
computation, we observe thatLeq corresponds to an isotropic material described by the following bulk and shear moduli

keq= k1(1− c)+ ck2(α + 2β)

1− c+ c(α + 2β)
= k1 + (α + 2β)(k2 − k1)c+ O

(
c2)

,

µeq= µ1(1− c)+ cµ2(α − β)

1− c+ c(α − β)
= µ1 + (α − β)(µ2 −µ1)c+ O

(
c2)

.

(16)

These equations complete the characterisation of a strongly diluted dispersion of randomly oriented ellipsoids
up the theoretical procedure, we remember that the first step consists in evaluating the matrixÂ defined by Eq. (5),
then we use Eq. (12) to compute the values of the coefficientsα and β and finally we obtain the equivalent modu
of the overall isotropic structure by means of Eq. (16). Moreover, we observe that the coefficientsα and β depend on
k1, k2, µ1, µ2, e, g and therefore the characterisation depends on the shape of the inclusions, i.e., on the mic
morphology of the heterogeneous material. Finally,keq andµeq have been expressed in terms ofk1, k2, µ1, µ2, e, g

and the volume fractionc. We want to point out that results stated in Eq. (16) are the elastic counterpart of the Ma
Garnett–Fricke relations (Sihvola, 1999) for the electrical characterisation of ellipsoidal dispersions. Furthermore,

Fig. 2. Effective elastic response for a given dispersion versus the eccentricitiese and g of the embedded inclusions (ellipsoids with ax
a1, a2, a3 with a1 > a2 > a3 > 0. Eccentricities: 0< e = a3/a2 < 1 and 0< g = a2/a1 < 1). Bulk, shear, Young and Poisson constants h
been computed with the theory for diluted dispersions (Eq. (16)) with the indicated assumptions.
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electrical field inside the randomly oriented inclusion considering the mean value of the three cases obtained w
ellipsoid is aligned with the three axes of the frame as explained in Fricke (1953) or in Giordano (2003); in our
theory this is not true and the correct average value of the strain must be computed with Eq. (12) which is more com
This depends on the intrinsic tensor character of the quantities involved in the elastic theory, which not permits
simple intuitive or empirical consideration in averaging stress or strain inside a given material. For example, if
the mean value over the elementary three position of ellipsoids aligned along the three axes, we are actually co
a special dispersion in which the ellipsoids may assume only these three particular positions and therefore, we o
result, a cubic crystal described by three independent parameters instead of the two characteristic moduli of an
medium.

Adopting the general structure of the Eshelby tensor (see Mura, 1987; Nemat-Nasser, 1993) we may theore
numerically apply the outlined procedure to evaluate the effects of the shape of the inclusions on the overall elastic beh
the composite material. In Fig. 2 one can find some plots that show the behaviour of the elastic moduli versus the ecc
e andg of the embedded ellipsoids (we consider an ellipsoid with axesa1, a2, a3, a1 > a2 > a3 > 0 and we define two
eccentricities: 0< e = a3/a2 < 1 and 0< g = a2/a1 < 1). In particular we may observe the effect of the shape of the inclus
on the bulk and shear moduli or on the Young modulus and Poisson ratio. It seems interesting to note that the equivale
ratio, in general, has not a monotonic behaviour with respect to the eccentricities and it may assume values out of
betweenν1 andν2 (Poisson ratio of the matrix and of the inhomogeneities respectively). Other examples will be expla
further sections. We want to point out that these results, still now, are valid only for strongly diluted dispersions; in t
section we present a study of several limiting cases based on this theory (with very low values of the volume fraction
the sequel we will describe a more refined differential scheme which should hold on for any concentration of the d
phase.

3. Limiting cases: dispersions of inclusions with special shapes

By introducing particular values of the characteristic eccentricities we may find out explicit relations for dispers
spheres (e = 1, g = 1), randomly oriented circular cylinder (e = 1, g = 0) and randomly oriented planar inclusions (slabs
sheets withe = 0, g = 1). It is important to observe that all the planar structure withe = 0 behave in the same way independen
on the value ofg. Here, it is convenient to think that the valuee = 0 (for anyg) corresponds to infinite two-dimensional plan
(sheets) of medium 2 randomly embedded in the matrix (medium 1). This is coherent with some explicit results des
the sequel.

Dealing with suspensions of spheres, the theoretical procedure outlined in the previous section may be explicitly p
by introducing the pertinent form of the Eshelby tensor reported in Mura (1987). Actually, for spheres the averaging te
over all the orientations is not necessary but it may be used as check of the procedure. Anyway, the final result is giv
following relationships:

keq = k1(4µ1 + 3k2)+ 4cµ1(k2 − k1)

4µ1 + 3k2 − 3c(k2 − k1)
= k1 + 4µ1 + 3k1

4µ1 + 3k2
(k2 − k1)c+ O

(
c2)

,

µeq = µ1
[(1− c)µ1 + cµ2](9k1 + 8µ1)+ 6µ2(k1 + 2µ1)

µ1(9k1 + 8µ1)+ 6[(1− c)µ2 + cµ1](k1 + 2µ1)

= µ1 + 5µ1(4µ1 + 3k1)(µ2 −µ1)

µ1(9k1 + 8µ1)+ 6µ2(k1 + 2µ1)
c+ O

(
c2)

.

(17)

This is the well known result obtained by several authors in the earlier literature as described in Hashin (1983) and in
and Garboczi (1995). If we consider the characteristic Eshelby tensor for cylinders and we apply the previously
procedure, in closed form, we obtain, after a long and tedious algebraic computation, the explicit results:

keq = k1 + µ2 + 3µ1 + 3k1

µ2 + 3µ1 + 3k2
(k2 − k1)c+ O

(
c2)

,

µeq = µ1 + 1
5(µ2 −µ1)

{
64µ4

1 + 84k1µ
3
1 + 63µ3

1k2 + 184µ3
1µ2 + 156µ2

1k2µ2

+ 72µ2
1µ

2
2 + 120k1µ

2
1µ2 + 81k1µ

2
1k2 + 36k1µ

2
2µ1 + 90k1k2µ1µ2 + 21k2µ1µ

2
2 + 9k1k2µ

2
2

}
× {

(µ1 +µ2)(µ2 + 3k2 + 3µ1)
(
3µ1k1 +µ2

1 + 3k1µ2 + 7µ1µ2
)}−1

c+ O
(
c2)

.

(18)

Here, we have reported, for sake of brevity, only the first order approximations instead of the complete expressions, w
very complicated. These are relations that hold on for a fibrous material where each fibre or rod is randomly orient
space. In other words they may be applied to fibre-reinforced plastics or polymers (with random three dimensional arran
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Finally, adopting the characteristic Eshelby tensor of the planar structures we obtain the following relationships for the
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equivalent elastic moduli of the overall heterogeneous medium:

keq = k1(4µ2 + 3k2)+ 4cµ2(k2 − k1)

4µ2 + 3k2 − 3c(k2 − k1)
= k1 + 4µ2 + 3k1

4µ2 + 3k2
(k2 − k1)c+ O

(
c2)

,

µeq = µ2
5µ1(4µ2 + 3k2)+ c(µ2 −µ1)(9k2 + 8µ2)

5µ2(4µ2 + 3k2)− 6c(µ2 −µ1)(k2 + 2µ2)

= µ1 + 1

5

(9k2µ2 + 8µ2
2 + 12µ1µ2 + 6µ1k2)(µ2 −µ1)

µ2(3k2 + 4µ2)
c+ O

(
c2)

.

(19)

We remember that this latter result is valid fore = 0 and for any value ofg: it describes the overall behaviour of a rando
embedding of slabs or sheets in a given matrix. Moreover, the result given in Eq. (19) is particularly important becaus
will show in the sequel, it is correct for any value of the volume fraction of the sheets and not only for strongly diluted m
In fact, if we apply the differential scheme to Eq. (19) we obtain, as result, Eq. (19) itself (see next section for details).

At this stage, we have obtained, from the general theory, three mixing rules for spherical, cylindrical and planar
randomly embedded in the homogeneous matrix. Now, we may obtain many other limiting cases taking into accoun
kind of the media involved in the mixture definition. In particular, both the homogeneous matrix and the inclusions may
the role of the vacuum or of a completely rigid medium (that do not allow any deformation). So, we generate an int
casuistry, which is summarised in Table I and which represents a useful tool for practical applications.

3.1. Special media in dispersions of spheres

We begin with dispersions of spheres: if the spherical inclusions are pores (voids) the material (2) has zero mo
k2 = 0 andµ2 = 0 (or E2 = 0). In the present case, Eq. (17) may be simply written in terms of the Young modulus a
Poisson ratio which are related to the bulk and shear moduli by means of the standard relations:

E = 9kµ

µ+ 3k
; ν = 3k − 2µ

2(µ+ 3k)
⇔ µ= E

2(1+ ν)
; k = E

3(1− 2ν)
. (20)

Therefore, usingE2 = 0 combined with Eqs. (17) and (20) we obtain the following relationships for a material with sph
pores:

νeq= 5ν2
1c − 3c + 2cν1 − 14ν1 + 10ν2

1

15ν2
1c− 13c + 2cν1 − 14+ 10ν1

= ν1 − 3

2

(1− 5ν1)(1− ν2
1)

5ν1 − 7
c+ O

(
c2)

,

Eeq= 2(1− c)(5ν1 − 7)E1

15ν2
1c − 13c + 2cν1 − 14+ 10ν1

=E1 − 3

2

E1(5ν1 + 9)(ν1 − 1)

5ν1 − 7
c+ O

(
c2)

.

(21)

We note that the Poisson ratio of the porous material depends only on the matrix Poisson ratio and on the porosity.
If the spherical inclusions are completely rigid the strain inside the inclusions must be zero and therefore we letµ2 → ∞:

this condition completely describes a solid with no elastic deformations allowed. As before, starting from Eq. (17) an
µ2 → ∞, we observe that the equation for the bulk modulus remains unchanged and the other one, for the shear
becomesµeq = µ1 + 5µ1(4µ1 + 3k1)c/6k1 + O(c2). For instance, in this first order approximation, if we letk1 → ∞ we
obtain the very simple relationµeq ≈ µ1(1 + 5/2c) which describes a mixture of inelastic spheres in a matrix withk1 → ∞.
This is the elastic version of the well-known Einstein (1906) result for the viscosity of a dispersion of rigid spheres in a
incompressible fluid (in fluid theoryk → ∞ means incompressibility of the liquid andµ behaves as the viscosity): if ver
small rigid spheres are suspended in a liquid, the viscosity is thereby increased by a fraction which is equal to 5/2 times the
total volume of the spheres suspended in a unit volume, provided that this total volume is very small. Anyway, conve
relations to Young modulus and Poisson ratio, Eq. (17) withµ2 → ∞ (or equivalentlyE2 → ∞) leads to the result for spheric
rigid inclusions:

νeq = c(10ν2
1 − 11ν1 + 3)+ (8ν1 − 10ν2

1)

30ν2
1c+ 13c − 41cν1 + 8− 10ν1

= ν1 + 3

2

(1− 5ν1)(1− 2ν1)(ν1 − 1)

5ν1 − 4
c+ O

(
c2)

,

Eeq = E1
2(7− 19ν1 + 10ν2

1)c
2 + (23− 50ν1 + 35ν2

1)c+ (8− 2ν1 − 10ν2
1)

(−13+ 28ν1 + 11ν2
1 − 30ν3

1)c
2 + (5− 26ν1 − ν2

1 + 30ν3
1)c+ (8− 2ν1 − 10ν2

1)

= E1 + 3E1
(ν1 − 1)(5ν2

1 − ν1 + 3)

(ν1 + 1)(5ν1 − 4)
c+ O

(
c2)

.

(22)

Once again,νeq depends only onν1 andc.
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3.2. Special media in dispersions of cylinders

Now we are dealing with a fibrous material formed by two different phases. If the medium of the fibres or cylinder
vacuum we letk2 = 0 andµ2 = 0 in Eq. (18), obtaining a result in terms of the Young modulus and Poisson ratio:

νeq= 3cν1 + 8cν2
1 − 5c− 15ν1

16ν2
1c− 20c − 4cν1 − 15

= ν1 + 1

15
(1+ ν1)

(
16ν2

1 − 28ν1 + 5
)
c + O

(
c2)

,

Eeq= 15(1 − c)E1

15+ 20c + 4cν1 − 16cν2
1

=E1 + 1

15
E1

(
16ν2

1 − 4ν1 − 35
)
c+ O

(
c2)

.

(23)

The latter result represents the characterisation of a fibrous porous medium (with randomly oriented cylindrical voids o
Eq. (23) represents the cylindrical counterpart of the spherical relation, Eq. (21), for porous materials.

If the cylindrical inclusions become rigid(E2 → ∞) the whole structure remains blocked by the network of rigid r
independently on the elasticity of the matrix medium and soEeq→ ∞ (this is true because of the infinite length of the inelas
cylinders).

An interesting case is given by lettingE1 = 0, i.e., considering the vacuum as matrix: we obtain a random three dimen
grid of elastic rods embedded in air. The corresponding simple relationships follow from Eq. (18):

νeq= 1

2

2cν2 − 3c+ 3

6− 5c
= 1

4
+ 1

6

(
ν2 − 1

4

)
c+ O

(
c2)

, Eeq= cE2

6− 5c
= 1

6
E2c+ O

(
c2)

. (24)

This means that the Poisson ratio of this random grid is approximately equals to 1/4 for very small radius of the elasti
cylinders. To conclude with mixtures of cylinders we analyse the simple case withE1 → ∞: the whole composite medium
remains blocked by the connected rigid matrix and we simply haveEeq→ ∞.

3.3. Special media in dispersions of sheets

From now on, we will describe mixtures formed by infinite two-dimensional planes randomly embedded in a
homogeneous matrix: the general behaviour is given by Eq. (19). If the second medium (planar inclusions) is the
(E2 = 0) the sheets generates a not connected elastic matrix and the equivalent Young modulus of the whole medium
Eeq = 0. If the planar inclusions become rigid(E2 → ∞) the whole structure remains blocked by the network of rigid sh
independently on the elasticity of the matrix medium and soEeq → ∞. However, the other two following cases are mo
interesting: if we letE1 = 0 we are considering the vacuum as matrix and therefore we obtain a random three-dime
grid of elastic slabs or sheets embedded in air. The corresponding equivalent moduli follow from Eq. (19) combined
assumptionE1 = 0:

νeq= 3+ 5ν2
2c− 3c + 2cν2 + 12ν2 − 15ν2

2

15ν2
2c− 15ν2

2 + 2cν2 − 12ν2 − 13c + 27
= 5ν2 + 1

5ν2 + 9
+ 2

3

(5ν2 − 7)(5ν2 − 1)(ν2 + 1)

(5ν2 + 9)2(ν2 − 1)
c+ O

(
c2)

,

Eeq= 2c(7 − 5ν2)E2

15ν2
2c − 15ν2

2 + 2cν2 − 12ν2 − 13c + 27
= 2

3

c(7− 5ν2)E2

(5ν2 + 9)(1− ν2)
+ O

(
c2)

.

(25)

From the biomedical point of view it interesting to note that Eq. (24) and/or (25) may be used to describe the trabecu
mechanical properties. Trabecular bone is generally characterized as a cellular solid, or foam, consisting of an interc
network of rods and plates. It is, on the other hand, a porous, sponge-like network of bone material. By neglecting the
the structure of trabecular bone adapts to the loading environment and that it is highly asymmetric (for example in fe
tibia in order to support the existing multi-axial state of stress), the linear model, here described, can be applied to ch
this kind of biomaterial.

Finally, the last case considered deals with a rigid matrixE1 → ∞: the randomly oriented elastic sheets separate r
parts of the matrix (that remains not connected). In other words, we may think to a random filling of rigid stones sepa
cemented by an elastic medium or paste. Eq. (19) whereE1 → ∞ or µ1 → ∞ leads to the explicit expressions:
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Table 1
Summary of the casuistry obtained by considering special shapes of the inclusions and special media for the phases. Spheres, cylinders and
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l., 2002).

d form,

s
and
)).
scribing
f the
sheets may be used as embedded particles; moreover, both matrix and inclusions may be void or rigid

Porous inclusions Rigid inclusions Porous matrix Rigid matrix
E2 → 0 E2 → ∞ E1 → 0 E1 → ∞

Spherical inclusions Dispersion of spherical
pores:

Dispersion of rigid
spheres:

Not connected structure
(isolated spheres in air):

Structure blocked by the
connected rigid matrix re-
gion:

see Eq. (21) or Eq. (32)
for high concentrations

see Eq. (22) or Eq. (33)
for high concentrations

Eeq → 0 νeq undeter-
mined

Eeq→ ∞ νeq undetermined

Randomly oriented
cylindrical inclusions
or rods

Random network of
porous rods in a con-
nected elastic matrix:

Structure blocked by the
connected network of
rigid rods:

Random connected grid
of elastic rods embedded
in air:

Structure blocked by the
connected rigid matrix re-
gion:

see Eq. (23) or Eq. (34)
for high concentrations

Eeq → ∞ νeq undeter-
mined

see Eq. (24) Eeq→ ∞ νeq undetermined

Randomly oriented
planar inclusions or
sheets

The porous planar in-
clusions generates a not
connected elastic matrix:
Eeq → 0 νeq undeter-
mined

Structure blocked by the
connected network of
rigid sheets:
Eeq → ∞ νeq undeter-
mined

Random connected
network of elastic
sheets embedded in air:
Eq. (25)

Elastic sheets separate rigid
parts of matrix (which re-
mains not connected):
see Eq. (26)

νeq = 10ν2
2c + 3ν2 − 11cν2 + 3c− 3

30ν2
2c− 30ν2

2 − 41cν2 + 51ν2 + 13c − 21
= 1

7− 10ν2
− 2

3

(5ν2 − 4)(2ν2 − 1)(5ν2 − 1)

(10ν2 − 7)2(ν2 − 1)
c+ O

(
c2)

,

Eeq = (5cν2 − 15ν2 − 7c+ 15)(2c− 4cν2 − 3+ 3ν2)E2

(ν2 + 1)(30ν2
2c− 30ν2

2 − 41cν2 + 51ν2 + 13c − 21)c

= 15

c

(ν2 − 1)E2

(10ν2 − 7)(ν2 + 1)
− 2

(50ν2
2 − 70ν2 + 27)E2

(10ν2 − 7)2(ν2 + 1)
− 4

3

(2ν2 − 1)(5ν2 − 4)(5ν2 − 1)2E2

(10ν2 − 7)3(ν2 + 1)(ν2 − 1)
c+ O

(
c2)

.

(26)

In the present case, if the volume fraction of the planar elastic sheets vanishes, the whole structure becomes rigid an
Young modulus diverges to infinity. So, the first order expansion ofEeq (in Eq. (26)) is actually a Laurent series which tak
into account the first order pole appearing forc = 0. Therefore, the coefficient of the factor 1/c is the residue of the functio
Eeq at the pointc = 0. All the particular results, shown in the present section, have been summed up in Table 1.

It must be underlined that from a merely mathematical standpoint, each theoretical formula of this section may be a
mixture of viscoelastic materials: in this case each elastic constant, appearing in a relationship, becomes (for linear m
complex modulus of the viscolestic medium (formed by elastic constants, viscosities and frequency), which takes into
the creep (strain response to step stress) or relaxation (stress response to step strain). Consequently, as results,
rules give the complex effective moduli of viscoelastic composite materials, which appear as complex dynamic func
frequency. These results can be easily compared with actual data because the complex effective moduli of viscoelastic
may be experimentally measured by a number of techniques giving relaxation curve at discrete frequencies (Eyre et a

4. Differential effective medium theory

For the sake of simplicity, the relationships described in the previous sections may be recast in the following unifie
for a given shape of the inclusions embedded in the elastic matrix:{

keq= F(k1, k2,µ1,µ2, c),

µeq=G(k1, k2,µ1,µ2, c).
(27)

In Eq. (27) constantsk1 andµ1 are the elastic moduli of the matrix medium,k2 andµ2 are the elastic moduli of the inclusion
andkeq andµeq are those of the overall mixture. FunctionsF andG are given by Eq. (16) for generally shaped ellipsoids
by relations of the previous section for special cases (spheres Eq. (17), cylinders Eq. (18) or planar inclusions Eq. (19

The differential procedure is a method to find a second set of mixture relationships considering a first theory de
the composite material (actually functionsF andG). This second theory is usually more efficient than the first one even i
mixture is not strongly diluted because it takes into account the interactions among inclusions.
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of an integration scheme that was first introduced by Bruggeman (1935). In this scheme the initially low concentratio
embedded particles is gradually increased by infinitesimal additions of dispersed component. In the course of this pr
elastic moduli of the medium around a particle slowly changes fromk1, µ1 to keq, µeq, the final moduli of the homogenise
system. We start from Eq. (27) for a mixture wherec is the volume fraction of the dispersed phase: we consider the unit vo
of mixture (1 m3) and we add a little volume dc0 � 1 m3 of inclusions.

Therefore, we consider another mixture between a medium with modulikeq andµeq (volume equals to 1 m3) and a second
medium (k2, µ2) with volume dc0. In these conditions the volume fraction of the second medium will be dc0/(1+ dc0)≈ dc0.
So, by using the original relations for the mixture we can write:keq + dkeq = F(keq, k2,µeq,µ2,dc0) andµeq + dµeq =
G(keq, k2,µeq,µ2,dc0).

In the final composite material, with the little added volume dc0 , the matrix (1) will have effective volume 1− c (m3) and
the dispersed medium (2) will have effective volumec+ dc0 (m3).

The initial volume fraction of the second medium isc/1 and the final one is(c + dc0)/(1 + dc0); so, it follows that
the variation of the volume fraction of inclusions obtained by adding the little volume dc0 is simply given by: dc =
(c+dc0)/(1+dc0)−c/1 = dc0(1−c)/(1+dc0)≈ dc0(1−c). Therefore, we obtainkeq+dkeq= F(keq, k2,µeq,µ2,dc/1−c)

andµeq+ dµeq=G(keq, k2,µeq,µ2,dc/1 − c). With a first order expansion we simply obtain:

keq+ dkeq= F

(
keq, k2,µeq,µ2,

dc

1− c

)
= F(keq, k2,µeq,µ2,0)+ ∂F

∂c

∣∣∣∣∗
dc

1− c
,

µeq+ dµeq=G

(
keq, k2,µeq,µ2,

dc

1− c

)
=G(keq, k2,µeq,µ2,0)+ ∂G

∂c

∣∣∣∣∗
dc

1− c
,

(28)

where the symbol∗ means thatk1 andµ1 must be substituted bykeq andµeq and the valuec = 0 is considered inside
the partial derivatives. Simplifying Eq. (28) (by recalling the obvious relations:keq = F(keq, k2,µeq,µ2,0) and µeq =
G(keq, k2,µeq,µ2,0), which hold on forc = 0) we obtain the set of differential equations:


dkeq

dc
= 1

1− c

∂F

∂c

∣∣∣∣∗,
dµeq

dc
= 1

1− c

∂G

∂c

∣∣∣∣∗.
(29)

This system, when two functionsF andG are given, defines a new couple of functions, which should better describ
mixture even if it is not strongly diluted, taking into consideration, in a certain approximate way, the interactions among d
inclusions. The application of this approach to Eq. (16) allows us to write down the following system (it is immediate to i
the differential terms∂F/∂c|∗ = (α + 2β)(k2 − keq) and∂G/∂c

∣∣∗ = (α − β)(µ2 −µeq), which appear in Eq. (29)):


dkeq

dc
= (α + 2β)(k2 − keq)

1− c
,

dµeq

dc
= (α − β)(µ2 −µeq)

1− c
,

(30)

whereα andβ are calculated withk1 = keqandµ1 = µeq. This is the standard differential technique and from the mathema
point of view this approach is perfectly equivalent to those appearing in previous literature: Bruggeman (1935), Laughli
and Norris (1985). The improvement introduced in Eq. (30), as we will show in the sequel, is given by the fact that the kn
of the coefficientsα andβ in closed form allows us to write down and solve the set of differential equations in many ca
practical and technological interest. Moreover, this effective medium theory, as formulated by Eq. (30), allows us to
dispersions of generally shaped (arbitrary eccentricities) randomly oriented ellipsoids and not only mixtures of sphere
specific object. A comparison between the strongly diluted characterisation, explained in the first section of the work
differential scheme has been shown in Figs. 3 and 4; Fig. 3 deals with the non-differential theory (Eq. (16)) and Fi
been obtained by solving the differential Eq. (30) with numerical integration. In these plots, to simplify the problem w
into account randomly oriented ellipsoids of rotation: in this case only one eccentricity describes their shape. We deξ as
the ratio between the lengths of the two different axes of the ellipsoids (ratio between the longer and the shorter ax
embedded ellipsoids):ξ > 1 for prolate ellipsoids (of ovary or elongated form) andξ < 1 for oblate ellipsoids (of planetary o
flattened form). Therefore, in Figs. 3 and 4, we have plotted the behaviour of the elastic moduli versus the volume fc
of the inclusions and the decimal logarithm of the parameterξ . As far askeq, µeq andEeq are concerned, we may obser
that the valley in correspondence to spherical particles is narrower in the differential scheme than in the standard Eq.
behaviour of heterogeneous materials with planar structure (log10ξ → −∞) remains unchanged by adopting the differen
procedure. Moreover, the characterisation of materials with randomly oriented cylinders (log10ξ → +∞) is sensibly varied
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Fig. 3. Results obtained for a mixture of ellipsoids of rotation described by the first procedure (Eq. (16)), holding on for very diluted disp
The elastic moduli (bulk, shear, Young and Poisson constants) are shown versus the eccentricityξ (ratio between the longer and the shorter a
of the embedded ellipsoids) and the volume fractionc of the inclusions.

with the introduction of the differential scheme. Anyway, the larger quantitative differences between the two approa
exhibited in the zone of spheroidal particles log10ξ ≈ 0. Finally, as far as the Poisson ratio is concerned, we confirm the a
stated qualitative properties: the overall Poisson ratio is not a monotonic function ofξ , nor a monotonic function of the volum
concentration, being allowed to assume values out of the range betweenν1 and ν2 (Poisson ratio of the matrix and of th
inhomogeneities respectively). For the author knowledge, the Poisson ratio is the sole physical parameter that exhibits
complex scenario as mixing rule.

From now on, we try to apply the differential method to obtain some explicit relations for different classes of heterog
materials. For example, Eqs. (21), (22) and (23) of the previous section, may be generalised to higher values of th
fractions by means of the following differential scheme:

{
νeq= F(ν1, c)

Eeq=G(ν1,E1, c)
⇒




dνeq

dc
= 1

1− c

∂F(ν1, c)

∂c

∣∣∣∣
ν1=νeq, c=0

,

dEeq

dc
= 1

1− c

∂G(ν1,E1, c)

∂c

∣∣∣∣
ν1=νeq, E1=Eeq, c=0

.

(31)
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Fig. 4. Results obtained by means of the differential scheme (Eq. (30)) applied to a dispersion of ellipsoids of rotation. The elastic
(bulk, shear, Young and Poisson) are plotted versus the eccentricityξ (ratio between the longer and the shorter axis of the embedded ellips
and the volume fractionc with the same assumptions used in Fig. 3 in order to draw a comparison between the theories.

This scheme has the same physical meaning of Eq. (29) but now we are reasoning in terms of the Poisson ratio and
modulus. Dealing with dispersions of spheres, we may obtain the following results in closed form. If we are conside
mixture of porous spheres described, for low porosity, by Eq. (21), we can apply the differential procedure, Eq. (31), o
the explicit relations:




(
1− 5νeq

1− 5ν1

)5/6( 1− ν1

1− νeq

)1/6( 1+ ν1

1+ νeq

)2/3
= 1− c,

Eeq=E1

(
1− 5νeq

1− 5ν1

)5/3( 1+ ν1

1+ νeq

)2/3
.

(32)

In Eq. (32) constantsE1 andν1 are elastic moduli of the matrix medium and constantsEeq andνeq are those of the overa
porous material with porosityc.
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again, the differential scheme, Eq. (31), may be solved by means of straightforward integration of rational functions, o


(
1− 5νeq

1− 5ν1

)5/6( 1− ν1

1− νeq

)1/6( 1− 2ν1

1− 2νeq

)2/3
= 1− c,

Eeq=E1
1+ νeq

1+ ν1

(
1− 2νeq

1− 2ν1

)5/3( 1− 5ν1

1− 5νeq

)5/3
.

(33)

Here, constantsE1 andν1 are elastic moduli of the matrix medium and constantsEeq andνeq are those of the dispersion o
rigid spheres with volume fractionc.

In Eqs. (32) and (33), there is an interesting behaviour of the equivalent Poisson’s ratio for high volume fraction
inclusions: in both models forc = 1 the equivalent Poisson’s ratio converges to the fixed non-zero valueν0 = 1/5 irrespective
of the matrix Poisson’s ratio. This convergent behaviour is exact in two dimensional structures as shown by Day et a
and by Cherkaev, Lurie and Milton (1992) but unfortunately, at the present state of the research, the available experim
cannot confirm this qualitative property.

For instance, we can draw some comparisons between Eq. (32) and experimental results. Walsh, Brace and Engla
made measurements on the compressibility(1/keq) of a porous glass over a wide range of porosities. Bulk and shear m
of the pure glass were measured to bek1 = 46.3 GPa andµ1 = 30.5 GPa, respectively. A comparison between bulk modu
experimentally measured and computed with Eq. (32) is shown in Fig. 5(a). Haglund and Hunter (1973) have stu
Young’s modulus of the polycrystalline monoclinic Gd2O3. Poisson’s ratio and Young’s modulus of the pure oxide w
measured to be:E = 150 GPa andν = 0.29. In Fig. 5(b) a comparison is drawn between the experimental data and the
given by Eq. (32).

A similar study has been performed for a fibrous porous material: in the present case the strongly diluted charac
is made by means of Eq. (23). The differential scheme, Eq. (31), can be applied to the Young modulus and the Pois
obtaining the following expressions, after some long but straightforward computations:



(
8νeq− 7+ √

29

8ν1 − 7+ √
29

)(15/98)(15/
√

29+1)( 8ν1 − 7− √
29

8νeq− 7− √
29

)(15/98)(15/
√

29−1)( 1+ ν1

1+ νeq

)15/49
= 1− c,

Eeq=E1

(
8νeq− 7+ √

29

8ν1 − 7+ √
29

)(2/49)(93/
√

29+16)( 8ν1 − 7− √
29

8νeq− 7− √
29

)(2/49)(93/
√

29−16)( 1+ ν1

1+ νeq

)15/49
.

(34)

These relations, describing a fibrous porous material for any value of the porosityc, have a particular behaviour very simil
to that of Eq. (32) for spherical pores. When the value of the porosityc approaches unity, the Poisson ratio of the compo
material converges to the fixed valueν0 = (7− √

29)/8 ∼= 0.2018. . . independently on the value of Poisson ratio of the mat
This convergent behaviour of the Poisson ratio, here observed for spherical and cylindrical voids, is actually a pe

exhibited for any shape of the pores. We numerically verify the property as follows: from Eq. (5), for porous materials (as
zero stiffness for the inclusions) we obtainÂ = {I − Ŝ}−1; then we compute the coefficientsα andβ (Eq. (12)), which depend
only on the matrix Poisson ratio and on the eccentricities of the pores. Therefore, we may apply the differential scheme
of the Young modulus and the Poisson ratio:


dEeq

dc
= Eeq

1− c

[
2β(νeq)νeq− α(νeq)

]
,

dνeq

dc
= β(νeq)

1− c
(1+ νeq)(2νeq− 1).

(35)

The above stated system derives from Eq. (30) when standard transformations between elastic moduli are applied
solved Eq. (35) for ellipsoids of rotation. In Fig. 6 elastic moduli are represented forE1 = 1 andν1 = 0.1 versus the volume
fraction of pores (porosity) and eccentricityξ (ratio between the longer and the shorter axis of the embedded ellipso
rotation). There is a universal behaviour of the Poisson ratio for porous materials (whenc = 1), which do not depend on th
matrix properties. In Fig. 7 the universal functionν0 = limc→1 νeq is plotted as function ofξ . There, we may identify the
characteristic values for spheres and cylinders:ν0 = 1/5 for spherical voids andν0 = (7− √

29)/8 ∼= 0.2018. . . for porous
materials with cylindrical randomly oriented voids. Moreover, for planar pores we have: limξ→0 ν0 = limξ→0 limc→1 νeq= 0.

Finally, a particular application of the differential scheme may be performed to analyse the behaviour of composite m
formed by planar inclusions or sheets of medium (2) inserted in the matrix (1). We try to apply the general differential
described by Eq. (29), to the characterisation of this kind of mixture, which is modelled by Eq. (19). By identifying the pe



S. Giordano / European Journal of Mechanics A/Solids 22 (2003) 885–902 899

Eq. (32)
(a)

(b)

Fig. 5. (a) Bulk moduluskeq in GPa of porous P-311 glass (circles) measured at room temperature compared with data obtained by
(solid line) for different values of the porosityc. Bulk and shear moduli of the pure glass were measured to bek = 46.3 GPa andµ= 30.5 Gpa
(E = 75 Gpa andν = 0.23). (b) Measured Young’s modulusEeq (in GPa) of porous oxide Gd2O3 (circles) versus porosityc compared with
the solution of Eq. (32) (solid line). For pure oxide, elastic moduli were measured to beE = 150 GPa andν = 0.29.
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Results
oids)
son

elastic

ential
Fig. 6. Application of the differential scheme (Eq. (30)) to the characterisation of porous materials with ellipsoidal (of rotation) voids.
for the Poisson ratio and the Young modulus versus eccentricityξ (ratio between the longer and the shorter axis of the embedded ellips
and porosityc are obtained with a matrix described byE1 = 1 andν1 = 0.1. Forc → 1 we may observe the universal behaviour of the Pois
ratio, which is represented in Fig. 7.

Fig. 7. Universal behaviour of the Poisson ratio for porous materials with high value of the volume fraction (porosity). Whenc→ 1 the Poisson
ratio depends only on the eccentricityξ (ratio between the longer and the shorter axis of the embedded ellipsoids) and not on the matrix
properties, as shown in this plot. Characteristic values for spheres and cylinders are clearly evidenced.

functionsF andG in Eq. (19) and taking into account the first order approximation we simply obtain the following differ
system for the related effective medium theory:


dkeq

dc
= 1

1− c

4µ2 + 3keq

4µ2 + 3k2
(k2 − keq),

dµeq

dc
= 1

1− c

1

5

(9k2µ2 + 8µ2
2 + 12µeqµ2 + 6µeqk2)(µ2 −µeq)

µ2(3k2 + 4µ2)
.

(36)
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It is interesting and important to observe that these differential equations are uncoupled and they may be solved separately,
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., Vol. 37.
obtaining, as results, the relationships appearing in Eq. (19) itself. So, the result stated in Eq. (19) is a fixed poin
differential procedure and therefore it should be correct for any value of the volume fraction of the planar inclusions.

5. Conclusions

We have performed a complete study on the characterisation of dispersions of randomly oriented ellipsoids. The m
of this work is given by an explicit micromechanical averaging technique, which permits to simply analyse, in closed fo
behaviour of randomly oriented objects embedded in a homogeneous matrix. The general theory, developed for diluted
has been mainly used for two purposes: in the first one we have shown the application of this theory to many limitin
describing special kind of dispersion (porous material, fibre-reinforced composites, dispersion of flattened inhomogen
so on); the latter one represents the analysis of a differential scheme, based on the previous theory, which takes in
any shape of the inclusions and any value of the volume fraction. In both cases we have shown the effects of the micro
or morphology on the macroscopic effective elastic response of the overall composite material. Moreover, the theory
new interesting behaviour of the Poisson ratio versus the eccentricities of the inclusions and their volume fraction. In p
we have shown that the Poisson ratio of a porous material, for high porosity, depends only on the shape of the voids a
the elastic response of the matrix.
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