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Abstract

A multipole theory describing the interactions between dielectric cylinders in a uniform field

is developed. We treat the most general case of N parallel cylinders placed in arbitrary

positions. The exact theory is obtained by developing the polarisation charge surface density

on each cylinder in a Fourier series. The related coefficients, the so-called multipoles, may be

obtained from a linear set of equations which is derived and analysed in the paper. For systems

of closely spaced cylinders, with high ratio of the dielectric constant of the cylinders compared

to that of the homogeneous medium (in the worst case, conductive cylinders in contact with

each other) a very large number of multipole terms is required to achieve convergence. In spite

of the large number of required terms, the general multipole expansion is rapidly convergent in

all other cases and is important from a theoretical point of view. Numerical results are

presented for canonical dispositions of cylinders and for more complicated arrangements.

Finally, such a multipole expansion has been applied to the dielectric characterisation of

composite materials formed by a regular array of parallel cylinders, thereby obtaining the

equivalent permittivity using a numerically efficient technique.
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1. Introduction

In this paper, we present a general theory, which describes any geometric
disposition of parallel dielectric cylinders embedded in an orthogonal electric field.
As it is well known, these results equally apply to magnetisable cylinders in a
uniform magnetic field, to conductive cylinders in a uniform current density field or
to thermal conductive cylinders in a uniform heat flux. Anyway, throughout all the
paper, we will always refer to the dielectric case. In such theoretical derivation the
cylinders have, on a given reference plane, the centres in completely arbitrary
position (except for the overlapping case which is not taken into consideration). This
means that the theory may be used for many purposes ranging from theoretical
physics to advanced technology and biology: the disposition may be completely
random or strictly regular generating a reticular (crystalline) structure; moreover, the
method may be used for few cylinders or for a very large number of cylindrical
interacting particles. This topic is of vital importance in a number of theories, e.g.,
the electrical or magnetic characterisation of mixtures obtained by random or
regular immersion of cylindrical particles in some homogeneous media (artificial or
biological fibrous materials) [1,2], the study of the interparticle forces in electric and
magnetic fields [3,4], the dielectrics breakdown in artificial or metal-loaded dielectrics
[5] and some other physical situations. A similar treatment, concerning multipole
interactions of spheres, can be found in earlier literature [6,7].
With N aligned cylinders having fixed positions in an orthogonal field, the system

of linear equations for the interacting multipole moments of each cylinder is derived.
The knowledge of all the multipole moments for a cylinder is equivalent to that of
the polarisation charge density on its surface.
The set of equations can be solved either by methods based on successive

approximation (iterative relaxation techniques) or by standard inversion methods
(Gaussian elimination), obtaining in both cases good results because the system is
well conditioned. Moreover, the formulas for the electric potential (or field) are
obtained as multipole moments expansions. Some interesting dispositions of the
cylindrical particles are theoretically and numerically analysed. The resulting
equipotential lines are shown in different cases. Finally, the dielectric characterisa-
tion of periodic embeddings of cylinders has been considered approaching the
problem with the multipole expansion technique. A method to obtain the equivalent
dielectric constant of such an array of cylinders is described and applied with a
volume fraction ranging from zero to the case of cylinders in contact. The solution
exhibits fast convergence for values of the relative permittivity between cylinders and
hosting medium up to some hundreds.
2. Statement of the problem: multipole expansions

We consider N parallel cylinders embedded in a homogeneous media (permittivity
�1) where a uniform field E0 is present. The cylinders are considered perpendicular to
the x–y plane. The external applied field is aligned to the x-axis of the reference
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system (main frame). We deal with a two-dimensional problem analysed in the main
reference frame x–y.
Each cylinder has permittivity �2, radius R and centre in position Ri ði ¼ 1; . . . ;NÞ

in this main frame (plane x–y). Besides the above-stated main frame we introduce N

other reference systems with origin in Ri (centre of the ith base of the cylinder) and
axes parallel to those of the main frame. In such systems we will use orthogonal
coordinates ðxi; yiÞ and polar coordinates ðri;jiÞ (see Fig. 1).
In this section, we want to derive a mathematical model, which represents the

multipole description of the system of cylinders. The resulting total electric field is
generated by the free charges (ideally placed at infinity) corresponding to the
uniform field E0 and by the polarisation charges induced on the cylindrical surfaces.
We introduce the corresponding total electric potential V that takes into account
both the applied field E0 and the perturbation generated by the induced polarisation
charge on each cylinder.
A straightforward application of the Gauss law gives the following relations for

the polarisation charge density on the ith surface:

si ¼ �0 1�
�2
�1

� �
dV

dn

����
R� ;i

¼ �0
�1
�2

� 1

� �
dV

dn

����
Rþ ;i

ð1Þ

where dV=dnjR�;i and dV=dnjRþ;i are the normal derivatives of the total electric
potential V calculated inside and outside the ith cylindrical surface, respectively. We
observe that the charge density si depends only on the variable ji on the ith
reference frame: therefore siðjiÞ is a periodic function of its argument, which may be
developed in Fourier series. Thus, we introduce the multipole moments, used in this
work, as the Fourier coefficients of such polarisation charge density:

Ai
n ¼

1

2p

Z 2p

0

siðjiÞ expð�jnjiÞdji; ð2Þ
Fig. 1. A two-dimensional representation of an arbitrary system of cylinders: the adopted notations and

the reference frames.
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where j is the imaginary unit throughout all the paper. Of course, since the total
induced polarisation charge on each cylinder is zero, we have Ai

0 ¼ 0 for any index i.
So, the coefficients Ai

n are useful to represent the functions siðjiÞ in trigonometric
series:

siðjiÞ ¼
Xþ1

n¼�1

Ai
n expðjnjiÞ : ð3Þ

The total electric potential may be written as follows:

V ðrÞ ¼
�E0x þ V 1ðrÞ if kr � Rik4R 8i ðoutside the cylindersÞ;

�E0x þ V i
2ðrÞ if kr � RikoR ðinside the ith cylinderÞ;

(
ð4Þ

where the potentials V 1ðrÞ and Vi
2ðrÞ are the perturbations generated only by

the polarisation charges; here r ¼ ðx; yÞ is the position vector of a point P in the
main frame (see Fig. 1). Now, we search for the functions V1ðrÞ and Vi

2ðrÞ in terms
of multipole moments. To do this, we remember that these perturbations to
the overall potential must satisfy the two-dimensional Laplace equation, which
may be simply solved, in polar coordinates, as follows. We define cin

i ðrÞ and cout
i ðrÞ

as the electric potential inside and outside the ith cylinder respectively, generated
solely by its polarisation; therefore cin

i ðrÞ and cout
i ðrÞ depend only on the

charge distribution siðjiÞ on the ith cylinder. It is well known that the general
solution of the Laplace equation inside and outside a given circle may be written as
follows [8]:

cin
i ðri;jiÞ ¼

Pþ1

n¼�1

rjnji ki
n expðjnjiÞ;

cout
i ðri;jiÞ ¼

Pþ1

n¼�1

r�jnj
i hi

n expðjnjiÞ;
ð5Þ

where the complex coefficients ki
n and hi

n may be written in terms of the multipole
Ai

n by introducing the boundary conditions on the lateral surface Si of the ith
cylinders:

��0
dcout

i

dn

����
R

þ �0
dcin

i

dn

�����
R

¼ siðjiÞ

cout
i jR ¼ cin

i jR

onSi: ð6Þ

Substituting Eqs. (3) and (5) into Eq. (6), by means of straightforward calculations
we may find ki

n and hi
n in terms of the multipole Ai

n and these expressions have been
used in Eq. (5) obtaining

cin
i ðri;jiÞ ¼

Pþ1

n¼�1

R
ri

R

� 	jnj Ai
n

2�0jnj
expðjnjiÞ;

cout
i ðri;jiÞ ¼

Pþ1

n¼�1

R
ri

R

� 	�jnj Ai
n

2�0jnj
expðjnjiÞ:

ð7Þ
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Finally, the complete expressions for the electric potential in the overall structure of
aligned cylinders may be written by using Eq. (4), as follows:

V ð�rÞ ¼

�E0x þ V 1 ¼ �E0x þ
PN
k¼1

cout
k

¼ �E0x þ
PN
k¼1

Pþ1

n¼�1

R
rk

R

� 	�jnj Ak
n

2�0jnj
expðjnjkÞ

if kr � Rik4R8i ðoutside the cylindersÞ

�E0x þ V i
2 ¼ �E0x þ cin

i þ
PN
k¼1
kai

cout
k

¼ �E0x þ
Pþ1

n¼�1

R
ri

R

� 	jnj Ai
n

2�0jnj
expðjnjiÞ

þ
PN
k¼1
kai

Pþ1

n¼�1

R
rk

R

� 	�jnj Ak
n

2�0jnj
expðjnjkÞ

if kr � RikoR ðinside the ith cylinderÞ;

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

where r ¼ ðx; yÞ and by using simple changes of coordinates, we have defined
rk ¼ k�r � �Rkk and jk ¼ jð�r � �RkÞ ðk ¼ 1; . . . ;NÞ, having introduced the single
valued function jð�vÞ which gives the angle corresponding to the plane vector �v
(i.e. the angle that �v makes with the x-axis). We remember that each cylinder has
centre in position Ri ði ¼ 1; . . . ;NÞ. Therefore, we have written the electric potential
in the whole system in terms of the above-defined multipole moments. In the next
section we show a method to evaluate the multipole coefficients when the
geometrical structure of the system is given. Actually, this system will describe the
effective interactions among the cylinders.
3. Set of equations for the multipole moments

Still now, we have stated that the coefficients Ai
n contain all the information about

the induced polarisation charge and the total electric potential in the system of
cylinders. The aim of this section is to build a set of equations for these multipole
moments.
To this purpose, we consider the definition given by Eq. (2) and we write the

charge density in terms of the potential, see Eq. (1); for convenience, we perform this
operation choosing the external potential. Hence, we obtain the following relation:

Ai
n ¼

1

2p

Z 2p

0

expð�jnjiÞ�0
�1
�2

� 1

� �
dV

dn

����
Rþ;i

dji: ð9Þ

Now, we need to calculate the normal derivative, which appears in the integral. To
do this, we express the total external potential in the ith system coordinates (as a
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function of ri and ji), obtaining (see Eq. (8), first expression)

V ¼ � E0x þ
XN

k¼1

Xþ1

n¼�1

R
rk

R

� 	�jnj Ak
n

2�0jnj
expðjnjkÞ

¼ � E0ðX i þ ri cos jiÞ þ
Xþ1

n¼�1

R
ri

R

� 	�jnj Ai
n

2�0jnj
expðjnjiÞ

þ
XN

k¼1
kai

Xþ1

n¼�1

R
k�ri þ �Ri � �Rkk

R

� ��jnj
Ak

n

2�0jnj
exp½jnjð�ri þ �Ri � �RkÞ� ð10Þ

(here Rp ¼ ðX p;Y pÞ is the centre of the pth cylinder). The first term takes into
account the applied field, the second one the perturbation generated by the ith
induced charge and the third the potential generated by the other cylinders expressed
in terms of the position vector �ri in the ith reference frame. The first two terms are
expressed as functions of ri and ji as requested, the third term is not in this condition
and it will be developed by means of an expansion theorem described in the
appendix. If two vectors A ¼ ðra cos ja; ra sin jaÞ and B ¼ ðrb cos jb; rb sin jbÞ are
given on the plane and the condition kAkokBk is fulfilled, the following off-centered
expansion holds true for any integer n, positive or negative:

ejnjð
�A� �BÞ

k �A � �B kjnj
¼
Xþ1

h¼0

ð�1Þnrh
a

rjnjþh
b

jnj þ h � 1

h

� �
ej½nþh sgnðnÞ�jb e�jh sgnðnÞja : ð11Þ

The theorem may be used in the third term of Eq. (10) making the substitutions
A ¼ �ri and B ¼ �Rk � �Ri. The condition kAkokBk is fulfilled when we compute the
normal derivative on the ith cylinder.
So, the external potential is written in ith cylindrical coordinates, as follows:

V ðri;jiÞ ¼ � E0ðX i þ ri cos jiÞ þ
Xþ1

n¼�1

R
ri

R

� 	�jnj Ai
n

2�0jnj
expðjnjiÞ

þ
XN

k¼1
kai

Xþ1

n¼�1

Xþ1

h¼0

Rjnjþ1 Ak
n

2�0jnj

jnj þ h � 1

h

� �
ð�1Þnrh

i

k �Rk � �Rik
jnjþh

� exp½jðn þ h sgnðnÞÞjð �Rk � �RiÞ� exp½�jh sgnðnÞji�: ð12Þ

Now, we can perform the derivative with respect to ri, calculated for ri ¼ R. The result is

dV

dn

����
Rþ ;i

¼
@V ðri;jiÞ

@ri

����
ri¼R

¼ � E0 cos ji �
Xþ1

n¼�1

Ai
n

2�0
expðjnjiÞ

þ
XN

k¼1
kai

Xþ1
n¼�1

Xþ1
h¼0

ð�1Þn hAk
n

2�0jnj

jnj þ h � 1

h

� �
R

k �Rk � �Rik

� �jnjþh

� exp½jðn þ h sgnðnÞÞjð �Rk � �RiÞ� exp½�jh sgnðnÞji�: ð13Þ
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Finally, substituting (13) in (9), and by using the orthonormality of the imaginary
exponential functions, we obtain a first form of the linear system of equations for the
multipole moments:

Ai
n ¼ �0

�1
�2

� 1

� �
�

E0

2
ðd1;n þ d�1;nÞ �

Ai
n

2�0

�

þ
XN

k¼1
kai

Xþ1
q¼�1

Xþ1
h¼0

ð�1ÞqhAk
q

2�0jqj

jqj þ h � 1

h

� �
R

k �Rk � �Rik

� �jqjþh

� exp½jðq þ h sgnðqÞÞjð �Rk � �RiÞ�d�h sgnðqÞ;n

�
: ð14Þ

Now, it is important to note that, siðjiÞ being a real valued function, the relation
Ai

�n ¼ Ai

n (where the symbol * means complex conjugate) holds true; moreover, as said

above, since the total induced charge on each cylinder is zero, we have Ai
0 ¼ 0. Thus, we

may build a system for the unknowns Ai
n for nX1 and for 1pipN. Therefore, we

simplify Eq. (14) by taking into account the hypothesis nX1. With some straightforward
calculation we obtain the system in the following final form ðnX1 and 1pipNÞ:

Ai
n ¼ � E0�0

�1 � �2
�1 þ �2

d1;n

þ
�1 � �2
�1 þ �2

XN

k¼1
kai

Xþ1

q¼1

ð�1ÞqAk


q

q þ n � 1

q

� �
R

_Rk � _Ri

� �qþn

: ð15Þ

having used the simple property

n

q

q þ n � 1

n

� �
¼

q þ n � 1

q

� �
:

Here, recalling the definition Rk ¼ ðX k;Y kÞ for the centres of the cylinders, we have
defined for convenience the corresponding complex numbers _Rk ¼ X k þ jY k. Eq. (15) is
the most important result achieved in this work and it allows us to calculate the
multipoles, which completely define the electric potential and field over the whole
structure. These coefficients depend only on the geometrical disposition of the system
(centres _Rj ¼ X j þ jY j and radius R) and on the permittivities of the media involved.
So, formula (15) solves the general problem of the N dielectric cylinders embedded in a
perpendicular field. Some properties of system (15) are the following:
�
 if the field E0 is zero all the multipoles are zero because no polarisation charge is
induced.
�
 if kRi � Rkk ! 1 for any i and k the cylinders are so far away from each other
that they do not interact and the interaction term (second line in Eq. (15))
vanishes: it follows that Ai

1 ¼ �E0�0ð�1 � �2Þ=ð�1 þ �2Þ for any i and all other
multipoles are zero.
�
 the multipole coupling terms fall off in magnitude with powers of the interparticle
separation distance, and, in particular, the coupling of higher-order multipoles to
each other falls off with large powers of this distance. So, the use of this coupled
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multipole expansion results in a matrix that is highly diagonal dominated, which
means that iterative methods converge very rapidly. Also, since the matrix may be
considered sparse, very large system of particles can be analysed with this method.

Independently of the numerical technique used to solve the set of equations, the
most critical cases appear when the cylinders are in contact (kRi � Rjk ¼ 2R for
some i and j) and when, at the same time, the ratio �2=�1 assumes the extreme values
zero or infinity. Correspondingly, the characteristic fraction ð�1 � �2Þ=ð�1 þ �2Þ takes
the limit values 1 and �1, respectively. Some examples of representation of the
equipotential lines for such extreme cases can be found in Figs. 2 and 3 where we
have used Eq. (8) to represent the whole electric potential. In Fig. 2 the case of
two cylinders aligned with the external electrical field is considered for �2=�1 ! 1

(Fig. 2a) and �2=�1 ! 0 (Fig. 2b). In Fig. 3 the case of two cylinders perpendicularly
aligned with the external electrical field is taken into consideration for �2=�1 ! 1

(Fig. 3a) and �2=�1 ! 0 (Fig. 3b). In all these cases the value E0=1 is taken for the
uniform field and 100 multipoles for the cylinders have been used in the main system
given by Eq. (15).
Some comments about the distribution of the equipotential lines in these plots

follow. In all plots many closely spaced equipotential lines appear in the medium
around the cylindrical particles. These lines correspond to the bulk value of the
applied and fixed electrical field (E0 ¼ 1, perpendicular to the lines).
When the particles are embedded in the matrix, they modify the equipotential lines

both inside and outside the particles. To better understand the behaviour inside
the particles we may think to a single cylinder in the matrix: the field Ed inside the
cylinder is uniform and given by Ed ¼ 2E0=ð1þ �2=�1Þ. So, if �2=�1 ! 1 we have
Ed ¼ 0 and if �2=�1 ! 0 we have Ed ¼ 2E0. This behaviour is qualitatively in
agreement with Figs. 2 and 3. In fact, in Figs. 2a and 3a we have �2=�1 ! 1 and no
equipotential lines appear inside the cylinders (the field inside the particles is zero); in
Figs. 2b and 3b we have �2=�1 ! 0 and we may observe an internal field greater than
the external one, as expected. Moreover, in this case with �2=�1 ! 0, an additional
conclusion may be drawn: with a single cylinder we have the uniform internal field
Ed ¼ 2E0, with two cylinders aligned with the field the internal electrical field is not
uniform in each particle and it has modulus Ed such that E0oEdo2E0, with two
cylinders perpendicularly aligned with the field the internal one is not uniform and
we have Ed42E0. So, we conclude that the perpendicular configuration generates
the greater amplification of the field inside the particles (if �2=�1 ! 0).
4. Induced multipole strengths on a linear chain of parallel cylinders

In this section, we perform the analysis of a simple arrangement of cylinders: we
consider a series of parallel cylinders aligned along a straight line that form a given
angle W with the applied electric field. This means that the centres of the cylinders
may be described by the succession of complex numbers given by: _Rk ¼ kdejW where
k ¼ �1 ! þ1 and d is the distance between the centres of two adjacent cylinders.
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Fig. 2. Equipotential lines for a couple of touching cylinders aligned with the applied electrical field for

�2=�1 ! 1 (a) and �2=�1 ! 0 (b).
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As before, the applied electric field is directed along the x-axis of the main frame. In
these conditions all the cylinders are influenced in the same way by the external field
and thus: Ai

n ¼ An for each cylinder. This means that the charge distribution is the
same on all the cylinders. So, Eq. (15) may be used as follows:

An ¼ � E0�0
�1 � �2
�1 þ �2

d1;n

þ
�1 � �2
�1 þ �2

Xþ1

k¼�1
kai

Xþ1

q¼1

ð�1ÞqA

q

q þ n � 1

q

� �
R

kdejW � idejW

� �qþn

ð16Þ
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Fig. 3. Equipotential lines for a couple of touching cylinders perpendicularly aligned with the applied

electrical field for �2=�1 ! 1 (a) and �2=�1 ! 0 (b).
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where the summation on k may be rearranged in the following way:

Xþ1

k¼�1
kai

R

kdejW � idejW

� �qþn

¼
R

dejW

� �qþn Xþ1

k¼�1
kai

1

k � i

� �qþn

¼
R

dejW

� �qþn X�1
p¼�1

1

p

� �qþn

þ
Xþ1

p¼1

1

p

� �qþn
" #
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¼
R

dejW

� �qþn Xþ1

p¼1

ð�1Þqþn
þ 1

pqþn

� �

¼
R

dejW

� �qþn

½ð�1Þqþn
þ 1�zðq þ nÞ ð17Þ

having introduced the Riemann Zeta function zðzÞ [9]. Therefore, Eq. (16) may be
written in the simplified form:

An ¼ � E0�0
�1 � �2
�1 þ �2

d1;n

þ
�1 � �2
�1 þ �2

Xþ1

q¼1

R

dejW

� �qþn

½ð�1Þq þ ð�1Þn�zðq þ nÞA

q

q þ n � 1

q

� �
: ð18Þ

Now, it is interesting to note that, because of the term ð�1Þq þ ð�1Þn, which appears
in the system, all the multipoles with n ¼ 2k are zero and therefore only the
odd multipoles remain to describe the system. Defining X n ¼ A2n�1 for any nX1,
we obtain:

X n ¼ � E0�0
�1 � �2
�1 þ �2

d1;n

� 2
�1 � �2
�1 þ �2

Xþ1

q¼1

R

dejW

� �2qþ2n�2

zð2q þ 2n � 2ÞX 

q

2q þ 2n � 3

2q � 1

� �
: ð19Þ

Finally, recalling the famous connection between the Riemann Zeta function
zðzÞ, calculated on even integers, and Bernoulli numbers Bk [9,10], zð2nÞ ¼

22n�1p2nB2nð�1Þ
nþ1=ð2nÞ!, we obtain the final system for the odd multipoles:

X n ¼ � E0�0
�1 � �2
�1 þ �2

d1;n

�
�1 � �2
�1 þ �2

Xþ1

q¼1

2pR

dejW

� �2qþ2n�2
ð�1ÞqþnB2qþ2n�2

ð2q þ 2n � 2Þ!
X 


q

2q þ 2n � 3

2q � 1

� �
: ð20Þ

Such particular disposition of cylinders has been taken into account as a simple
example and because it is interesting to note that for such a linear chain of cylinders
the multipole coupling terms are related to the Bernoulli numbers. However two
examples of simulations have been shown in Fig. 4 where the equipotential lines are
represented for E0 ¼ 1;R ¼ 1; d ¼ 2:5; W ¼ 45�; �1 ¼ 1; �2 ¼ 10 (Fig. 4a) and �2 ¼ 1

10

(Fig. 4b).
5. Characterisation of a regular array of cylinders

A material composed of a mixture of distinct homogeneous media can be
considered as a homogeneous one at a sufficiently large observation scale. In
literature, the problem of mixture characterisation has been solved in many cases of
linear and non-linear mixtures by applying several different methods [1,11]. In the
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Fig. 4. Equipotential lines for a linear chain of parallel cylinders oriented with an angle W ¼ 45� with

the external applied field. Two examples are reported, having used the following data: E0 ¼ 1;R ¼ 1;
d ¼ 2:5; �1 ¼ 1; �2 ¼ 10 (a) and �2 ¼ 1
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(b).
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present section an application of the multipole expansions is presented to obtain the
characterisation of a composite material formed by a regular array of cylinders
embedded in a given homogeneous matrix. This means that the centres of the
cylinders, in a given reference plane, may be described by the regular succession of
complex numbers given by: _Ri;k ¼ ði þ jkÞd where i ¼ �1 ! þ1; k ¼ �1 ! þ1

and d is the distance between the centres of two adjacent cylinders (as before j is the
imaginary unit). Therefore, the couple of index i and k identify a given cylinder of
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the array. Once again, the applied electric field is directed along the x-axis of the
main frame. In these conditions all the cylinders are influenced in the same way by
the external field; so: Ai;k

n ¼ An for each cylinder. Therefore, Eq. (15) may be used as
follows:

An ¼ � E0�0
�1 � �2
�1 þ �2

d1;n

þ
�1 � �2
�1 þ �2

XZ2

i;k
ði;kÞaðs;tÞ

Xþ1

q¼1

ð�1ÞqA

q

q þ n � 1

q

� �
R

ði þ jkÞd � ðs þ jtÞd

� �qþn

: ð21Þ

As before, the lattice summation on k and i may be rearranged in the following
way:

XZ2

i;k
ði;kÞaðs;tÞ

R

ði þ jkÞd � ðs þ jtÞd

� �qþn

¼
R

d

� �qþn XZ2

i;k
ði;kÞaðs;tÞ

1

i � s þ jðk � tÞ

� �qþn

¼
R

d

� �qþn XZ2

n;m
ðn;mÞað0;0Þ

1

n þ jm

� �qþn

: ð22Þ

The last double sum over all the integer points of the complex plane can be split on
four sums corresponding of the four quadrants of the plane itself, obtaining:

XZ2

i;k
ði;kÞaðs;tÞ

R

ði þ jkÞd � ðs þ jtÞd

� �qþn

¼
R

d

� �qþn

½1þ ð�1Þqþn
þ jqþn

þ ð�jÞqþn
�
Xþ1

n¼0

Xþ1

m¼1

1

n þ jm

� �qþn

¼
R

d

� �qþn

½1þ ð�1Þqþn
þ jqþn

þ ð�jÞqþn
�
Xþ1

m¼1

zðq þ n; jmÞ ð23Þ

having introduced the Hurwitz (or generalised) Zeta function zðz; sÞ [10]. We observe
that the expression in Eq. (23) is not zero only if q þ n ¼ 4k, that means
q þ n ¼ 4; 8; 12 . . .; in all these case the series is convergent to a real number.
Therefore, in such array of cylinders all the multipoles are real numbers ðX 


q ¼ X qÞ.
Finally, defining the dimensionless normalised multipoles X n ¼ An=ðE0e0Þ, we can
write Eq. (21) in the following definitive form:

X n ¼ �
�1 � �2
�1 þ �2

d1;n þ
�1 � �2
�1 þ �2

Xþ1

q¼1

ð�1Þq X q

q þ n � 1

q

� �
R

d

� �qþn

Iqþn; ð24Þ

where IM is this lattice sum (a0 if and only if M ¼ 4; 8; 12; . . .):

IM ¼ ½1þ ð�1ÞM þ jM þ ð�jÞM �
Xþ1

m¼1

zðM ; jmÞ: ð25Þ



ARTICLE IN PRESS

S. Giordano / Journal of Electrostatics 63 (2005) 1–1914
Eqs. (24) and (25) completely define the problem of calculating the multipoles
induced on a given cylinder of the array. To approach the problem of the mixture
characterisation, first of all, we take into account a given finite number of parallel
cylinders with bases arbitrarily distributed on the reference plane (of course not
overlapping). Moreover, we imagine that all these cylinders are contained in a
greater one (with radius RbR and centre is the origin of the axes), which represents
the external surface of the mixture we are going to characterise. In other words we
are searching for an ad hoc value of the permittivity, which should be attributed to
the whole system (the greatest cylinder) in order to have the same macroscopic
behaviour of the composite materials. Such macroscopic behaviour can be observed
only at a sufficiently large observation scale, which means at a sufficiently large
distance from the mixture itself. If the mixture (cylinder of radius R) is exposed to a
uniform electric field E0 along the x-axis and it is considered homogeneous with
equivalent permittivity eeq, outside it, we find an electrical potential given by the
standard relation:

V ðr;jÞ ¼ �E0r cos j 1þ
R2

r2
�1 � �eq
�1 þ �eq

� �
; ð26Þ

where r and j represent polar coordinates of the reference frame. On the other hand,
if we take into consideration the microstructure of the composite material we may
write the electrical potential outside the mixture, at a sufficiently large distance, by
using Eq. (8) and by neglecting all the multipoles except for the first one (the dipole
moment). So, we simply obtain

V ðr;jÞ ¼ �E0r cos jþ
XN

k¼1

R2

r�0
RefAk

1 e
jjg: ð27Þ

If the coefficients Ak
1 are real (as in our case), defining X k

1 ¼ Ak
1=ðE0e0Þ and

hX 1i ¼ SkX k
1=N, we finally obtain

V ðr;jÞ ¼ �E0r cos j 1�
R2

r2
NhX 1i

� �
: ð28Þ

Drawing a comparison between Eq. (26) and Eq. (28) we derive, after some
straightforward calculations, the following result:

�eq ¼ �1
1þ chX 1i

1� chX 1i
; ð29Þ

where c ¼ NR2=R2 is the volume fraction of the cylinders embedded in the
homogeneous media.
Eq. (29) allows us to characterise a given mixture with N cylinders when

the average value of the normalised dipole moment is computed by means of
the multipoles interaction theory described in previous sections. If we consider a
finite (N limited) regular array of cylinders with N increasing, we may observe
that the average value of the dipole moment converges to the value obtained from
Eqs. (24) and (25) concerning an infinite array of cylinders. So, we may use the
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system formed by Eqs. (24), (25) and (29) to completely characterise the
whole regular composite material. In this case hX 1i ¼ X 1 and c ¼ pR2=d2 is
the volume fraction subjected to the restriction 0ocop=4 (not overlapping
cylinders).
The description of some computer simulations follows. In Figs. 5 and 6 the

plots of the equivalent permittivity �eq=�1 are shown versus the volume fraction
c of the composite material. Fig. 5 deals with some cases with �2=�1o1 and
Fig. 6 with different ratios �2=�141. We have numerically verified that the
convergence, in such cases, is obtained by using 100 multipoles in the interaction
system.
In Fig. 7 one can find the plot of the equivalent permittivity �eq=�1 as a function of

the ratio �2=�1 for the extreme case of cylinders in contact, i.e. c ¼ p=4, the most
critical situation. The computation has been carried out by using two hundred
multipoles for any value of the ratio �2=�1 in the range 1=300 ! 300. The plot is
represented in bi-logarithmic scale. The result is compared with two classical theories
in the field of the characterisation of mixtures. The first one is the Maxwell theory,
which is valid only for very diluted dispersions of cylinders [1,2]. The following
Maxwell formula may be obtained starting from Eq. (29) and by using the dipole
moment of an isolated cylinder:

c
�1 � �2
�1 þ �2

¼
�1 � �eq
�1 þ �eq

: ð30Þ

The second formula, used in the comparison, is the Bruggeman one [12,13] obtained
by means of differential schemes and valid also for greater values of the volume
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fraction of the cylinders:

1� c ¼
�2 � �eq
�2 � �1

�1
�eq

� �1=2

: ð31Þ

The formula given in Eq. (31) is a second degree algebraic equation with two positive
real solutions: usually the smaller solution is taken when �2=�141 and the greatest
one is considered when �2=�1o1. In Fig. 7 we have reported both the solutions to
draw a complete comparison. One can observe the large differences between the
exact result obtained with the multipoles interaction method and the previously
described earlier theories. It is curious to note that the exact multipole solution of the
problem is perfectly fitted by the very simple semi-empirical law �eq=�1 ¼ ð�2=�1Þ

p=4

(straight line in bi-logarithmic scale with angular coefficient equal to p=4), at least in
the range of �2=�1 considered in Fig. 7. Anyway, this is only a conjecture very difficult
to verify for higher values of the ratio �2=�1. To the author’s knowledge this question
is an open problem. Indeed, a very high number of multipoles should be used to
achieve convergence in this extreme case. For instance, it should be underlined that
this conjecture is in complete agreement with a theoretical expansion obtained by
Mityushev [14]. From Eq. (3.3) of his paper is easily derived the following formula
for the case of touching cylinders ðc ¼ p=4Þ:

�eq
�1

¼ 1þ
p
2
rþ

p2

8
r2 þOðr2Þ; ð32Þ

where the parameter is defined as follows:

r ¼
�2=�1 � 1

�2=�1 þ 1
: ð33Þ

By using this definition, our conjecture may be simply recast in the form

�eq
�1

¼
1þ r
1� r

� �p=4

: ð34Þ

At this point it is not difficult to verify that Eq. (32) is exactly the Mc-Laurin
expansion of Eq. (34), which contains only the first two terms. Anyway, a complete
proof of Eq. (34) is not available at the present stage of the research.
Another interesting result is given in Ref. [15] dealing with perfectly conducting

cylinders with volume fraction near its maximum value c ¼ p=4.
6. Conclusions

The present work describes the derivation of a multipole theory for an arbitrary
system of parallel cylinders (two-dimensional problem) obtaining a closed set of
equations for the multipole moments induced by an external uniform field. An
example is shown dealing with a linear chain of cylinders: the multipole coupling
terms are related to the Bernoulli numbers. Finally, the characterisation of a
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two-dimensional regular array of cylinders is taken into consideration: the equivalent
permittivity has been computed as a function of the stochiometric coefficient and of
the relative dielectric constant between cylinders and hosting medium. In the limiting
case of touching cylinders a very simple behaviour is observed for the effective
permittivity and it is fitted very well by the simple relation: �eq=�1 ¼ ð�2=�1Þ

p=4.
However, further research on this topic will be performed to better understand the
actual behaviour of such systems for higher values of the ratio �2=�1.
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Appendix A

Here, we give a proof of the off-centered expansion theorem stated in the main
text by Eq. (11). We consider two vectors A ¼ ðra cos ja; ra sin jaÞ and B ¼

ðrb cos jb; rb sin jbÞ given on the plane and the condition kAkokBk fulfilled; first of
all, we take into account the following implications:

ejnjð
�A� �BÞ

k �A � �Bkjnj
¼

1

k �A � �Bkjnje�jnjð �A� �BÞ
¼

1

½k �A � �Bk e�j sgnðnÞjð �A� �BÞ�jnj

¼
1

½ra e�j sgnðnÞja � rbe�j sgnðnÞjb �jnj

¼
ð�1Þn

rjnjb e�jnjb ½1� ra

rb
ej sgnðnÞðjb�jaÞ�jnj

ðA:1Þ

where sgn(n) represents the signum function which assumes the value þ1 if n40 and
the value �1 when no0. To complete the proof we use the binomial series applied to
the brackets in Eq. (A.1):

ð1þ zÞm ¼
Xþ1

k¼0

m

k

 !
zk if jzjo1;m 2 R;

m

k

 !
¼

mðm � 1Þðm � 1Þ � � � ðm � k þ 1Þ

k!
: ðA:2Þ

Therefore, we let z ¼ �ðra=rbÞ e
j sgnðnÞðjb�jaÞ and m ¼ �jnj and we immediately obtain

Eq. (11) by using the simple property:

�jnj

k

� �
¼ ð�1Þk

jnj þ k � 1

k

� �
:
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This is an elementary method to verify this formula; it may be also derived by taking
the leading term in the limit k ! 0 in the identity:

ejnjð
�A� �BÞNnðkk �A � �BkÞ ¼

Xþ1

h¼�1

ð�1ÞnJhðkraÞNnþhðkrbÞe
jhðjb�jaÞejnjb ðA:3Þ

which is easily derived from Eq. 8.53.2 in Ref. [9]. Here the functions JmðxÞ are the
Bessel functions of the first kind and NnðxÞ are the Bessel functions of the second
kind. This limiting approach is commonly used in the three-dimensional case dealing
with spherical Bessel functions and spherical harmonics [6].
References

[1] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1881.

[2] L.K.H. Van Beek, Dielectric behaviour of heterogeneous systems, Progr. Dielectric 7 (1967) 71–114.

[3] Yu.P. Emets, Yu.P. Onofrichuk, Interaction forces of dielectric cylinders in electric fields, IEEE

Trans. Dielectric Electrical Insulation 3 (1996) 87–98.

[4] T.B. Jones, B. Rubin, Forces and torques on conducting particle chains, J. Electrostatics 21 (1988)

121–134.

[5] M.F. Gyure, P.D. Beale, Dielectric breakdown in continuous models of metal-loaded dielectrics,

Phys. Rev. B 46 (7) (1992) 3736–3746.

[6] M. Danos, L.C. Maximon, Multipole matrix elements of the translation operator, J. Math. Phys. 6

(1965) 766–778.
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