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Abstract.
Heterostructures with magneto-electro-elastic coupling (e.g. multiferroics) are of

paramount importance for developing new sensors, actuators and memories. With the
progressive miniaturization of these systems it is necessary to take into account possible
thermal effects, which may influence the normal operating regime. As paradigmatic
example we consider a recently introduced non-volatile memory element composed of a
magnetostrictive nanoparticle embedded in a piezoelectric matrix. The distribution of
the physical fields in this matrix/inclusion configuration are determined by means of the
Eshelby theory, the magnetization dynamics is studied through the Landau-Lifshitz-
Gilbert formalism, and the statistical mechanics is introduced with the Langevin and
Fokker-Planck methodologies. As result of the combination of such techniques we
determine the switching time between the states of the memory, the error probability
and the energy dissipation of the writing process. They depend on the ratio kBT/v

where T is the absolute temperature and v is the volume of the magnetoelastic particle.
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1. Introduction

The possibility to attain a direct coupling between magnetic and electric properties in

physical systems has recently stimulated a great scientific and technological interest

[1, 2, 3]. At the beginning of these investigations different single-phase materials

exhibiting the coexistence of ferroelectric and ferromagnetic responses were introduced

(multiferroism) [4]. However, the development of these materials was strongly limited

by the weak magneto-electric interaction at room temperature [5]. Therefore, to

enhance and control the coupled response, composite structures of piezoelectric and

magnetostrictive phases have been proposed and adopted in several devices [6, 7]. In

this case the coupling is based on the principle of the mechanical stress (or strain)

mediation.

Heterostructures based on intrinsic multiferroics or multi-phases materials are very

promising from the energetic point of view (low-power devices). It is well known that

the electric/mechanic reorientation of the magnetization in single particles or layers

dissipates very low energies and it is appropriate for memories, spintronics and new

logic paradigms [8, 9, 10, 11]. The reduction of the energy dissipation is one of the most

important factors for improving the integration level in memories and other devices

[12]. However, when the energy of variables carrying the information is very low,

thermal effects may play a crucial role and the so-called signal-to-noise ratio must be

taken into account for studying the possible degradation of signals. For this reason

typical temperature distributions in realistic structures have been recently investigated

[13]. From the technological point of view the analysis of the compromise between

operating temperature and miniaturization level is a central task for avoiding any form

of information loss.

In this paper we investigate the possible thermal effects in a paradigmatic

magnetoelectric memory element with stress-mediated switching. In particular, we

consider a recently proposed heterostructure composed of a magnetoelastic particle

embedded in a piezoelectric matrix [14, 15]. We validated this approach by realising

two macroscopic versions of this memory element [16, 17]. Moreover, the assembly

of the structure at the nanoscale is still in progress [18]. This device exhibits several

technological advantages. In fact, it allows to avoid complex procedures for controlling

the microstructure of interfaces in multiferroics, as recently proposed for enhancing

the response of single-phase materials [19, 20, 21]. Moreover, although the direct

control of magnetization by electric field was achieved at very low temperatures in

some semiconductors [22, 23], our system is able to work at room temperature because

of the stress-mediated coupling. Furthermore, the switching process, even if it consists

in a very efficient non-toggle spin reorientation, it does not require electric pulses of

particular duration and shape (e.g. for creating a temporary magnetic anisotropy). We

remark that controlled pulses have been largely adopted in a variety of structures in the

recent past [24, 25, 26], and valuable simulations were performed to demonstrate their

efficacy [27, 28].
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The static and dynamic behavior of the memory element is described in Ref.[15]

where, however, the temperature effects were neglected. Here, we perform the analysis of

the dynamical response of this heterostructure at finite temperature and, in particular,

we determine the switching time, the error probability and the energy dissipation

associated to the process of writing a bit. These important quantities have been

studied in terms of the ratio kBT/v, describing the compromise between temperature

and particle size. As an important result we develop a procedure for determining the

maximum admissible value of the ratio kBT/v. It means that we are able to find the

maximum operating temperature if the size of the nanoparticle is fixed or, conversely,

the minimum volume of the nanomagnet when the temperature is imposed.

The memory element here investigated is based on a couple of orthogonal states

of the magnetization direction, generated by the competition between anisotropic and

Zeeman energies [14]. The commutation process between the states is induced by the

piezoelectric matrix, which is able to act on the particle through the magnetostrictive

effect. The static behavior of the particle is described by a generalized energy

function, able to allow for the spin-reorientation in terms of the applied electric field.

Nanomechanical techniques [29, 30], based on the multi-physics Eshelby theory [31, 32],

have been of primary importance for determining the distribution of the physical

field within the heterogeneous structure. As for the dynamic response of the system,

the above-mentioned analytical form of the energy function has been combined with

classical ferromagnetic models [33, 34], in order to obtain the evolution equation of the

magnetization direction during the switching phases. Moreover, in order to consider

the temperature effects, the Landau-Lifshitz-Gilbert (LLG) equation [33, 34] has been

generalized by means of the Brown formalism, i.e. by introducing a random field acting

on the magnetization [35, 36, 37, 38]. This approach leads to a stochastic Langevin

equation or, equivalently, to a Fokker-Planck equation describing the time evolution of

the density probability of the magnetization direction [40, 41]. The numerical solution

of the Langevin LLG stochastic equation allows us to obtain a complete picture on the

dynamic behavior (i.e. the commutation strategy) of the system at finite temperature.

In particular, these results are useful to design the device in agreement with the desired

balance between operating temperature and particle size.

The structure of the paper is the following. In Section II we introduce the memory

element and we describe the energy function governing its static response. In Sections

III we briefly review the statistical mechanics of the magnetization in a single-domain

particle. In particular, we discuss the Langevin and Fokker-Planck approaches, useful

for the following developments. Finally, in Section IV we perform the complete thermal

analysis of the memory element. We determine the switching time, the error probability

and the energy dissipation associated to the commutation process in terms of the ratio

kBT/v.
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Figure 1. (Color online) Magnetoelastic particle inserted between two electrodes in
a piezoelectric matrix: three-dimensional scheme (a) and top view (b). The easy axis
and the hard axis of the particle are along the x and y axis, respectively. The electrodes
generate the electric field ~E∞ at ϕ = 3π/4 while the magnetic field ~H∞ is applied at
ϕ = π/2.

2. The memory element

We consider a magnetoelastic ellipsoidal particle embedded in a piezoelectric matrix

(see Fig.1 for details) and we briefly introduce the formalism developed for modeling

its behavior. The magnetic response of the particle is characterized by two different

mechanism of anisotropy, namely the geometrical one generated by the prolate shape,

and the physical one depending on the specific material and technological processes

adopted. These anisotropies attempt to maintain the magnetization aligned along the

x-axis (easy axis, EA). However, the principle of operation of the memory element is

based on an externally applied magnetic field ~H∞ aligned with the y-axis (hard axis,

HA). Two stable states for the magnetization are in fact generated by the competition

between the intrinsic anisotropies and the applied field (see state “0” and state “1”

in Fig.1b). The piezoelectric matrix is used to change the state of the memory: the

electric field ~E∞ applied to the system generates a tension or a compression along the

direction perpendicular to the planes of the parallel electrodes. More precisely, a tensile

stress stores the state “1” while a compressive stress stores the state “0”. This scheme

corresponds to a non-toggle switching mechanism: it means that the knowledge of the

previously stored state is not necessary for writing a new bit.

As a typical example, we adopt a nanoparticle made of TbFe2 (Terfenol) with semi-

axes a1, a2, and a3 inserted in a Lead Zirconate Titanate (PZT-5H) matrix [15]. The

internal magnetization ~M = Ms ~γ is uniform (Ms is its constant intensity and ~γ is a

unit vector) because of the small size of the particle. The direction ~γ can be determined
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Table 1. Main parameters of the memory structure.
Parameter Symbol Value

Axis along x 2a1 45nm

Axis along y 2a2 25nm

Axis along z 2a3 20nm

Magnetization Ms 64 × 104A/m

Anisotropic effective field Ha 18 × 104A/m

First magneto-elastic coefficient [43] λ111 1.7 × 10−3

Second magneto-elastic coefficient [43] λ100 0.1 × 10−3

Effective magneto-elastic coefficient [43] λs = 3
5
λ111 + 2

5
λ100 1.06 × 10−3

Young modulus of the particle E 110GPa

Poisson ratio of the particle ν 0.35

External magnetic field H∞ 50 × 104A/m

Distance between electrodes d 130nm

Applied voltage V ±0.5V

Applied electric field E∞ = −V/d ±3.85 × 106V/m

Magnetic permeability µ1 = µ0 4π × 10−7A/m

Exchange stiffness constant (Terfenol) [50] A 10−11J/m

Gilbert damping coefficient for RE-TM |α| 0.3

Landé g-factor g 2

Bohr magneton µB = e~
2me

9.274 × 10−24J T−1

Gyromagnetic ratio |G| = gµB

~ 1.76 × 1011rad s−1T−1

by minimizing the following energy function [42]

w(~γ) = −µ0Ms~γ · ~H + ϕa(~γ) − T̂ : ε̂µ(~γ). (1)

The first term (Zeemann energy) describes the effect of the local magnetic field ~H.

The second term ϕa(~γ) represents the anisotropic energy [14]. In our case we assume

the usual uniaxial form ϕa(~γ) = −(1/2)µ0MsHaγ
2
x. Finally, the third term represents

the elastic energy, where T̂ is the local stress and ε̂µ(~γ) is the strain describing the

magnetostriction. We use the standard expression ε̂µ(~γ) = (λs/2)(3~γ ⊗ ~γ − Î) where Î

is the identity tensor and the effective magnetostriction coefficient λs can be evaluated

as in Table 1 (where one can find the main parameters of the system) [43].

To conclude, we summarize the constitutive equations of the particle: the magnetic

behavior is governed by ~B = µ0[ ~H + Ms~γ] where ~B is the magnetic induction and

the elastic one by T̂ = L̂2 {ε̂0 − ε̂µ (~γ)} where ε̂0 is the local strain tensor (referred to

the demagnetized particle) and L̂2 is the stiffness tensor of the particle. The direction

~γ = ~γ
(

~H, T̂
)

can be found through the minimization of Eq.(1).
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Figure 2. (Color online) Representation of w̃(~γ) [J/m3] for different values of the
applied voltage: V =+0.5V or E∞ =-3.85×106V/m (compression) in the first panel,
V =-0.5V or E∞ =+3.85×106V/m (traction) in the second panel, and V = 0V in
third panel. Red curves correspond to ϑ = 0 and show the evolution of stable points
A and B.

2.1. Coupling with the external magnetic field

It is important to know the relationship between the local magnetic field ~H and the

externally applied magnetic field ~H∞. As recently discussed [15], the solution of this

problem is given by

~H =
[
Î − Ŝm

(
Î − µ̂−1

1 µ0

)]−1 [
~H∞ − Ŝmµ̂−1

1 µ0Ms~γ
]

= Â ~H∞ + N̂~γ, (2)

where the tensor Ŝm is the magnetic Eshelby tensor [44, 45], µ0 is the vacuum magnetic

permeability and µ̂1 is the magnetic permeability tensor of the piezoelectric matrix.

Tensors Â and N̂ can be directly identified by the first line of Eq.(2). The local magnetic

field is therefore explicitly written in terms of the remotely applied magnetic field and

of the internal magnetization orientation.

2.2. Coupling with the external electric and elastic fields

The coupling with the external electric and elastic fields is mediated by the piezoelectric

matrix, representing the environment where the particle is inserted. We search for the



Thermal effects in magnetoelectric memories with stress-mediated switching 7

relationship between the local stress T̂ and the applied electric field ~E∞ and the remote

elastic strain ε̂∞. We recall that the constitutive equation of the matrix can be written

as T̂ = L̂1ε̂ + Q̂1
~E and ~D = R̂1ε̂ + ε̂1

~E where L̂1 is the elastic stiffness tensor, ε̂1

is the permittivity tensor and Q̂1 and R̂1 = −Q̂T
1 are the piezoelectric tensors of the

matrix. The tensor properties of the PZT-5H matrix can be found in literature [46].

The magnetoelastic particle is inserted into the piezoelectric matrix with a specific initial

magnetization direction ~γ0 and a corresponding magnetostriction ε̂µ(~γ0). We define the

local strain (within the particle) with respect to such an initial state and we therefore

define ε̂ = ε̂0 − ε̂µ(~γ0). Here, ε̂0 is the local strain tensor referred to the demagnetized

particle. Specifically, we observe that ~γ0 is aligned with the x-axis and therefore ~γ0 = ±~e1

(where ~ei is the unit vector along the i-th axis). Hence, the constitutive equations of

the particle in the new reference frame read T̂ = L̂2 {ε̂ − [ε̂µ(~γ) − ε̂µ(~γ0)]} and ~D = ε̂2
~E

where L̂2 and ε̂2 are the elastic stiffness and the permittivity tensor of the particle,

respectively.

The coupling problem can be approached and solved by means of the multi-physics

Eshelby formalism [32, 31, 30, 15]. As recently verified [15], the local stress depends on

the external electric and elastic fields and on the magnetization direction. In fact, we

proved the explicit relation

T̂ = Ĉε̂∞ + D̂ ~E∞ + F̂ [ε̂µ (~γ) − ε̂µ (~γ0)] , (3)

where the tensors Ĉ, D̂ and F̂ can be calculated through the refined procedures described

in literature [15]. They depend on the physical properties of the two phases and on the

piezoelectric Eshelby tensor [47, 48, 49, 15].

2.3. Static behavior of the system

We can now combine previous results in order to obtain a generalized energy function

describing the static behavior of the memory system. The set of equations describing the

system is constituted of the energy minimisation, Eq.(1), the coupling with the external

magnetic field ~H = ~H
(

~H∞, ~γ
)
, Eq.(2), and the coupling with the external electric and

elastic fields T̂ = T̂
(
ε̂∞, ~E∞, ~γ

)
, Eq.(3). This problem corresponds to the minimization

of a new energy function defined as [15]

w̃ = − µ0Ms~γ · Â ~H∞ − 1

2
µ0Ms~γ · N̂~γ + ϕa(~γ)

− Ĉε̂∞ : ε̂µ(~γ) − D̂ ~E∞ : ε̂µ(~γ)

− 1

2
F̂ ε̂µ(~γ) : ε̂µ(~γ) + F̂ ε̂µ(~γ0) : ε̂µ(~γ). (4)

Such an expression provides the final magnetization orientation in terms of the external

fields applied to the structure (the proof of Eq.(4) can be found in Appendix A). We

can use the final form of the energy function to investigate the behavior of the memory

element by letting ε̂∞ = 0, ~H∞ along the y-axis and ~E∞ along the direction identified by

ϕ = π/4, ϑ = 0 (where ϕ and ϑ are the standard spherical coordinates). When E∞=0
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we observe two equivalent stable positions around ϕ = π/4, ϑ = 0 and ϕ = 3π/4,

ϑ = 0 corresponding to the magnetization states represented in Fig.1. This is shown

in the third panel of Fig.2 where w̃ is represented through a two-dimensional surface

(in terms of ϕ and ϑ). The red curve corresponds to ϑ = 0 and shows two minima

(points A and B). In the first panel of Fig.2 we have an applied compressive stress

(V = +0.5V and E∞=-3.85×106V/m) generating a single minimum point A (state

“0”). Conversely, in the second panel we have an applied tensile stress (V = −0.5V and

E∞=+3.85×106V/m) corresponding to the minimum point B (state “1”). It is evident

that the form of the energy function allows to obtain a non-toggle switching scheme for

the memory element.

Some comments follow on the parameters adopted in our model. All the material-

dependent parameters have been chosen in order to describe the Terfenol response for the

magnetic particle and the PZT-5H response for the piezoelectric matrix. These materials

represent classical paradigmatic examples being largely utilized in nanotechnology. The

size of the system has been chosen at the nanoscale for assuring a mono-domain behavior

of the magnetic particle (however, a varying volume of the particle has been considered

in Section 4). The adopted anisotropic effective field Ha is achievable with standard

nanotechnologies [14, 15]. A very important parameter is given by the external magnetic

field H∞: its value has been determined for fixing the stable states of the magnetization

around ϕ = π/4 and ϕ = 3π/4. Therefore, the definition of this parameter is crucial

for the correct operating of the memory element. Here we studied the position of the

two minima of w̃ with a varying H∞ (and with E∞=0) and we selected the value

corresponding to the geometry of Fig.1. We remark that H∞ depend on the material

parameters above defined (i.e. on the physical properties of Terfenol and PZT-5H).

To conclude, the applied electric field E∞ (or, equivalently the electric potential V )

has been determined in order to have (i) a mechanical stress sufficient to observe the

spin reorientation during the switching phases, and (ii) a switching time always in the

subnanosecond scale. We obtained a value V = ±0.5V, as largely discussed in Ref.[15].

This is a value highly compatible with most of microelectronic technologies.

While the dynamic analysis of the system has been performed in a recent paper

[15], here we are interested in investigating the effect of the temperature. To do this we

need to introduce the statistical mechanics of the magnetization.

3. Statistical mechanics of magnetization in a single-domain particle

The magnetic system is assumed to be monodomain and, therefore, all spins behave

collectively. This is assured by the small size of the magnetic particle and by the high

value of the exchange stiffness constant A (see Table 1 for details) [50]. The dynamics

of the magnetization direction ~γ is therefore described by the LLG equation [33, 34, 51]

d~γ

dt
= − G

Ms(1 + α2)

[
~γ ∧ ∂w̃

∂~γ
− α~γ ∧

(
~γ ∧ ∂w̃

∂~γ

)]
, (5)
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where G is the gyromagnetic ratio, α is the Gilbert damping parameter and ∂w̃
∂~γ

represents

the effective field applied to the magnetic dipole (note that G < 0 and α < 0 for

representing electrons precession). Here w̃ is the generalized energy function defined

in Eq.(4). The previous LLG equation is valid for a system at T = 0◦K. In order

to introduce thermal fluctuations we assume the Brown hypothesis affirming that the

effects of the temperature can be mimicked by an addictive random field acting on the

magnetization [35, 36, 37, 38]. It means that we substitute ∂w̃
∂~γ

with ∂w̃
∂~γ

+ D~n, where ~n

is a stochastic process with three main properties: its average value is zero at any time,

〈~n(t)〉 = 0, it is completely uncorrelated (white), 〈ni(t)nj(τ)〉 = 2δijδ(t − τ), and it is

Gaussian. So, Eq.(5) is transformed into the Langevin LLG system

ϕ̇ sin ϑ = − G
Ms(1 + α2)

×
[
∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ
+ D

(
~δ + α~β

)
· ~n

]
,

ϑ̇ = − G
Ms(1 + α2)

×
[
− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ
+ D

(
α~δ − ~β

)
· ~n

]
, (6)

where we have introduced a mobile reference frame rigidly connected with the

magnetization vector: ~δ = (cos ϕ cosϑ, sin ϕ cos ϑ,− sin ϑ), ~β = (− sin ϕ, cos ϕ, 0) and

~γ = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ) (ϑ and ϕ are the standard nutation and precession

angles).

It is well known that the combination of dissipation (friction controlled by the

Gilbert damping constant α) and fluctuation (described by the diffusion coefficient D) is

able to describe the dynamic transient state leading to the equilibrium thermodynamics

for long time [39, 40, 41]. It is a general concept valid both in classical mechanics

[52, 53] and in quantum one [54, 55]. The system obtained in Eq.(6) is a stochastic

differential equation (SDE): from the mathematical point of view there are two different

approaches for defining the meaning of a SDE, namely, the Itô stochastic calculus and the

Stratonovich one [56, 57]. Throughout all the paper we use the Stratonovich approach

for two main reasons: firstly, the usual rules of calculus (for derivatives and integrals)

remain unchanged and, secondly, the Stratonovich approach is the most convenient

interpretation within the physical sciences since it can be obtained as the limiting

process of a coloured noise towards an uncorrelated (white) one [40]. The typical tool

for studying SDEs is the Fokker-Planck methodology based on a partial differential

equation describing the dynamic of the density probability of the state of the system

[40]. In our case the state of the system is given by the couple (ϕ, ϑ) and, therefore, the

density probability can be written as ρ = ρ(ϕ, ϑ, t). The related Fokker-Planck equation

assumes the form (see Appendix B for details)

∂ρ

∂t
=

G
Ms(1 + α2) sin ϑ

∂

∂ϕ

{[
∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ

]
ρ

}
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+
G

Ms(1 + α2)

∂

∂ϑ

{[
− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]
ρ

}

− G2D2

M2
s (1 + α2)

∂

∂ϑ

{
cos ϑ

sin ϑ
ρ

}

+
G2D2

M2
s (1 + α2)

{
1

sin2 θ

∂2ρ

∂ϕ2
+

∂2ρ

∂ϑ2

}
. (7)

As above said, this equation should have an asymptotic solution coherent with the

equilibrium thermodynamics and, therefore, we can verify that

lim
t→∞

ρ (ϕ, ϑ, t) =
sin ϑ

Z
exp

[
−w̃(ϕ, ϑ)v

kBT

]
, (8)

where the partition function Z is given by

Z =

∫ π

0

∫ 2π

0

sin ϑ exp

[
−w̃(ϕ, ϑ)v

kBT

]
dϕdϑ. (9)

Here kB is the Boltzmann constant and T is the absolute temperature. Note that the

term sin ϑ in previous expressions is due to the (non-cartesian) spherical system (it

corresponds to the Jacobian of the coordinates transformation). Moreover, v represents

the volume of the magnetic particle (w̃v is the total energy being w̃ the energy density).

The value of the diffusion constant D can be found by substituting Eq.(8) in Eq.(7) and

by observing that we obtain an identity if and only if

D2 =
αMskBT

Gv
, (10)

an equation representing the specific fluctuation-dissipation property.

The obtained Fokker-Planck equation is particularly useful for obtaining a simplified

version of the Langevin LLG system: in fact, in Eq.(6) a three-dimensional random

vector has been added for introducing the fluctuations in a system with two variables

(ϕ and ϑ). There is no need to embed the system in a three-dimensional space and,

moreover, there are important reasons for not doing so (coherence/elegance of the theory

and saving of computational resources). We consider the following new version of the

Langevin LLG system where only two noise terms are considered [58, 59, 60]

ϕ̇ = − G
Ms(1 + α2) sin ϑ

[
∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ

]

+
1

sin ϑ

√
1

2τN
nφ,

ϑ̇ = − G
Ms(1 + α2)

[
− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]

+
1

2τN

cos ϑ

sin ϑ
+

√
1

2τN

nθ. (11)

Here we have introduced to so-called Néel time

τN =
Ms(1 + α2)v

2αGkBT
, (12)
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representing the characteristic response time of a particle without external fields. If

the noises have the standard properties 〈nφ(t)〉 = 0, 〈nθ(t)〉 = 0, 〈nφ(t)nθ(τ)〉 = 0,

〈nφ(t)nφ(τ)〉 = 2δ(t − τ), 〈nθ(t)nθ(τ)〉 = 2δ(t − τ) and they are Gaussian, we can

prove that the Fokker-Planck equation established starting form Eq.(11) are exactly

coincident to Eq.(7). From the theoretical point of view Eq.(11) is more coherent and

elegant since the SDE lives completely on the spherical surface without the need for a

three-dimensional embedding (it represents the covariant formulation of the SDE on the

spherical manifold) [59, 60]. Moreover, from the computational point of view Eq.(11) is

convenient since two random numbers must be generated at any time step, instead of the

three ones needed for the implementation of Eq.(6). They can be directly obtained by

means of the Box-Muller theorem [61]. Another remarkable advantage of Eq.(11) is that

the noise induced drift term is always zero, yielding exactly the same SDE both for the

Itô and the Stratonovich approach. This fact allows us to apply indifferently numerical

techniques specifically developed for either the Itô or the Stratonovich interpretation of

SDEs (see Appendix C for details).

To conclude, when we approach the problem of studying the thermal effects on a

single particle we can adopt one of the three following methodologies. First, we can take

into consideration the Fokker-Planck equation and we can search its solution through the

finite difference method or the finite element method. Such a technique has been used

to investigate the dependence of the magnetization reversal on temperature, damping

and applied fields [62, 63, 64]. As second approach, it is possible to develop the density

probability in a series of harmonic functions and to analyse the dynamics of related

coefficients. The kinetic equation for these coefficients has been obtained [65, 66, 67]

and it has been largely used for determining the relaxation time of the Fokker Planck

operator [68, 69, 70, 71]. Finally, the third approach consists in numerically solving the

Langevin equation and in calculating the relevant average values through the Monte

Carlo method [72]. In the following we adopt this approach with a standard integration

scheme discussed in Appendix C.

4. Switching process within the magnetoelectric memory

We can now approach the problem of evaluating the temperature effects on the memory

element. As one can find in Table 1, we have considered an ellipsoidal particle with

axes of lengths 45, 25 and 20 nm. Nevertheless, we may now consider an arbitrary size

of the particle. To explain this point we recall an important property of the Eshelby

theory (which is valid for the case with any possible coupling): when an ellipsoidal

particle is embedded in an infinite matrix and subjected to uniform external actions,

the physical fields (electric, magnetic and elastic) induced within the particle itself are

always uniform and they depend on the material properties of the two phases and on the

ratios a1/a2 and a2/a3 [32, 31, 30, 15, 47, 48, 49]. The internal fields do not depend on

the actual size of the particle: only the shape of the ellipsoid may influence the particle

response. Therefore, also the results based on the energy function defined in Eq.(4) are
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scale invariant and depend only on the ratio between the axes lengths. We conclude

that the numerical evaluation of w̃ described in Section II can be used for any rescaled

version of the particle.

The only effect of the real size of the nanomagnet is introduced in the Langevin

system (see Eq.(11)) through the Néel time τN defined in Eq.(12). Since 1/τN is directly

proportional to kBT/v (with a coefficient that is simply material dependent) we can

analyse the thermal effects in terms of the ratio kBT/v, describing the conflict between

temperature and particle size. We remark that one of the most important parameter

of the system is the energy barrier between the states A and B, which can be observed

in the third panel of Fig.2 (in absence of the electric field). It is an intrinsic property

of the structure depending only on the anisotropies (geometrical and physical) of the

particle and on the externally applied magnetic field (creating the quite orthogonal

states): with the set of parameters defined in Table 1 we obtain an energy barrier equals

to ∆e = 2.5 × 104J/m3. It is evident that the memory can work only if the density of

thermal energy kBT/v is much lower than ∆e (for avoiding unwanted switching between

the states). For example, for the initially proposed structure (v ' 10−22m3) at room

temperature (T = 300◦K) we have kBT/v = 40J/m3 � ∆e and, therefore, the system

should work correctly. In this case the total energy barrier between the states A and

B corresponds to v∆e = 1.7 · 10−18J ' 400kBT . It is interesting to know how much

we can increase the temperature or, on the other hand, decrease the volume of the

particle, without modifying the regular operation of the device. In other words, we

search for the maximum value of kBT/v admissible for our structure. In order to do

this, we consider the system without electric field applied to the piezoelectric matrix

and we suppose to have an initial magnetization in the state A or B. We observe that

the state A is represented by ~γ = ~vA = (cos ϕA, sin ϕA, 0) where ϕA ' 0.892 while for

the state B we have ~γ = ~vB = (cos ϕB, sin ϕB, 0) where ϕB ' 2.277. We determine

the trajectories of ~γ starting from these points in order to analysing the stability of the

stored bit. It means that we simulate the transition A → A generated by the electric

potential change V = +0.5V → V = 0V and the transition B → B generated by the

electric potential change V = −0.5V → V = 0V. For any value of the ratio kBT/v (100

equispaced values in the range from 10J/m3 to 2×104J/m3) we generate a large number

(dynamically adjusted from 104 for the high values of kBT/v to 5 × 106 for the low

values of kBT/v) of trajectories ~γ(t) by solving Eq.(11) (with E∞ = 0 and ~γ(0) = ~vA

or ~γ(0) = ~vB) and we determine the average values through the Monte Carlo method.

The numerical solution of Eq.(11) has been performed through the integration scheme

discussed in Appendix C with a time step δt = 2.4 × 10−13sec.

The results are reported in Figs.3 and 4. In the first panel we show the time

evolution of the three components of 〈~γ(t)〉 for the extreme values of the ratio kBT/v.

It is evident that for the larger values of kBT/v (dashed lines in the first panel of

Figs.3 and 4) we observe a vector 〈~γ〉 rapidly aligned to the y-axis, indicating the

complete information loss (in this situation we have ~γ · ~vA ' ~γ · ~vB). A measure of

this effect is given by the error probability, shown in the second panel of Figs.3 and
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Figure 3. (Color online) Stability analysis of the switching A (V = +0.5V) - A
(V = 0V). First panel: trajectories followed by the average magnetization components
(red: 〈γx〉; blue: 〈γy〉; green: 〈γz〉). Solid lines correspond to the smallest ratio kBT/v

(10J/m3) while dashed lines to the highest one (20000J/m3). Second panel: error
probability in terms of the ratio kBT/v.
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Figure 4. (Color online) Stability analysis of the switching B (V = −0.5V) - B
(V = 0V). The panels description can be found in Fig.3.

4. For any value of kBT/v we follow Nt trajectories for a long time and we determine

the number of unwanted switching towards the other state. The error probability is

given by the ratio between this number and the total number Nt of trajectories. Such

a number Nt is dynamically adjusted and it corresponds to 104 for the higher values of

kBT/v (sizeable error probability) and to 5 × 106 for the lower values of kBT/v (very

low error probability). We remark that it is difficult to have a good estimate of the

error probability for values of the ratio kBT/v much lower than 103J/m3 since this

probability is very low and we should use a large number of trajectories Nt � 108,

which is quite prohibitive from the computational point of view. We obtained quite the

same curve of Perr versus kBT/v for both transitions A-A and B-B. It means that the

error probability is a symmetric quantity for our system. Moreover, we observe that

if kBT/v → +∞ then Perr → 1/2, a value exactly quantifying the total information

loss. We can identify the maximum value admissible for kBT/v in order to have a

negligible error probability: for example, if we impose Perr � 10−8 then we obtain
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Figure 5. (Color online) Switching process between states A and B (traction, V =
−0.5V). First panel: trajectories followed by the average magnetization components
(red: 〈γx〉; blue: 〈γy〉; green: 〈γz〉). Solid lines correspond to the smallest ratio
kBT/v (10J/m3) while dashed lines to the highest one (4 × 103J/m3). Second panel:
switching time tm versus kBT/v for three different values of the precision parameter
(blue triangles: εγ = 0.01; red circles: εγ = 0.02; green squares: εγ = 0.03).

0 1 2 3 4

x 10
−10

−1

−0.5

0

0.5

1

t

〈γi〉

0 1000 2000 3000 4000
1.1

1.15

1.2

1.25
x 10

−10

kBT/v

tm

Figure 6. (Color online) Switching process between states B and A (compression,
V = +0.5V). The panels description can be found in Fig.5.

(kBT/v)max ' 103J/m3 (see second panel of Figs.3 and 4), which is much larger than our

initial proposition (40J/m3) and, at the same time, much smaller than the fixed energy

barrier between the states (∆e = 2.5× 104J/m3). Of course one can select an arbitrary

threshold for the error probability by obtaining a different maximum value admissible

for kBT/v. This stability analysis was performed by starting from a deterministic initial

condition (given by ~γ(0) = ~vA or ~γ(0) = ~vB) since we were interested in examining

the possible escape from the potential wells induced by the thermal agitation during

the time evolution. It is the possibility to remain inside the wells that is important to

evaluate the pertinent error probability.

Once determined the restriction on the ratio kBT/v we may analyse the dynamics

of the transitions A-B and B-A. In this case, since we want to analyse the real dynamics

at a given temperature, we can not start our simulations at ~γ(0) = ~vA or ~γ(0) = ~vB.

Instead, we must start with a random initial condition coherent with the statistical
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Figure 7. (Color online) Energy dissipation during switching phases. First panel:
average value of −dw̃/dt during the transition B-A for different values of kBT/v (100
equispaced values from 10J/m3 to 4000J/m3). The black continuous line corresponds
to the smallest ratio kBT/v while the black noisy line to the highest one. Second
panel: average value of −dw̃/dt during the transition A-B. The black lines have the
same meaning as in the first panel. Third panel: magnetic dissipated energy ∆Em/v

in terms of kBT/v for both transitions A-B and B-A.

distribution within the initial potential well. The initial density probability corresponds

to the thermodynamic equilibrium and it is therefore given by Eqs.(8) and (9). We

extracted the initial conditions from this distribution. For any value of kBT/v in the

range from 10J/m3 to 4×103J/m3 we generate 104 trajectories of the magnetization

and we evaluate their average values. We have chosen a range of kBT/v exceeding

the threshold value (kBT/v)max ' 103J/m3 for better exploring the critical region. In

Fig.5 we show the results for the switching A-B corresponding to the applied traction at

V = −0.5V. Similarly, in Fig.6 we show the results for the switching B-A corresponding

to the applied compression at V = +0.5V. In the first panel we present the time behavior

of the components of 〈~γ〉. The good switching behavior is evident in the whole range of

variation of kBT/v: in the first panel of Figs.5 and 6 solid lines correspond to the smallest

ratio kBT/v (10J/m3) while dashed lines to the highest one (4×103J/m3). In particular,

the regular accomplishment of transitions is well described by the limit limt→∞ ~γ ·~vB = 1

for the switching A-B and by limt→∞ ~γ · ~vA = 1 for the switching B-A. We use these

asymptotic behavior to introduce the switching time tm of the process. It is defined as

the first instant of time tm satisfying the condition |~γ(t) ·~vB −~γ(+∞) ·~vB| < εγ for any
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t > tm (for the transition A-B). Evidently, for the second transition B-A the inequality

reads |~γ(t) ·~vA −~γ(+∞) ·~vA| < εγ . Note that the precision parameter εγ (around 10−2)

concerns the accuracy of the measurement of the magnetization ~γ within the asymptotic

regime and it is not related with the error probability above defined (Perr � 10−8 if

kBT/v < 103J/m3). In the second panel of Figs.5 and 6 we show the switching time

in terms of the ratio kBT/v. The three different set of data correspond to three values

of the precision parameter εγ. In all cases we observe an increasing trend of tm versus

kBT/v. Of course, the switching times obtained in Figs.5 and 6 (hundreds of ps) must

be realistically augmented in order to consider different phenomena not contemplated

in our model: response time of the piezoelectric matrix, time to transfer the stress to

the magnetic particle, and delays of the electronic system generating the electric pulses.

We can estimate a loss of velocity of about ten times, resulting in final switching times

of some nanoseconds. However, the values of the writing time are in any case strongly

competitive with other standard or spintronic memory technologies [73]. The behavior

of the curves for the switching A-B and B-A is quite different because of the different

physical processes involved. As a matter of fact, the transition A-B is characterised

by a traction inducing a planar anisotropy from the magnetic point of view, while the

transition B-A is characterised by a compression inducing an axial anisotropy for the

magnetization.

To conclude, we discuss the results concerning the energy consumption during

the switching phases. This energy derives from the charge/discharge of the effective

capacitor and from the damped precession of the magnetization [27, 28]. The first

contribution ∆Ee represents the so-called CV 2 dissipation and it can be simply

determined when the geometry of the system is given. For example, if we consider the

parameters shown in table 1 we obtain ∆Ee = 7.5 × 10−17J. The second contribution

∆Em can be evaluated by determining the variation of w̃(t) during the transitions

phases. We can obtain the time evolution of dw̃(t)/dt through the expression dw̃(t)/dt =

(∂w̃/∂ϑ)ϑ̇ + (∂w̃/∂ϕ)ϕ̇ and we can use Eq.(11) to evaluate the terms ϑ̇ and ϕ̇.

This procedure can be numerically implemented within the integration scheme of the

Langevin system. As before, the average values are determined with the Monte Carlo

technique. Since w̃ is always a decreasing function during the switching phases, in Fig.7

(first and second panel) we show the average value of −dw̃(t)/dt for the transitions B-A

and A-B. This is done for 100 equispaced values of kBT/v (from 10J/m3 to 4000J/m3).

Interestingly enough, we note that the temperature effects are stronger in the transition

A-B. However, we can determine the specific energy dissipated during a transition

phase by integrating the time derivative of w̃: ∆Em/v = −
∫ +∞
0

(dw̃(t)/dt)dt. The

numerical integration leads to the results shown in the third panel of Fig.7, where

∆Em/v is plotted versus kBT/v for both transitions B-A and A-B. We observe that

there is only a very slight (linear) dependence of ∆Em/v on kBT/v. In fact, we can

approximate ∆Em/v ' 2 × 105J/m3 for any value of kBT/v. For our original particle

with v = 10−22m3 we obtain ∆Em = 2 × 10−17J and the total switching energy is

therefore ∆E = ∆Ee + ∆Em ' 9.5 × 10−17J. This value is strongly competitive when
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compared with most non-volatile memory technologies [15, 73, 74].

5. Conclusions

In this work we have developed a complete analysis concerning the effects of the

temperature on the magnetization dynamics in a paradigmatic memory element. We

considered a heterostructure composed of a magnetoelastic particle embedded in a

piezoelectric matrix. In order to introduce the statistical mechanics we have taken

into consideration the Langevin equation describing the dynamics of the magnetization

vector when the system is in contact with a thermal bath. Its numerical solution

allowed us to examine the switching behavior between the stable states in terms of the

temperature. We elaborated a blended nanomechanical/magnetic/statistic approach

to obtain a comprehensive model and, therefore, a complete picture of its dynamics

at finite temperature. The mechanical coupling between magnetoelastic particle and

piezoelectric matrix is described by the multi-physics Eshelby formalism, the time

evolution of the magnetization orientation is modelled through the Landau-Lifshitz-

Gilbert equation and, finally, the presence of the temperature is introduced following

the Brown assumption, leading to specific Langevin and Fokker-Planck equations. The

thorough combination of these three methods allowed to analyse the most important

quantities of the system in terms of the ratio kBT/v. More specifically, we determined

the switching time, the error probability, and the energy dissipation corresponding to

the commutation phases. To conclude, we remark that from the technological point of

view the knowledge of these parameters versus kBT/v is crucial for obtaining the desired

compromise between maximum operating temperature and size of the memory element

(which should be strongly reduced for having a very large-scale integration).
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Appendix A. Mathematical form of the energy function

We consider Eqs.(1), (2) and (3) in order to prove Eq.(4). It is important to remark

that the local magnetic field ~H and the local stress tensor T̂ enter the energy function

w(~γ) as parameters. It means that the minimization min
~γ: ‖~γ‖=1

w
(
~γ; ~H, T̂

)
furnishes the

direction ~γ in terms of the magnetic field and the stress tensor, i.e. ~γ = ~γ
(

~H, T̂
)
.

Therefore, to approach the minimization problem defined by Eq.(1), we can apply the

Lagrange method based on the auxiliary function L(~γ, λ) = w(~γ)−λ(~γ ·~γ−1), where λ
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is the so-called Lagrange multiplier. Hence, we consider the equations ∂L/∂γi = 0 (for

i = 1, 2, 3) and ∂L/∂λ = 0. Summing up, we obtain the system

2λγi = − µ0MsHi +
∂ϕa(~γ)

∂γi
− T̂ :

∂ε̂µ(~γ)

∂γi
, (A.1)

~γ · ~γ = 1, (A.2)

~H = Â ~H∞ + N̂~γ, (A.3)

T̂ = Ĉε̂∞ + D̂ ~E∞ + F̂ [ε̂µ (~γ) − ε̂µ (~γ0)] . (A.4)

We can now substitute the last two relations in the first one, eventually obtaining

2λγi = −µ0Ms(Â ~H∞ + N̂~γ)i +
∂ϕa(~γ)

∂γi
(A.5)

−
{
Ĉε̂∞ + D̂ ~E∞ + F̂ [ε̂µ (~γ) − ε̂µ (~γ0)]

}
:
∂ε̂µ(~γ)

∂γi

By exploiting the symmetries of tensors N̂ and F̂ [15] we can simply rewrite Eq.(A.5)

as follows (by converting each term in a partial derivative with respect to γi)

2λγi = −µ0Ms
∂

∂γi

(
~γ · Â ~H∞

)
− 1

2
µ0Ms

∂

∂γi

(
~γ · N̂~γ

)

+
∂ϕa(~γ)

∂γi

− ∂

∂γi

[
Ĉε̂∞ : ε̂µ(~γ)

]
− ∂

∂γi

[
D̂ ~E∞ : ε̂µ(~γ)

]

− 1

2

∂

∂γi

[
F̂ ε̂µ(~γ) : ε̂µ(~γ)

]
+

∂

∂γi

[
F̂ ε̂µ(~γ0) : ε̂µ(~γ)

]
(A.6)

The previous expression combined with the condition ~γ · ~γ = 1 corresponds to a

constrained minimization of a new energy function w̃ defined in Eq.(4). We can note

that in Eq.(A.6) or (4), while the first term represent the Zeeman contribution (related

to the applied magnetic field), the second term represents the self-magnetization of

the particle. The factor 1/2 in the second term has been obtained by observing that
1
2

∂
∂γi

(
~γ · N̂~γ

)
=

(
N̂~γ

)
i
. The same argument is valid for the first term in the third line

of Eq.(A.6).

Appendix B. The Fokker-Planck equation

We take into consideration the following system of stochastic differential equations

dxi(t)

dt
= hi(~x, t) +

m∑

j=1

gij(~x, t)nj(t), (B.1)

where the stochastic processes nj(t) fulfil the following properties




〈ni(t)〉 = 0 ∀ i, t

〈ni(t1)nj(t2)〉 = 2δijδ(t1 − t2) ∀ i, j, t1, t2
ni(t) Gaussian noises.

(B.2)

If we take into consideration the Stratonovich interpretation of the stochastic calculus,

it is possible to prove that the dynamics of the density probability of the state vector ~x
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is described by the following Fokker-Planck equation [40]

∂ρ(~x, t)

∂t
= −

n∑

i=1

∂

∂xi
[Di(~x, t)ρ(~x, t)]

+
n∑

i=1

n∑

j=1

∂2

∂xi∂xj
[Dij(~x, t)ρ(~x, t)] , (B.3)

where Di are the so-called drift coefficients given by

Di(~x, t) = hi(~x, t) +
n∑

k=1

m∑

j=1

gkj(~x, t)
∂gij(~x, t)

∂xk

. (B.4)

Here, the first term represents the standard drift coefficient introduced by the differential

problem stated in Eq.(B.1); the second term represents the so-called noise induced drift

term and it is a peculiarity of the Stratonovich calculus. We remark that it is different

from zero only with multiplicative noises, i.e. when gij(~x, t) depends directly on the

state ~x. On the other hand, the diffusion coefficients Dij are defined as follows

Dij(~x, t) =
m∑

k=1

gik(~x, t)gjk(~x, t). (B.5)

They take into account the fluctuations introduced by the noise terms. Through this

theory, in Section 3 we have established the Fokker-Planck equation associated to the

Langevin systems given in Eqs.(6) and (11) and we have found the same evolution

equation given in Eq.(7). We remark that, while for the Langevin system in Eq.(6)

we obtain a noise induced drift term represented by the third line in Eq.(7), for the

simplified version of the Langevin system in Eq.(11) the noise induced drift term is

zero, leading to the equivalence of the Itô and the Stratonovich interpretation for this

particular case.

Appendix C. On stochastic differential equations

The stochastic differential equation defined in Eq.(B.1) can be integrated in a time step,

by obtaining

xi(t + δt) − xi(t) =

∫ t+δt

t

hi(~x, t)dt

+

∫ t+δt

t

gij(~x, t)nj(t)dt, (C.1)

where the sum over j is implicit for brevity and the noises satisfy properties in Eq.(B.2).

We adopt a general integration rule that takes into account both the Itô (α = 0) and

the Stratonovich (α = 1/2) approaches (also including all the intermediate cases): in

the integrands we substitute ~x → (1− α)~x(t) + α~x(t + δt), i.e. a weighted means of the

values assumed at the endpoints of the interval. We can define δ~x = ~x(t + δt) − ~x(t)

and, therefore, we can rewrite the substitution as ~x → ~x(t) + αδ~x. For the first integral
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in Eq.(C.1) we obtain
∫ t+δt

t

hi(~x, t)dt ∼= hi(~x(t), t)δt +
∂hi

∂xk
(~x(t), t)αδxkδt,

(C.2)

and, similarly, for the second one we get
∫ t+δt

t

gij(~x, t)nj(t)dt ∼= [gij(~x(t), t)

+
∂gij

∂xk

(~x(t), t)αδxk

]∫ t+δt

t

nj(t)dt. (C.3)

Summing up, we have found the first form of the integration scheme

δxi = hi(~x(t), t)δt +
∂hi

∂xk

(~x(t), t)αδxkδt

+ gij(~x(t), t)

∫ t+δt

t

nj(t)dt

+
∂gij

∂xk
(~x(t), t)αδxk

∫ t+δt

t

nj(t)dt. (C.4)

The term
∫ t+δt

t
nj(t)dt is a Gaussian random variable with the following expectation

values 〈∫ t+δt

t

nj(t)dt

〉
= 0, (C.5)

〈∫ t+δt

t

ni(t)dt

∫ t+δt

t

nj(τ)dτ

〉

=

∫ t+δt

t

∫ t+δt

t

〈ni(t)nj(τ)〉 dtdτ = 2δijδt. (C.6)

So, we can define

Pj =
1√
2δt

∫ t+δt

t

nj(t)dt, (C.7)

and we obtain a sequence of Gaussian random variables with the properties 〈Pj〉 = 0

and 〈PiPj〉 = δij. To complete the calculation we have to re-substitute Eq.(C.4) into

itself and to retain only the terms of order δt. When we make the substitution in

the first term containing δxk (first line in Eq.(C.4)), we observe that the term itself

disappears because all coefficients are of order larger than δt. Differently, when we

make the substitution in the second term containing δxk (third line in Eq.(C.4)), we

observe that only one term must be considered. More specifically, we must retain the

term with the product between
∫ t+δt

t
ns(t)dt and

∫ t+δt

t
nj(t)dt; in fact, both term are

proportional to
√

δt, generating a product of order t, which is not negligible. Explicitly,

we obtain

δxi = hi(~x(t), t)δt + gij(~x(t), t)
√

2δtPj (C.8)

+
∂gij

∂xk
(~x(t), t)αgks(~x(t), t)

∫ t+δt

t

ns(t)dt

∫ t+δt

t

nj(t)dt.
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Now, the average value of the product of the two integrals is given in Eq.(C.6) and the

result is 2δsjδt. Moreover, it is simple to verify that the second order expectation values

of the same quantity,
∫ t+δt

t

∫ t+δt

t

∫ t+δt

t

∫ t+δt

t

〈ns(t1)nj(t2)nq(t3)ni(t4)〉

× dt1dt2dt3dt4, (C.9)

is equal to zero for: (i) four different indices s, j, q and i, (ii) s = j = q 6= i, and (iii)

s = j 6= q, s = j 6= i and q 6= i. Moreover, we have the result 4δt2 for s = j 6= q = i

and the result 12δt2 for s = j = q = i. Of course all results are invariant to any indices

permutation. So, the second order expectation values are zero or of order δt2. Therefore,

we may assume the average value as the deterministic value of the product. The final

result corresponds to the Euler scheme of integration for a stochastic differential equation

δxi =

[
hi(~x(t), t) + 2α

∂gij

∂xk
(~x(t), t)gkj(~x(t), t)

]
δt

+ gij(~x(t), t)
√

2δtPj. (C.10)

In the specific case of the Stratonovich interpretation we have α = 1/2 and the

integration scheme becomes

δxi = Di(~x(t), t)δt + gij(~x(t), t)
√

2δtPj, (C.11)

where the drift coefficients Di, defined in Eq.(B.4), are perfectly coherent with the

Fokker-Planck equation. In order to implement the integration scheme of Eq.(11)

we need two Gaussian random variables at any time step and, therefore, they can

be generated through the Box-Muller theorem: if U1 and U2 are independent random

variables uniformly distributed in (0,1), then P1 = (−2 log U1)
1/2 cos(2πU2) and P2 =

(−2 log U1)
1/2 sin(2πU2) are Gaussian independent random variables with 〈Pj〉 = 0 and

〈PiPj〉 = δij, as requested in Eq.(C.11). Finally, we underline that the convergence

of the Euler scheme to the solution of Eq.(B.1) is assured by the Skorokhod theorem

[57, 75].
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