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Abstract

The paper deals with the elastic characterisation of dispersions of randomly oriented ellipsoids: we start from the theory
of strongly diluted mixtures and successively we generalise it with a differential scheme. The micro-mechanical averaging
inside the composite material is carried out by means of explicit results which allows us to obtain closed-form expressions
for the macroscopic or equivalent elastic moduli of the overall composite materials. This micromechanical technique has been
explicitely developed for describing embeddings of randomly oriented not spherical objects. In particular, this study has been
applied to characterise media with different shapes of the inclusions (spheres, cylinders and planar inhomogeneities) and for
special media involved in the mixture definition (voids or rigid particles): an accurate analysis of all these cases has been
studied yielding a set of relations describing several composite materials of great technological interest. The differential effective
medium scheme (developed for generally shaped ellipsoids) extends such results to higher values of the volume fraction of the
inhomogeneities embedded in the mixture. For instance, the analytical study of the differential scheme for porous materials
(with ellipsoidal zero stiffness voids) reveals a universal behaviour of the effective Poisson ratio for high values of the porosity.
This means that Poisson ratio at high porosity assumes characteristic values depending only on the shape of the inclusions and
not on the elastic response of the matrix.
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1. Introduction

In recent years the characterisation of heterogeneous materials has attracted an ever increasing interest. A central problem,
of considerable technological importance, is to evaluate the effective elastic properties governing the behaviour of a composite
material on the macroscopic scale. At present, it is well known that it does not exist a universally applicable mixing formula
giving the effective properties of the heterogeneous materials as some sort of average of the properties of the constituent
materials. Actually, the details of the micro-geometry can play a crucial role in determining the overall properties. Therefore, the
elastic (thermal, electrical and so on) properties of composite materials are strongly microstructure dependent. The relationships
between microstructure and properties may be used for designing and improving materials, or conversely, for interpreting
experimental data in terms of micro-structural features. A great number of theoretical formulas have been proposed to describe
the behaviour of composite materials. A disadvantage of some approximated results is that they do not correspood to
known microstructure; this kind of results may be interpreted and classified only by means of comparison with numerical
or experimental data. A different class of theories is rigorously based on realistic microstructures. These are the classical
Hashin and Shtrikman (1962, 1963) variational bounds, which provide an upper and lower bound for composite materials,
and the expansions of Brown (1965) and Torquato (1997, 1998) which take into account the spatial correlation function of the
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phases. Effective medium theories are commonly used because of their relative simplicity compared to numerical computations:
typically, they allow a simple determination of the equivalent elastic properties of a composite material. Therefore, it is very
important to establish the conditions of validity and the microstructures for which the theories yield accurate predictions:
comparisons with numerical results are necessary and indispensable. So, some efficient numerical algorithms have been
produced by Garboczy and Day (1995) and Garboczy and Berryman (2001) to compute the effective linear elastic properties of
heterogeneous materials.

Dispersions or suspensions of ellipsoidal inclusions in a homogeneous matrix give a particular example of heterogeneous
materials: these media have been extensively studied both from the electrical and the elastic point of view. We briefly describe
the earlier literature for electrical and elastic characterisation to draw a comparison between the approaches. From the historical
point of view, one of the first attempts to characterise electrical dispersions of spheres is that of Maxwell (1881), which has find
out a famous formula for a strongly diluted suspension.

A better model has been provided by the differential scheme, which derives from the mixture characterisation approach
used by Bruggeman (1935) and extensively described by Van Beek (1967). In this case the relations should maintain the
validity also for less diluted suspensions of spheres. To understand the effects of different shape of the inclusions, ellipsoidal
shaped particles have been considered: the first papers dealing with mixtures of ellipsoids were written by Fricke (1924, 1953)
concerning the electrical characterisation of biological tissues containing spheroidal particles. In recent literature (Sen et al.,
1981; Mendelson and Cohen, 1982; Sen, 1984) several applications of the Bruggeman differential procedure to mixtures of
ellipsoids of rotation have been performed in connection with the problem of characterising the dielectric response of water-
saturated rocks. A complete differential theory for generally shaped dielectric ellipsoidal inclusions has been developed by
Giordano (2003).

Dealing with elastic characterisation of dispersions (see Walpole, 1981; Hashin, 1983) some similar works have been
developed: the most famous and studied elastic mixture theory regards a composite material formed by spherical inclusions
embedded in a solid matrix. This result is attributed to numerous authors (see Hashin, 1983; Douglas and Garboczi, 1995). To
adapt the dilute formulas to the case of any finite volume fraction a great number of proposals have been made and they appear
in technical literature. The differential approach is also used in micro-mechanical theories (McLaughlin, 1977; Norris, 1985;
Avellaneda, 1987): this leads, in the simpler and most studied case (dispersions of spheres), to a pair of coupled differential
equations (see McLaughlin, 1977) which may be numerically solved and the results generate the so-called differential effective
medium theory.

Drawing a comparison between the literature dealing with the electrical and the elastic mixture characterisation we may
observe that the case of dispersions of ellipsoidal inclusions has not been completely treated from the elastic point of view
and the relative differential effective medium scheme has not been developed. Therefore, we devote this paper to fill the gap
in this topic. In particular we try to characterise a dispersion of randomly oriented elastic ellipsoids embedded in a given solid
matrix. We will obtain a theory for very diluted dispersions similar to the electric Maxwell-Garnett—Fricke theory (see Maxwell
and Garnett, 1904; Sihvola, 1999) and we will apply the differential procedure to generalise it to higher values of the volume
fraction of the inclusions. To do this, we generalise the well known micromechanical averaging techniques to obtain a specific
procedure developeatl hoc for embeddings of randomly oriented objects, which is the main purpose of the paper.

2. Theory for strongly diluted dispersions of generally shaped ellipsoids

The elastic properties of two-phase materials depend on the geometrical nature of the mixture (microstructure) and on the
volume fraction of the two media. Such a composite material can be thought as a heterogeneous solid continuum that bonds
together two homogeneous continua: each part of the media has a well-defined sharp boundary. The bonding at the interfaces
remains intact in our models when the whole mixture is placed in an equilibrated state of infinitesimal elastic strain by external
loads or constraints. In the present case, the boundary conditions require that both the vector displacement and the stress tensor
be continuous across any interfaces. Each separate homogeneous region is characterised by its stiffness tensor, which describes
the stress-strain relation. If both materials are linear and homogeneous this relation is given by:

Tij = ijk[Ekl, s=12 (N

whereT is the stress tensor (3 3 sized),E is the strain tensor (3 3 sized) and. is the constant stiffness tensor, which
depends on the medium considered=1, 2). For isotropic media this latter is written, for example in terms of the bulk and
shear constants, as follows:

1
L} = ks8ijdk + 2us (SikSﬂ — 3% 5k1>, s=12 2

wherek; and g are the bulk and shear moduli of theth medium § = 1, 2) and §,;, is the Kronecker’s delta. To solve a
mixture problem consists in finding the equivalent macroscopic stiffness tensor for the whole composite material and then,
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for overall isotropic behaviour, this means that we have to evaluate the equitadent .« constants. Here we consider a
dispersion of randomly oriented ellipsoids and firstly we develop a procedure to evaluate the average value of the strain inside
each inclusion embedded in a given matrix with a bulk strain applied to the overall structure. We start with some definitions
used to simplify the problem. Instead of describing the strain with the complete symmetric tensor we adopt a column vector,
which contains the six independent elements in a given order; the same approach is used for tHe isteess transposed):

E=[E11 Ezxp Es3 E12 Ezz E13]'; T=[Ti1 T2 Ts3 Tiz T2z Ti3l'. (3

Adopting this notation scheme the stiffness four-index tensor for the isotropic components is represented by a simpler matrix
with six rows and six columns:

ks + %Ms ks — %Mx ks — %/,LS 0 0 0 7
ks — %Ms ks + %Mx ks — :—Zglzbs 0 0
LS = ks — %Ms ks — %I’LS ks + %Mx 0 0 0 L os=12 @
0 0 0 us 0 0
0 0 0 0 2 O
L o 0 0 0 0

so that the stress-strain relations becae LlE in the matrix andT = LZE inside each inclusion. To begin the strain
computation, we take into consideration a single ellipsoidal isotropic inclusion (medium 2) added to an isotropic matrix
(medium 1) placed in an equilibrated state of infinitesimal constant elastic strain. In particular we consider an ellipsoid with axes
a1, ap, az aligned with the axes; = x, xp =y, x3 = z of the reference frame with the assumptign> a, > a3 > 0 and we

define two eccentricities, which describe the shape of the inclusiere & az/ay < 1 and O< g = ap/ap < 1. Itis important

to notice that the internal strain is constant if the external or bulk strain is constant. Accordingly with the Eshelby (1957, 1959)
theory (extensively described in Mura, 1987; Nemat-Nasser, 1993) the relationship between the uniform original external strain
and the induced internal strain is given by:

B ={1 -1 - (L) L7 B = AR, (5)

. . . R = . . P . a1 A
herel is the identity matrix with size & 6, E; is the internal strainkg is the original external strairt, andL? are the
stiffness tensor of the matrix and the inclusion respectively&igithe Eshelby tensor, which depends on the eccentrieities

andg of the ellipsoid and on the Poisson ratip= (3k1 — 2111)/[2(3k1 + p1)] of the matrix (see Mura, 1987, for a complete
description of all the entries and for special cases). Here, we only remember that the general str&dsigiveh by:

[s1111 s1122 s1133 O 0 0 7
52211 s2222 s2233 O 0 0
S | %3311 $3322 $3333 0 0 0 . ©
0 0 0 1212 0 0
0 0 0 0 29323 0
Lo o o 0 0 21313

Matrix A is simply defined by Eq. (5). We remember that Eq. (5) is written taking into account a particular reference frame
with axes aligned to the three principal directions of the embedded ellipsoid. In these condition Anhtrscthe following
mathematical form:

[A1111 A1122 A1133 O 0 0 T
Az211 A2222 Az233 O 0 0
A— Az311 Aszz22 Aszzzz O 0 0 @
0 0 0 A1212 0 0
0 0 0 0 A2323 0
L o 0 0 0 0  Aj313l

All the coefficientsA; j;; that not appear in Eg. (7) are always zero. With the aim of analysing the behaviour of a mixture of
randomly oriented ellipsoids, we need to evaluate the average value of the internal strain inside the ellipsoid over all its possible
orientations or rotations in the space. To perform this averaging over all the rotations we name the original reference frame with
the letterB and we consider another generic reference frame that is named with theFletter
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The relation between these baggsind F is described by means of a generic rotation maR{¥, 6, ¢) whereyr, 6 and

¢ are the Euler angles; we may consider this matrix as the product of three elementary rotations alongzthe axid z
respectively:

cosy —seny O 1 0 0 cosp —senp O
R(y,0,9)=| seny cosy O 0 co® -—sery senp cosp O]. (8)
0 0 11/L0 sew cosd 0 0 1

Therefore the following relations hold on between the different fra€s= REX RT for the internal strain ang8 = REJRT
for the bulk strain (here the subscript T means transposed). These expressions Qave been written with standard notation for the
strain (3x 3 sized matrix). They may be converted in our notation defining a mit«¥, 6, ¢), 6 x 6 sized, which acts as

a rotation matrix on our strain vectors: so, we may WEI;E = I\A/IE,-F inside the ellipsoid an@fg = I\A/IEg outside it. The
entries of the matri are completely defined by the comparison between the relaifins REFRT andES = ME! and

— : . R . ~ ~=~B
by considering the notation adopted for the strain. Eq. (5) is written on the fBaemal therefore it actually rea&gB =AEp;
this latter may be reformulated on the generic frafhsimply obtaining:

Ef = {MW.0.0) TAM(, 0, 0) }Ef . ©
Finally, the average value of the strain inside the inclusion may be computed by means of the following integration over all the
possible rotations:
27 21

T
-1 _ - R
(Ei) —gif//UN%&w4AMWﬁwnmmwmmw&. (10)
7T
000

By means of a very long but straightforward integration we have obtained an explicit relation between the external strain
Eg (= Eg) and the average valug;) inside the randomly oriented ellipsoid:

ra BB O 0 0 1
B g 0 0 0
E)=|? e 0 0 9 e B, (11)
00 0a-p O 0
000 0 a-B O
Lo 0 0 O 0 a-p

wherea andg depend only on the coefficients jz;:

1 1 1 2 2 2
= ZA ZA ZA —A —A —A
o 5 11114-5 22224-5 3333+ 15 1313+ 15 2323+ 1511313

1 1 1 1 1 1
—A —A —A —A —A —A
+ 15 1122+ 15 1133+ 15 2211+ 15 2233+ 15 3311+ 1513322

1 1 1 1 1
= —A —A —A —A ——A ——A
B 15 1111+ ¢ 15 2222+ ¢ 1513333~ 7541313~ 7542323~ 741313

+ 135141122+ %A1133+ 135142211+ 1351422334- %A3311+ 135143322-

This is the main result of this section and it plays a crucial role in the further development of the theory. To sum up, we evaluate
the matrixA by means of Eq. (5) and then we apply Eq. (12) to average the internal strain over all the possible orientation of
the ellipsoid. We wish to point out that Eq. (12) is extremely convenient to perform the micro mechanical averaging because
it removes the problem of the integral evaluation and allows us to obtain results in closed form. Of course, standard micro
mechanical techniques are largely discussed and applied in earlier literature (Mura, 1987; Nemat-Nasser, 1993); however, the
averaging of the strain over the geometric orientations of the randomly oriented microinclusions, explicitly performed by means
of Eq. (12), is an useful result which permits to work out in detail several analysis of various kind of composite materials: the
explicit result of general validity may be used to avoid the complicated integration over the angles which define the orientation of
the elastic microinclusions. More precisely, the sums appearing for example in Egs. (7.4.6a,b) or (7.4.9a,b) (equation numbering
in the book by Nemat-Nasser, 1993) become integrals for randomly oriented inclusions and the proposed approach solves the
problem of their calculations. With Eq. (12) the sole knowledge of the Eshelby tensor of the inclusion permits, with algebraic
computations, to characterise the overall dilute dispersion of randomly oriented generally shaped ellipsoids. Moreover, the

(12)
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Fig. 1. Structure of a dispersion of randomly oriented ellipsoids. The external surface of the mixture is, e.g., a sphere, which contains all the
inclusions. The two-phase material is described by the elastic response of each phase, by the volume fraction of the inclusions and by the
characteristic eccentricities of the embedded particles.

definition of the coefficienta andg by means of Eq. (12) is useful to introduce the differential scheme for randomly oriented
generally shaped ellipsoids in a very simple way (see next sections).

Still now, we have considered a single ellipsoidal particle and we have calculated the averaged interr(ﬁistvdien it
is randomly placed in a matrix with a given constant stﬁdj',l from now on, we have to deal with an ensemble of inclusions
randomly oriented and distributed in the solid matrix (see Fig. 1). To begin the analysis of the behaviour of the overall structure,
first of all, we consider an extremely low value of the volume fraction of the dispersed component so that we may neglect the
interactions among the inclusions. Therefore, each ellipsoidal particle behaves as a single one in the whole space.cWe define
as the volume fraction of the inclusions. Because of the low valuewd may compute the average value of the elastic strain
over the whole heterogeneous material by means of the relation:

(E)=(1-0)Bo+¢{Ei)=[(1- o)l +¢B]Ep, (13)

where we have considered the strain outside the inclusions approximately constant and identical to the bﬁJd; @trafrix
B is defined by Eq. (11)). Moreover, we defiﬁeq as the equivalent stiffness tensor of the whole mixture (which is isotropic
because of the randomness of the orientations of the inclusions) by means of the (§I)aﬂdneq<E> to evaluatd_eq we need
the average vaIueT) of the stress inside the random material. So, we défires the total volume of the mixtur&pe as the
total volume of the embedded ellipsoids arglas the volume of the remaining space among the inclusidns e U Vp). The

average value of = L (7)E over the volume of the whole material is evaluated as follt@) = ilitre VoandL(7) =L
if r e Ve):

o Lo ladlfa_ o L2 (o
(T>=V/L(r)E(r)dr=VL /E(r)dr—f—VL /E(r)dr
\%4 Vo Ve
=%AL1//E\(f)dF+%AL2/E(r)dr+ ;1 /E(r)dr—iL /E(f)df
Vo Ve Ve Ve
N P NP N PPN "2 alim=
=L (E)+c(L -L )(E,-):L (E)+¢(L"—L")BEo. (14)

Drawing a comparison between Egs. (13) and (14) we may find a complete expression, which allows us to estimate the
equivalent stiffness tensareg:

Leq=L"+c(@®—LHB[@—ol +B] ™ (15)
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Eq. (15) may be written in gxplicit form finding out all the components of the stiffness tensor; with straightforward algebraic
computation, we observe thiakq corresponds to an isotropic material described by the following bulk and shear moduli:

k1(l—c)+ck +2
teg= 1= c(éazj—QZﬁ) P =kt 2k ke + O(),
(16)
1—c)+ -
peq= LAGZ VX MAC D) _ 4 (4 py(up — up)e+O(cD).

l—c+cla—p)

These equations complete the characterisation of a strongly diluted dispersion of randomly oriented ellipsoids: to sum
up the theoretical procedure, we remember that the first step consists in evaluating the Andefined by Eqg. (5),
then we use Eg. (12) to compute the values of the coefficienend g and finally we obtain the equivalent moduli
of the overall isotropic structure by means of Eq. (16). Moreover, we observe that the coefficiant 8 depend on
k1, ko, m1, po, e, g and therefore the characterisation depends on the shape of the inclusions, i.e., on the microscopic
morphology of the heterogeneous material. Finalyy and pueq have been expressed in termsiqf kp, 11, 12, e, g
and the volume fractiom. We want to point out that results stated in Eq. (16) are the elastic counterpart of the Maxwell—
Garnett—Fricke relations (Sihvola, 1999) for the electrical characterisation of ellipsoidal dispersions. Furthermore, it seems

¢=0.2 k=100 2,=45 k=1 =03 c=0.2 k=100 p=45 k=1 ;=03
E~=117.3 v=0.30 £:=0.82 =036 E=117.3 v=0.30 £:~0.82 v,=0.36

kg

Heq

g0
B0 T

0.7

¢=0.2 k=100 1y=45 k=1 pu~=03
LRRLE Bl Al R =02 k=100 =45 k=1 11,=0.3
E=117.3 v=0.30 E~0.82 v=0.36

Fig. 2. Effective elastic response for a given dispersion versus the eccentriciiied g of the embedded inclusions (ellipsoids with axes
aq, ap, az with a1 > ap > az > 0. Eccentricities: 8< e = ag/ap < 1 and O< g = ap/aj < 1). Bulk, shear, Young and Poisson constants have
been computed with the theory for diluted dispersions (Eqg. (16)) with the indicated assumptions.
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interesting to underline the following fact: dealing with a dielectric ellipsoid we may compute the average value of the
electrical field inside the randomly oriented inclusion considering the mean value of the three cases obtained when the
ellipsoid is aligned with the three axes of the frame as explained in Fricke (1953) or in Giordano (2003); in our elastic
theory this is not true and the correct average value of the strain must be computed with Eq. (12) which is more complicated.
This depends on the intrinsic tensor character of the quantities involved in the elastic theory, which not permits to apply
simple intuitive or empirical consideration in averaging stress or strain inside a given material. For example, if we use
the mean value over the elementary three position of ellipsoids aligned along the three axes, we are actually considering
a special dispersion in which the ellipsoids may assume only these three particular positions and therefore, we obtain, as
result, a cubic crystal described by three independent parameters instead of the two characteristic moduli of an isotropic
medium.

Adopting the general structure of the Eshelby tensor (see Mura, 1987; Nemat-Nasser, 1993) we may theoretically or
numerically apply the outlined procedure to evaluate the effects of the shape of the inclusions on the overall elastic behaviour of
the composite material. In Fig. 2 one can find some plots that show the behaviour of the elastic moduli versus the eccentricities
e and g of the embedded ellipsoids (we consider an ellipsoid with axesas, a3, a1 > a2 > a3 > 0 and we define two
eccentricities: 6< e = ag/a» < 1and O< g = ap/a1 < 1). In particular we may observe the effect of the shape of the inclusions
on the bulk and shear moduli or on the Young modulus and Poisson ratio. It seems interesting to note that the equivalent Poisson
ratio, in general, has not a monotonic behaviour with respect to the eccentricities and it may assume values out of the range
betweenvq andvs (Poisson ratio of the matrix and of the inhomogeneities respectively). Other examples will be explained in
further sections. We want to point out that these results, still now, are valid only for strongly diluted dispersions; in the next
section we present a study of several limiting cases based on this theory (with very low values of the volume fraction) and in
the sequel we will describe a more refined differential scheme which should hold on for any concentration of the dispersed
phase.

3. Limiting cases: dispersionsof inclusionswith special shapes

By introducing particular values of the characteristic eccentricities we may find out explicit relations for dispersions of
spheres{ =1, ¢ = 1), randomly oriented circular cylindee & 1, ¢ = 0) and randomly oriented planar inclusions (slabs or
sheets witle =0, g =1). Itisimportant to observe that all the planar structure with0 behave in the same way independently
on the value of. Here, it is convenient to think that the valeie= 0 (for anyg) corresponds to infinite two-dimensional planes
(sheets) of medium 2 randomly embedded in the matrix (medium 1). This is coherent with some explicit results described in
the sequel.

Dealing with suspensions of spheres, the theoretical procedure outlined in the previous section may be explicitly performed
by introducing the pertinent form of the Eshelby tensor reported in Mura (1987). Actually, for spheres the averaging technique
over all the orientations is not necessary but it may be used as check of the procedure. Anyway, the final result is given by the
following relationships:

k1(4pq + 3ko) + 4depy (ko — k 41 + 3k
keq = 1(4ua + 3k) +Acpa (ko — k1) _ L+ 1(k2_k1)c+o(cz),
A + 3kp — 3c(ky — kp) 4pq1 + 3k
A =c)pua +cpl(9%1 + 8ua) + 6ualks + 2n1)
MHeq = K1 17

w1(9k1 + 8uy) + 6[(1 — c)pup + cpul(ky + 2e1)
S5u1(4py + 3k -
—ut i +3k)ma — 1) o(d).
w1(9k1 + 8u1) + Bua (ks + 241)
This is the well known result obtained by several authors in the earlier literature as described in Hashin (1983) and in Douglas
and Garboczi (1995). If we consider the characteristic Eshelby tensor for cylinders and we apply the previously outlined
procedure, in closed form, we obtain, after a long and tedious algebraic computation, the explicit results:
w2 +3u1+3k1 2
keq = k1 + —————=(kp — k1)c + O(c9),
eq 1 M2+3M1+3k2(2 1) (¢9)
u1+ %(Mz — n1){64us + 84k1u% + 63M§k2 + 184#?#2 +156u2kouo

+ 7222 + 120k1 112 11y + 81k ko + 36kq 115101 + 90kakopa o + 2Wkppg u + Hakous)

Meq (18)

x {1+ 12) (2 + ko + 3u1) (3uaky + 13 + kauz + Tugpa) )~ e +O(c?).

Here, we have reported, for sake of brevity, only the first order approximations instead of the complete expressions, which are
very complicated. These are relations that hold on for a fibrous material where each fibre or rod is randomly oriented in the
space. In other words they may be applied to fibre-reinforced plastics or polymers (with random three dimensional arrangement).
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Finally, adopting the characteristic Eshelby tensor of the planar structures we obtain the following relationships for the
equivalent elastic moduli of the overall heterogeneous medium:

k1(4po + 3k2) + 4cpo (ko — k1) 4o + 3k
keq = 12 2 22— Y _ 1 #(kz —k1)c+ O(cz),
4o + ko — 3c(ky — k1) 4pp + 3k
_ Sp1(duo + 3k2) + (a2 — 1) (%2 + 8uo)
MHeq = (19)

N2 2 (A + Bp) — be(g — pa) ke + 212)

1 (%kou2 + 8M§ + 121112 + 6pak2) (L2 — 1) .
5 w2(3k2 + 4u2)

We remember that this latter result is valid fo= 0 and for any value of: it describes the overall behaviour of a random
embedding of slabs or sheets in a given matrix. Moreover, the result given in Eq. (19) is particularly important because, as we
will show in the sequel, itis correct for any value of the volume fraction of the sheets and not only for strongly diluted mixtures.
In fact, if we apply the differential scheme to Eq. (19) we obtain, as result, Eqg. (19) itself (see next section for details).

At this stage, we have obtained, from the general theory, three mixing rules for spherical, cylindrical and planar objects
randomly embedded in the homogeneous matrix. Now, we may obtain many other limiting cases taking into account special
kind of the media involved in the mixture definition. In particular, both the homogeneous matrix and the inclusions may assume
the role of the vacuum or of a completely rigid medium (that do not allow any deformation). So, we generate an interesting
casuistry, which is summarised in Table | and which represents a useful tool for practical applications.

u1+ + O(cz).

3.1. Secial mediain dispersions of spheres

We begin with dispersions of spheres: if the spherical inclusions are pores (voids) the material (2) has zero moduli, i.e.,
ko =0 anduo =0 (or Eo = 0). In the present case, Eq. (17) may be simply written in terms of the Young modulus and the

Poisson ratio which are related to the bulk and shear moduli by means of the standard relations:
%k 3k —2u E E
w+ 3k 21 + 3k) 2(1+v) 3(1-2v)

Therefore, using> = 0 combined with Egs. (17) and (20) we obtain the following relationships for a material with spherical
pores:

(20)

5v2¢ — 3¢ + 2cvy — 14vy + 1002 3(1-5v)(L—v?) )
Veq= -5 = — o ——F———=——c+0(c),
15v5c — 13¢ + 2cvy — 14+ 101, 2 Sv =7 1)
Eoe 21—c)(5v1—7NE1 _E 3E15v1+9(v1—-1) O(c2
eq= 2 =L1—5 c+ (C )
15v5c — 13¢ + 2cvy — 14+ 101, 2 Svp =7

We note that the Poisson ratio of the porous material depends only on the matrix Poisson ratio and on the porosity.

If the spherical inclusions are completely rigid the strain inside the inclusions must be zero and thereforewve leb:
this condition completely describes a solid with no elastic deformations allowed. As before, starting from Eq. (17) and letting
u2 — oo, we observe that the equation for the bulk modulus remains unchanged and the other one, for the shear modulus
becomesueq= 1 + Suq (4 + 3kq)c/6kq + O(c?). For instance, in this first order approximation, if we kgt— oo we
obtain the very simple relationeq~ 11(1+ 5/2c) which describes a mixture of inelastic spheres in a matrix wjth> oo.
This is the elastic version of the well-known Einstein (1906) result for the viscosity of a dispersion of rigid spheres in a viscous
incompressible fluid (in fluid theory — oo means incompressibility of the liquid and behaves as the viscosity): if very
small rigid spheres are suspended in a liquid, the viscosity is thereby increased by a fraction which is efuidhtessthe
total volume of the spheres suspended in a unit volume, provided that this total volume is very small. Anyway, converting our
relations to Young modulus and Poisson ratio, Eq. (17) with> oo (or equivalentlyE, — oo) leads to the result for spherical
rigid inclusions:

c(10v2 — 1y +3) + Br1 —10) 3 (L5 —2v)(vy — 1)
30v2c + 13 — 41evy +8— 100 TR 5v; —4 ‘
2(7 — 191 + 10v2)c? + (23 — 5001 + 35v2)c + (8 — 2v1 — 10v2)
By 28v1 + 112 — 3003)c2 + (5 — 261 — vZ +3003)c + (8 — 2vy — 10v2)
(v1 — D(5vZ — vy +3)
(v1+DGv1—4
Once againyeq depends only om; andc.

Veq + O(Cz),

Eeq (22)

= E1+3E; c+0(c?).
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Other two cases are considered but they are quite trividli #= 0 we have the vacuum as matrix medium and so we obtain
a not connected structure witteq = 0; if E1 — oo we deal with a structure completely blocked by the connected rigid matrix
and thusEeq— oo.
3.2. Secial mediain dispersions of cylinders

Now we are dealing with a fibrous material formed by two different phases. If the medium of the fibres or cylinders is the
vacuum we leko> = 0 andup = 0 in Eq. (18), obtaining a result in terms of the Young modulus and Poisson ratio:

3evy + 801)]2_ —5¢ — 1511

1
=v1+ E(l +v1) (16v]2_ —28v1 + 5)c + O(cz),

Veq= 2
16vic 152?-6 —4cv1 — 15 ) 23)
(1-0Eq 2 2
Eeq= =E1 + —E1(16vf — 4v1 — 35)c + O(c“).
9 151 20c +devy — 1602 - 15 1(16v7 — v = 35)c + O(c%)

The latter result represents the characterisation of a fibrous porous medium (with randomly oriented cylindrical voids or pipes).
Eq. (23) represents the cylindrical counterpart of the spherical relation, Eq. (21), for porous materials.

If the cylindrical inclusions become rigidE> — oo) the whole structure remains blocked by the network of rigid rods
independently on the elasticity of the matrix medium andisg— oo (this is true because of the infinite length of the inelastic
cylinders).

An interesting case is given by lettirfgy = 0, i.e., considering the vacuum as matrix: we obtain a random three dimensional
grid of elastic rods embedded in air. The corresponding simple relationships follow from Eq. (18):

1>c+0(cz), Feq= <52 _Lppeyo(d). (24)

273 “5-5 6

12cv9 —3c+3 1+1
D, -
9727 6—5¢ 4" 6

This means that the Poisson ratio of this random grid is approximately equajgttiorlvery small radius of the elastic
cylinders. To conclude with mixtures of cylinders we analyse the simple caseByith co: the whole composite medium
remains blocked by the connected rigid matrix and we simply - oo.

3.3. Fecial mediain dispersions of sheets

From now on, we will describe mixtures formed by infinite two-dimensional planes randomly embedded in a given
homogeneous matrix: the general behaviour is given by Eq. (19). If the second medium (planar inclusions) is the vacuum
(E2 = 0) the sheets generates a not connected elastic matrix and the equivalent Young modulus of the whole medium vanishes:
Eeq= 0. If the planar inclusions become rigi&, — oo) the whole structure remains blocked by the network of rigid sheets
independently on the elasticity of the matrix medium andtgg — oo. However, the other two following cases are more
interesting: if we letEq = 0 we are considering the vacuum as matrix and therefore we obtain a random three-dimensional
grid of elastic slabs or sheets embedded in air. The corresponding equivalent moduli follow from Eq. (19) combined with the
assumptiork, = 0:

_ 3+ 5v3c — 3¢ + 2cvp + 1205 — 1503 _ St 2(Brp— DG —Dp+D)
1502c — 1503 4+ 2cvp — 12y — 13c 427 5v2+9 3 (G + 9212 -1
2¢(7—5v2)E> 2 c(7T—5v)E> 2
5 > = — + O(C )
15v5¢ — 1505 + 2cvp — 12vp — 13¢ 4 27 3Gr2+9(1—1p)

c+ O(CZ),

Veq
(25)

Eeq:

From the biomedical point of view it interesting to note that Eq. (24) and/or (25) may be used to describe the trabecular bone
mechanical properties. Trabecular bone is generally characterized as a cellular solid, or foam, consisting of an interconnected
network of rods and plates. It is, on the other hand, a porous, sponge-like network of bone material. By neglecting the fact that
the structure of trabecular bone adapts to the loading environment and that it is highly asymmetric (for example in femur and
tibia in order to support the existing multi-axial state of stress), the linear model, here described, can be applied to characterise
this kind of biomaterial.

Finally, the last case considered deals with a rigid maf{x— oo: the randomly oriented elastic sheets separate rigid
parts of the matrix (that remains not connected). In other words, we may think to a random filling of rigid stones separated or
cemented by an elastic medium or paste. Eq. (19) whgre> oo or u1 — oo leads to the explicit expressions:
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Table 1

Summary of the casuistry obtained by considering special shapes of the inclusions and special media for the phases. Spheres, cylinders and

sheets may be used as embedded particles; moreover, both matrix and inclusions may be void or rigid

Porous inclusions
E,—0

Porous matrix
E1—0

Rigid inclusions
Ey — o0

Rigid matrix
Eq1— o

Spherical inclusions Dispersion of sphericalDispersion  of

pores: spheres:

rigid Not connected structure
(isolated spheres in air):

see Eg. (21) or Eq. (32)
for high concentrations

see Eq. (22) or Eqg. (33)
for high concentrations

Structure blocked by the
connected network of

Eeq — 0 veq undeter-
mined

Random network of
porous rods in a con-

Randomly oriented
cylindrical inclusions

Random connected grid
of elastic rods embedded

Structure blocked by the
connected rigid matrix re-
gion:

Eeq— 00 vgqundetermined

Structure blocked by the
connected rigid matrix re-

or rods nected elastic matrix: rigid rods: in air: gion:
see Eq. (23) or EQ. (34) Eeq— 00 veq Undeter- see Eq. (24) Eeq— 00 vgqundetermined
for high concentrations  mined
Randomly oriented The porous planar in- Structure blocked by the Random connected Elastic sheets separate rigid
planar inclusions or clusions generates a not connected network of network of elastic parts of matrix (which re-
sheets connected elastic matrix: rigid sheets: sheets embedded in air: mains not connected):
Eeq — 0 veq undeter- Eeq— 00 veq Undeter- Eq. (25) see Eq. (26)
mined mined
S 10v3¢ + 3vp — 1levp + 3¢ — 3 1 2(Gvy =92~ DG -1 @
eq = = -3 s
4 3003c— 3003 —4levy + 5Ly + 1% —21 71002 3 (10— 72— 1)
(5¢cvp — 15vp — 7c 4+ 15)(2c — 4cvy — 3+ 3v0) Ep
Eeq = 2 2 (26)
(v2 + 1) (B0v5c — 305 — 41cvp + 5lvp + 13 — 21
15  (vu—1DEy (5OV§ — 7002 +2DEy 4 (2vp — 1)(5vp — A (5vp — 1)%E; +0( 2)
— - — c c“).

¢ (10 —7(v2+1) (10— 72wy +1) 3 (10w —7N3wa+ D —1)

In the present case, if the volume fraction of the planar elastic sheets vanishes, the whole structure becomes rigid and thus the
Young modulus diverges to infinity. So, the first order expansioB&f (in Eq. (26)) is actually a Laurent series which takes

into account the first order pole appearing foe 0. Therefore, the coefficient of the factofclis the residue of the function

Eeg at the poinic = 0. All the particular results, shown in the present section, have been summed up in Table 1.

It must be underlined that from a merely mathematical standpoint, each theoretical formula of this section may be applied to
mixture of viscoelastic materials: in this case each elastic constant, appearing in a relationship, becomes (for linear materials) a
complex modulus of the viscolestic medium (formed by elastic constants, viscosities and frequency), which takes into account
the creep (strain response to step stress) or relaxation (stress response to step strain). Consequently, as results, the mixing
rules give the complex effective moduli of viscoelastic composite materials, which appear as complex dynamic functions of
frequency. These results can be easily compared with actual data because the complex effective moduli of viscoelastic materials
may be experimentally measured by a number of techniques giving relaxation curve at discrete frequencies (Eyre et al., 2002).

4. Differential effective medium theory

For the sake of simplicity, the relationships described in the previous sections may be recast in the following unified form,
for a given shape of the inclusions embedded in the elastic matrix:

{ keq= F(k1, k2, 1, u2, ¢,

(27)
weq= Gk, ko, u1, uz,c).

In Eq. (27) constantg; anduq are the elastic moduli of the matrix mediuk®, and o are the elastic moduli of the inclusions
andkeqand ueq are those of the overall mixture. FunctioAsandG are given by Eq. (16) for generally shaped ellipsoids and
by relations of the previous section for special cases (spheres Eq. (17), cylinders Eq. (18) or planar inclusions Eq. (19)).

The differential procedure is a method to find a second set of mixture relationships considering a first theory describing
the composite material (actually functiofisand G). This second theory is usually more efficient than the first one even if the
mixture is not strongly diluted because it takes into account the interactions among inclusions.
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The concentration of dispersed particles in the immediate neighbourhood of a certain particle is taken into account by the use
of an integration scheme that was first introduced by Bruggeman (1935). In this scheme the initially low concentration of the
embedded particles is gradually increased by infinitesimal additions of dispersed component. In the course of this process the
elastic moduli of the medium around a particle slowly changes ft@imu.1 to keg, peq, the final moduli of the homogenised
system. We start from Eq. (27) for a mixture wheris the volume fraction of the dispersed phase: we consider the unit volume
of mixture (1 n®) and we add a little volumecg < 1 m® of inclusions.

Therefore, we consider another mixture between a medium with mbgidind ..eq (volume equals to 1 ﬁ) and a second
medium &2, o) with volume dq. In these conditions the volume fraction of the second medium willgg(d + dcg) ~ dcg.

So, by using the original relations for the mixture we can wikigj + dkeq = F (keq, k2, iteq, 12, dcg) and ueq + dueq =
G (keq, k2, peg, 112, deg).

In the final composite material, with the little added volumg dthe matrix (1) will have effective volume 4 ¢ (m3) and
the dispersed medium (2) will have effective volume dcg (m°).

The initial volume fraction of the second mediumdgl and the final one igc + dcg)/(1 + dcg); so, it follows that
the variation of the volume fraction of inclusions obtained by adding the little volumeigl simply given by: d =
(c+dcg)/(14-dcg) —c/1=dcg(1—c)/(14-dcg) = dcg(1—c). Therefore, we obtaikeq+dkeq= F (keq, k2, teq, p2, dc/1—c)
andueq+ dueq= G(keq, k2, teq, 12, dc/1 — c). With a first order expansion we simply obtain:

de
l1-c¢

dc
1-¢’

)

dc oF
keq+ dkeq= F( keq, k2, teq, 12, 1)~ F(keq, k2, peg 142, 0) + 9

*

(28)

dc G
teq+ dueq= G| keq, k2, tteg, 12, 1<)~ G(keq, k2, tteq 12, 0) + 3
where the symbok means thatk; and u1 must be substituted bieq and peq and the valuec = 0 is considered inside
the partial derivatives. Simplifying Eq. (28) (by recalling the obvious relatidg:= F (keg, k2, fteg, 112, 0) and peq =
G (keqg, k2, e, 12, 0), which hold on forc = 0) we obtain the set of differential equations:

*

dkeq 1 OF

de  1—cacl, 29)
deq 1 3G

e 1-cac .

This system, when two functiong and G are given, defines a new couple of functions, which should better describe the
mixture even if it is not strongly diluted, taking into consideration, in a certain approximate way, the interactions among different
inclusions. The application of this approach to Eq. (16) allows us to write down the following system (it is immediate to identify
the differential term$ F /dc|s« = (a + 28) (ko — keg) andaG/ac]* = (o — B) (12 — ueq), which appear in Eq. (29)):

dkeq _ (@ +28)(kp — keq)

dc 1-c ’
30
dueq (o — B)(1u2 — 1eq) (30)
de 1-c ’

wherea andg are calculated withy = keqandu = peq. This is the standard differential technique and from the mathematical
point of view this approach is perfectly equivalent to those appearing in previous literature: Bruggeman (1935), Laughlin (1977)
and Norris (1985). The improvement introduced in Eq. (30), as we will show in the sequel, is given by the fact that the knowledge
of the coefficientsx and 8 in closed form allows us to write down and solve the set of differential equations in many cases of
practical and technological interest. Moreover, this effective medium theory, as formulated by Eg. (30), allows us to analyse
dispersions of generally shaped (arbitrary eccentricities) randomly oriented ellipsoids and not only mixtures of spheres or other
specific object. A comparison between the strongly diluted characterisation, explained in the first section of the work, and the
differential scheme has been shown in Figs. 3 and 4; Fig. 3 deals with the non-differential theory (Eq. (16)) and Fig. 4 has
been obtained by solving the differential Eq. (30) with numerical integration. In these plots, to simplify the problem we take
into account randomly oriented ellipsoids of rotation: in this case only one eccentricity describes their shape. Weadefine

the ratio between the lengths of the two different axes of the ellipsoids (ratio between the longer and the shorter axis of the
embedded ellipsoids§. > 1 for prolate ellipsoids (of ovary or elongated form) anet 1 for oblate ellipsoids (of planetary or
flattened form). Therefore, in Figs. 3 and 4, we have plotted the behaviour of the elastic moduli versus the volume:fraction
of the inclusions and the decimal logarithm of the paramgteXks far askeq, 1eq and Eeq are concerned, we may observe

that the valley in correspondence to spherical particles is narrower in the differential scheme than in the standard Eq. (16). The
behaviour of heterogeneous materials with planar structurgfog> —oo) remains unchanged by adopting the differential
procedure. Moreover, the characterisation of materials with randomly oriented cylindeygé(leg +o0) is sensibly varied
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Fig. 3. Results obtained for a mixture of ellipsoids of rotation described by the first procedure (Eqg. (16)), holding on for very diluted dispersions.
The elastic moduli (bulk, shear, Young and Poisson constants) are shown versus the ecceftattybetween the longer and the shorter axis
of the embedded ellipsoids) and the volume fractiaf the inclusions.

with the introduction of the differential scheme. Anyway, the larger quantitative differences between the two approaches are
exhibited in the zone of spheroidal particles{gg ~ 0. Finally, as far as the Poisson ratio is concerned, we confirm the above
stated qualitative properties: the overall Poisson ratio is not a monotonic functiomof a monotonic function of the volume
concentration, being allowed to assume values out of the range betwesmrd v, (Poisson ratio of the matrix and of the
inhomogeneities respectively). For the author knowledge, the Poisson ratio is the sole physical parameter that exhibits this very
complex scenario as mixing rule.

From now on, we try to apply the differential method to obtain some explicit relations for different classes of heterogeneous
materials. For example, Egs. (21), (22) and (23) of the previous section, may be generalised to higher values of the volume
fractions by means of the following differential scheme:

dl)eq B 1 3F(U1, C)
veq= F(vy,¢) N de l-c dc V1=Veg, =0
Eeq=G(v1, Eq1,0) dEeq 1 9G(vy,Ep,0)

dc l1-¢ dc

31)

vi=veq, E1=Feq, c=0
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Fig. 4. Results obtained by means of the differential scheme (Eq. (30)) applied to a dispersion of ellipsoids of rotation. The elastic constants
(bulk, shear, Young and Poisson) are plotted versus the eccenfrigiyio between the longer and the shorter axis of the embedded ellipsoids)
and the volume fraction with the same assumptions used in Fig. 3 in order to draw a comparison between the theories.

This scheme has the same physical meaning of Eg. (29) but now we are reasoning in terms of the Poisson ratio and the Young
modulus. Dealing with dispersions of spheres, we may obtain the following results in closed form. If we are considering the
mixture of porous spheres described, for low porosity, by Eq. (21), we can apply the differential procedure, Eq. (31), obtaining
the explicit relations:

<1—5Veq>5/6<l—vl>l/6<l+v1>2/3_l c
1-511 1—veq 1+ veq ’
P <1—5veq>5/3<1+vl>2/3
ea= "\ 15, T+veq)

In Eqg. (32) constant#; andv; are elastic moduli of the matrix medium and constafigg and veq are those of the overall
porous material with porosity.

32
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The same procedure may be worked out for the mixture with rigid spheres: this limiting case is described by Eq. (22). Once
again, the differential scheme, Eq. (31), may be solved by means of straightforward integration of rational functions, obtaining:

1-5veq\ %8/ 1— vy \V8/ 1-20\?3 L
= —(j’
1—5V1 1—Veq 1—2Veq
1+ veq(1—2veq\ %3/ 1501\
1+v1 \1-2v; 1—5veq '

(33)

Eeq=E1

Here, constant#; andvq are elastic moduli of the matrix medium and constafiég and veq are those of the dispersion of
rigid spheres with volume fraction

In Egs. (32) and (33), there is an interesting behaviour of the equivalent Poisson’s ratio for high volume fraction of the
inclusions: in both models far = 1 the equivalent Poisson’s ratio converges to the fixed non-zero vghs€l/5 irrespective
of the matrix Poisson’s ratio. This convergent behaviour is exact in two dimensional structures as shown by Day et al. (1992)
and by Cherkaev, Lurie and Milton (1992) but unfortunately, at the present state of the research, the available experimental data
cannot confirm this qualitative property.

For instance, we can draw some comparisons between Eq. (32) and experimental results. Walsh, Brace and England (1965)
made measurements on the compressibjlitikeq) of a porous glass over a wide range of porosities. Bulk and shear moduli
of the pure glass were measured tokhe= 46.3 GPa andtq = 30.5 GPa, respectively. A comparison between bulk modulus
experimentally measured and computed with Eqg. (32) is shown in Fig. 5(a). Haglund and Hunter (1973) have studied the
Young’s modulus of the polycrystalline monoclinic &8k. Poisson’s ratio and Young's modulus of the pure oxide were
measured to beE = 150 GPa and = 0.29. In Fig. 5(b) a comparison is drawn between the experimental data and the results
given by Eq. (32).

A similar study has been performed for a fibrous porous material: in the present case the strongly diluted characterisation
is made by means of Eq. (23). The differential scheme, Eq. (31), can be applied to the Young modulus and the Poisson ratio,
obtaining the following expressions, after some long but straightforward computations:

<8Veq 74 @>(15/98)(15/¢79+1)( 8vy — 7— /29 >(15/98)(15/@1> ( 141 >15/49 L.

8v1 — 7+ /29 8veq— 7 — +/29 1+ veq I 34
Bveq— 7+ /29 (2/49(93/+/29+16) 8v — 7 — /29 (2/49(93/v/29-16) /1 | vy \ 16/49

fia= (57 ) (7720 (a)
8v —7++/29 8veq—7—\/2_9 1+ veq

These relations, describing a fibrous porous material for any value of the parphitlye a particular behaviour very similar
to that of Eq. (32) for spherical pores. When the value of the poresitgproaches unity, the Poisson ratio of the composite
material converges to the fixed valug= (7 — +/29)/8 = 0.2018... . independently on the value of Poisson ratio of the matrix.

This convergent behaviour of the Poisson ratio, here observed for spherical and cylindrical voids, is actually a peculiarity
exhibited for any shape of the pores. We numerically verify the property as follows: from Eq. (5), for porous materials (assuming
zero stiffness for the inclusions) we obtain= {I — §}*1; then we compute the coefficientsand g (Eq. (12)), which depend
only on the matrix Poisson ratio and on the eccentricities of the pores. Therefore, we may apply the differential scheme in terms
of the Young modulus and the Poisson ratio:

dEeq _ Eeq [Zﬁ(Veq)Veq— a(veq)],

dc 1-c¢ 35
dveq B(veg >
T= ¢ 1+ veq)(zveq—l).

The above stated system derives from Eq. (30) when standard transformations between elastic moduli are applied. We have
solved Eg. (35) for ellipsoids of rotation. In Fig. 6 elastic moduli are representefiifer 1 andvq = 0.1 versus the volume
fraction of pores (porosity) and eccentricify(ratio between the longer and the shorter axis of the embedded ellipsoids of
rotation). There is a universal behaviour of the Poisson ratio for porous materials {whéj, which do not depend on the
matrix properties. In Fig. 7 the universal functiop = lim._, 1 veq is plotted as function of. There, we may identify the
characteristic values for spheres and cylindegs= 1/5 for spherical voids andg = (7 — +/29)/8 = 0.2018... for porous
materials with cylindrical randomly oriented voids. Moreover, for planar pores we have: g = limg_glim._, 1 veq=0.

Finally, a particular application of the differential scheme may be performed to analyse the behaviour of composite materials
formed by planar inclusions or sheets of medium (2) inserted in the matrix (1). We try to apply the general differential method,
described by Eq. (29), to the characterisation of this kind of mixture, which is modelled by Eq. (19). By identifying the pertinent
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Fig. 5. (a) Bulk modulusieq in GPa of porous P-311 glass (circles) measured at room temperature compared with data obtained by Eq. (32)
(solid line) for different values of the porosity Bulk and shear moduli of the pure glass were measured to-h46.3 GPa ang: = 30.5 Gpa

(E =75 Gpa and = 0.23). (b) Measured Young's moduluBeq (in GPa) of porous oxide G3 (circles) versus porosity compared with

the solution of Eq. (32) (solid line). For pure oxide, elastic moduli were measuredfo-b#50 GPa and = 0.29.
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Fig. 6. Application of the differential scheme (Eg. (30)) to the characterisation of porous materials with ellipsoidal (of rotation) voids. Results
for the Poisson ratio and the Young modulus versus eccentéidjtgtio between the longer and the shorter axis of the embedded ellipsoids)

and porosityc are obtained with a matrix described By = 1 andv; =0.1. Forc — 1 we may observe the universal behaviour of the Poisson
ratio, which is represented in Fig. 7.
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Fig. 7. Universal behaviour of the Poisson ratio for porous materials with high value of the volume fraction (porosity}. WHietne Poisson
ratio depends only on the eccentricity(ratio between the longer and the shorter axis of the embedded ellipsoids) and not on the matrix elastic
properties, as shown in this plot. Characteristic values for spheres and cylinders are clearly evidenced.

functionsF andG in Eq. (19) and taking into account the first order approximation we simply obtain the following differential
system for the related effective medium theory:
dkeq 1 4up + 3keq

= —— (k2 — k
de 1—c 4uo+3kp (k2 = keq).

dueq 1 1(%2u2+ 8u§ + 12uequ2 + Buegk2) (12 — peq)
de =~ 1-¢5 n2(3ko + 4uo) '

(36)
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It is interesting and important to observe that these differential equations are uncoupled and they may be solved separately,
obtaining, as results, the relationships appearing in Eq. (19) itself. So, the result stated in Eq. (19) is a fixed point of the
differential procedure and therefore it should be correct for any value of the volume fraction of the planar inclusions.

5. Conclusions

We have performed a complete study on the characterisation of dispersions of randomly oriented ellipsoids. The main result
of this work is given by an explicit micromechanical averaging technique, which permits to simply analyse, in closed form, the
behaviour of randomly oriented objects embedded in a homogeneous matrix. The general theory, developed for diluted mixtures,
has been mainly used for two purposes: in the first one we have shown the application of this theory to many limiting cases
describing special kind of dispersion (porous material, fibre-reinforced composites, dispersion of flattened inhomogeneities and
so on); the latter one represents the analysis of a differential scheme, based on the previous theory, which takes into account
any shape of the inclusions and any value of the volume fraction. In both cases we have shown the effects of the microstructure
or morphology on the macroscopic effective elastic response of the overall composite material. Moreover, the theory reveals a
new interesting behaviour of the Poisson ratio versus the eccentricities of the inclusions and their volume fraction. In particular
we have shown that the Poisson ratio of a porous material, for high porosity, depends only on the shape of the voids and not on
the elastic response of the matrix.
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