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Abstract

The paper deals with the electrical and elastic characterisation of dispersions of pseudo-oriented ellip-
soids of rotation: it means that we are dealing with mixtures of inclusions of different eccentricities and arbi-
trary non-random orientational distributions. The analysis ranges from parallel spheroidal inclusions to
completely random oriented inclusions. A unified theory covers all the orientational distributions between
the random and the parallel ones. The electrical and micro-mechanical averaging inside the composite
material is carried out by means of explicit results which allows us to obtain closed-form expressions for
the macroscopic or equivalent dielectric constants or elastic moduli of the overall composite materials.
In particular, this study allows us to affirm that the electrical behaviour of such a dispersion of pseudo-ori-
ented particles is completely defined by one order parameter which depends on the given angular distribu-
tion. Moreover, the elastic characterisation of this heterogeneous material depends on two order
parameters, which derive from the orientational distribution. The theory may be applied to characterise
media with different shapes of the inclusions (i.e. spheres, cylinders or planar inhomogeneities) yielding a
set of procedures describing several composite materials of great technological interest.
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1. Introduction

In recent years the characterisation of heterogeneous materials has attracted an ever increasing
interest. A central problem, of considerable technological importance, is to evaluate the effective
electric and elastic properties governing the behaviour of a composite material on the macroscopic
scale. At present, it is well known that it does not exist a universally applicable mixing formula giv-
ing the effective properties of the heterogeneous materials as some sort of average of the properties
of the constituent materials. In fact, the details of the micro-geometry can play a crucial role in
determining the overall properties, particularly when the crystalline grains have highly anisotropic
behaviour or when there is a large difference in the properties of the constituent materials. There-
fore, the elastic and electrical properties of composite materials are strongly microstructure depen-
dent. The main goal in the study of materials is to understand and classify the relationships between
the internal structure of materials and their properties. The relationship between microstructure
and properties may be used for designing and improving materials, or conversely, for interpreting
experimental data in terms of micro-structural features. Ideally, the aim is to construct a theory
that employs general micro-structural information to make some accurate property predictions.
A simpler goal is the provision of property for different class of microstructures. A great number
of theoretical formulas have been proposed to describe the behaviour of composite materials. A
disadvantage of some approximated results is that they do not correspond to a priori knownmicro-
structure; this kind of results may be interpreted and classified only by means of comparison with
numerical or experimental data. A different class of theories is rigorously based on realistic micro-
structures. These are the classical Hashin–Shtrikman variational bounds [1,2], which provide an
upper and lower bound for composite materials, and the expansions of Brown [3] and Torquato
[4,5] which take into account the spatial correlation function of the phases.

Dispersions or suspensions of inclusions in a homogeneous matrix give a particular example of
heterogeneous materials: these media have been extensively studied both from the electrical and
the elastic point of view. One of the first attempts to characterise electrical dispersions of spheres
is that of Maxwell [6], which found out a famous formula for a strongly diluted suspension of
spheres. A better model has been provided by the differential scheme, which derives from the mix-
ture characterisation approach used by Bruggeman [7] and extensively described by Van Beek [8].
In this case the relations should maintain the validity also for less diluted suspensions of spheres.
To understand the effect of different shape of the inclusions, ellipsoidal shaped particles have been
considered: the first attempt was made by Fricke [9,10] dealing with the electrical characterisation
of inhomogeneous biological tissues containing spheroidal particles. Many related results are
summarised in [11,12]. In recent literature some applications of the Bruggeman differential proce-
dure to mixtures of ellipsoids have been performed [13–15] in connection with the problem of cha-
racterising the dielectric response of water-saturated rocks. A complete review of the Bruggeman
theory for ellipsoidal inclusions has been developed in Ref. [16].

Dealing with elastic characterisation of dispersions (see [17] for a theoretical introduction) some
similar works have been developed: an exact result exists for such a material composed by a very
dilute concentration of spherical inclusions dispersed in a solid matrix. This result is attributed to
numerous authors [18,19]. To adapt the dilute formulas to the case of any finite volume fraction
the differential method is applied both for spherical or cylindrical inclusions [20] and for ellipsoi-
dal particles [21].
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In this work we are dealing with a dispersion of spheroids (ellipsoids of rotations) embedded in
a homogeneous matrix. A particular attention is devoted to the analysis of the effects of the ori-
entational distribution of the particles inside the composite material. The limiting cases of the
present theory are represented by all the particles aligned with a given direction (order) and all
the particles randomly oriented (disorder). We take into account all the intermediate configura-
tions between order and disorder with the aim to characterise a material with particles partially
aligned. In Fig. 1 one can find some orientational distributions between the upon described lim-
iting cases. We consider a given orthonormal reference frame and we take as preferential direction
of alignment the z-axis. Each particle embedded in the matrix is not completely random oriented.
The orientation is described by the following statistical rule: the principal axis of each particle
forms with the z-axis an angle h which follows a given probability density f (h) defined in [0 p].
The orientation of each particle is statistically independent from the orientation of the other par-
ticles. If f (h) = d(h) (where d is the Dirac delta function) we have all the particles with h = 0 and
therefore they are all oriented with the z-axis. If f (h) = (1/2)sinh all the particles are uniformly
random oriented in the space over all the possible orientations. Any other statistical distributions
f (h) define a transversely isotropic (uniaxial) material. In the following sections we develop a com-
plete analysis of the combined effects of the shape (eccentricity) of the particles and of the state of
order/disorder. This analysis allows us to evaluate the overall electric and elastic properties of the
heterogeneous material. In particular, from the point of view of the shape of the particles, the
so-called depolarisation factor L is the parameter that intervenes to characterise the medium.
From the point of view of the state of order we verified the following property: for the electrical
characterisation of the composite medium the state of order acts on the overall dielectric constant
only by means of a parameter S, which takes into account the average value of the second Legen-
dre polynomial, S ¼ hP 2ðcos hÞih. On the other hand, the elastic moduli of the material depend on
the state of order through two parameters that are defined as follows: S ¼ hP 2ðcos hÞih and
T ¼ hP 4ðcos hÞih. They correspond to the average values of the Legendre polynomial of order
two and four, computed by means of the density probability f (h). The results may be applied
to describe the physical behaviour of heterogeneous materials starting from the knowledge of
the physical properties (permittivity, elastic moduli) of each medium composing the mixture as
Fig. 1. Structure of a dispersion of pseudo-oriented ellipsoids. One can find some orientational distributions ranging
from order to disorder. The two-phase material is described by the electric and/or elastic response of each phase, by the
state of order and by the volume fraction of the inclusions.
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well as of the structural properties of the mixture itself i.e. shape of the inclusions and state of
order of the orientations (L and S for the electrical case, L, S and T for the elastic case).
2. Dielectric theory for pseudo-oriented inclusions

The theory is based on the following preliminary result, which describes the behaviour of an
ellipsoidal particle (e2) embedded in a homogeneous medium (e1). Let the axes of the ellipsoid
be ax, ay and az (aligned with axes x, y, z of the reference frame) and let a uniform electrical field
E0 ¼ ðE0x;E0y;E0zÞ applied to the structure. Then, according to Stratton [22] or Landau and
Lifshitz [23] a uniform electrical field appears inside the ellipsoid and it can be computed as fol-
lows. We define the depolarisation factors along each axes:
Lk ¼
axayaz
2

Z þ1

0

ds

ðsþ a2kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2xÞðsþ a2yÞðsþ a2z Þ

q ð1Þ
Here and in the rest of the paper the index k ranges over the three symbols x, y and z. Explicit
expressions of the depolarisation factors are given in literature [16] in terms of elliptic integrals.
However, in the present work we are dealing with ellipsoids of rotation and the formulas are sim-
plified and reported in the sequel. We may simply observe that Lx + Ly + Lz = 1. On the basis of
these considerations, the electrical field inside the ellipsoidal inclusion is given, in components, by
the following relations described, for example, by Stratton [22]:
Ei;k ¼
e1E0k

e1 þ Lkðe2 � e1Þ
ð2Þ
Actually, we are interested in the electrical behaviour of a single ellipsoidal inclusion (e2) arbi-
trarily oriented in the space and embedded in a homogeneous medium (e1). We define three unit
vectors, which indicate the principal directions of the ellipsoids in the space: they are referred to as
�nx; �ny and �nz (defined in a given reference frame) and they are aligned with the axes ax, ay and az of
the ellipsoid, respectively. In the following the three unit vectors will be described by a given sta-
tistical distribution in order to model the microstructure of the heterogeneous material. By using
Eq. (2), we may compute the electrical field inside the inclusion, induced by a given external uni-
form electric field:
Ei ¼
e1ðE0 � �nxÞ�nx

e1 þ Lxðe2 � e1Þ
þ e1ðE0 � �nyÞ�ny
e1 þ Lyðe2 � e1Þ

þ e1ðE0 � �nzÞ�nz
e1 þ Lzðe2 � e1Þ

ð3Þ
This result simply derives from the sum of the three contributes to the electrical field along each
axes. This expression may be written in explicit form (component by component), as follows:
Ei;q ¼ e1
Xx;y;z
k

E0;k

Xx;y;z
j

nj;knj;q
e1 þ Ljðe2 � e1Þ

ð4Þ
where nj,k is the kth component of the unit vector �nj ðj ¼ x; y; zÞ. From now on, we are interested
in the behaviour of an ellipsoid of rotation and therefore we use the simplified notation
Lx = Ly = L and Lz = 1 � 2L. It means that L is the depolarisation factor along the unit vectors
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�nx and �ny and 1 � 2L is the depolarising vector along the axis �nz. We may use spherical coordinates
w, u and # to write down explicit expressions for the unit vectors:
�nx ¼ ðcosw cosu� sinw sinu cos h;� cosw sinu� sinw cosu cos h; sinw sin hÞ
�ny ¼ ðsinw cosuþ cosw sinu cos h;� sinw sinuþ cosw cosu cos h;� cosw sin hÞ
�nx ¼ ðsinu sin h; sin h cosu; cos hÞ

8><>: ð5Þ
For the following derivations, we are interested in the average value of the electrical field inside
the ellipsoid over the possible orientations of the ellipsoid itself and then we have to compute
the average value of the quantity nj,knj,q. The two angles w and u are statistical independent from
each other and distributed following a uniform probability density in the range [0 2p]. Performing
the integration over the unit sphere, by means of spherical coordinates, we obtain, after some
straightforward computations, the first step of the averaging procedure:
hnx;xnx;xiw;u ¼ hnx;ynx;yiw;u ¼ hny;xny;xiw;u ¼ hny;yny;yiw;u ¼ 1

4
ð1þ cos2hÞ

hnx;znx;ziw;u ¼ hny;zny;ziw;u ¼ hnz;xnz;xiw;u ¼ hnz;ynz;yiw;u ¼ 1

4
ð1� cos2hÞ

hnz;znz;ziw;u ¼ cos2h

8>>>>>><>>>>>>:
ð6Þ
Here, the symbol h iw,u represents the average value over the angles w and u. The terms that not
appear in the previous Eq. (6) are all zero.

The angle h is statistical independent from the others and distributed following an arbitrary
probability density f (h), which defines the degree of ordering of the medium, ranging from perfect
order (f(h) = d(h)), to complete disorder ðf ðhÞ ¼ ð1=2Þ sin hÞ. The statistical distribution of the
angle h is well described by the following order parameter S, which takes into account the average
value of the second Legendre polynomial:
S ¼ hP 2ðcos hÞih ¼
3

2
cos2ðhÞ � 1

2

� �
h

¼
Z p

0

3

2
cos2ðhÞ � 1

2

� �
f ðhÞdh ð7Þ
where h is the angle that the particle (its versor �nz) makes with the preferential direction given by the
axis z of the main reference frame (the symbol h i# represents the average value over the angle #).

By means of the definition of such order parameter we may perform the final averaging over the
tilting angle h:
hnx;xnx;xiw;u;h ¼ hnx;ynx;yiw;u;h ¼ hny;xny;xiw;u;h ¼ hny;yny;yiw;u;h ¼
2

3
ðS þ 2Þ

hnx;znx;ziw;u;h ¼ hny;zny;ziw;u;h ¼ hnz;xnz;xiw;u;h ¼ hnz;ynz;yiw;u;h ¼
2

3
ð1� SÞ

hnz;znz;ziw;u;h ¼
2S þ 1

8>>>>>>><>>>>>>>:
ð8Þ
3
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Here, the symbol h iw,u,# represents the average value over the angles w, u and #; for sake of sim-
plicity, from now on the indication of the angles on which the averaging is performed will be omit-
ted. Therefore, the average value of the electrical field (inside the randomly oriented inclusion),
given by Eq. (4), may be written as:
hEi;xi ¼ E0;x

3

e1ðS þ 2Þ
e1 þ Lðe2 � e1Þ

þ e1ð1� SÞ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
hEi;yi ¼ E0;y

3

e1ðS þ 2Þ
e1 þ Lðe2 � e1Þ

þ e1ð1� SÞ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
hEi;zi ¼ E0;z

3

2e1ð1� SÞ
e1 þ Lðe2 � e1Þ

þ e1ð2S þ 1Þ
e1 þ ð1� 2LÞðe2 � e1Þ

� �

8>>>>>>>>><>>>>>>>>>:
ð9Þ
Now, we are ready to consider a mixture of pseudo-oriented ellipsoids. In Fig. 1 one can find the
structure of the composite material with various degrees of order: we consider a given number of
randomly oriented ellipsoids (e2) embedded in a homogeneous matrix (e1). Let c be the volume
fraction of the embedded ellipsoids. The average value of the electrical field over the mixture
(inside the sphere) is approximately given by:
hEi ¼ ð1� cÞE0 þ chEii ð10Þ
Then, we define [e] as the equivalent permittivity tensor of the whole mixture by means of the rela-
tion hDi ¼ ½e�hEi [23]; to evaluate [e] we may compute the average value of the displacement vector
inside the random material. We also define V as the total volume of the mixture, Ve as the total
volume of the embedded ellipsoids and V0 as the volume of the remaining space among the inclu-
sions (so that V = Ve [ V0). The average value of DðrÞ ¼ eðrÞEðrÞ is evaluated as follows:
hDi ¼ 1

V

Z
V
eðrÞEðrÞdr ¼ 1

V
e1

Z
V 0

EðrÞdr þ 1

V
e2

Z
V e

EðrÞdr

¼ 1

V
e1

Z
V 0

EðrÞdr þ 1

V
e1

Z
V e

EðrÞdr þ 1

V
e2

Z
V e

EðrÞdr � 1

V
e1

Z
V e

EðrÞdr

¼ e1hEi þ cðe2 � e1ÞhEii ð11Þ
Note that hDi and hEi are not parallel vectors because of the presence of the average value of the
internal electric field given by Eq. (9). Drawing a comparison between Eqs. (9)–(11) we may find
complete expressions, which allows us to estimate the equivalent permittivity tensor [e]:
½e� ¼

e? 0 0

0 e? 0

0 0 ek

2664
3775 ð12Þ
where the longitudinal and transversal permittivities are given by:
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e? ¼ e1 þ cðe2 � e1Þ

1

3

e1ðS þ 2Þ
e1 þ Lðe2 � e1Þ

þ e1ð1� SÞ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
1� cþ c

3

e1ðS þ 2Þ
e1 þ Lðe2 � e1Þ

þ e1ð1� SÞ
e1 þ ð1� 2LÞðe2 � e1Þ

� �

ek ¼ e1 þ cðe2 � e1Þ

1

3

2e1ð1� SÞ
e1 þ Lðe2 � e1Þ

þ e1ð2S þ 1Þ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
1� cþ c

3

2e1ð1� SÞ
e1 þ Lðe2 � e1Þ

þ e1ð2S þ 1Þ
e1 þ ð1� 2LÞðe2 � e1Þ

� �

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð13Þ
For some following applications it is interesting to take into consideration the first order expan-
sion of the previous results:
e? ¼ e1 þ cðe2 � e1Þ
1

3

e1ðS þ 2Þ
e1 þ Lðe2 � e1Þ

þ e1ð1� SÞ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
þOðc2Þ

ek ¼ e1 þ cðe2 � e1Þ
1

3

2e1ð1� SÞ
e1 þ Lðe2 � e1Þ

þ e1ð2S þ 1Þ
e1 þ ð1� 2LÞðe2 � e1Þ

� �
þOðc2Þ

8>>><>>>: ð14Þ
This result concerns the characterisation of a very diluted dispersion of randomly oriented ellip-
soids with given shape (i.e. with fixed depolarisation factor L) and given state of order (i.e. fixed
S). To adapt this relationship to arbitrarily diluted composite materials we use the Bruggeman�s
procedure: actually, the application of this method as follows is only an approximation that in
literature is often considered and it is known as asymmetrical or differential effective medium
approximation [7,8,16]. Anyway, it leads to the following differential equations:
de?
dc

¼ 1

1� c
e?ðe2 � e?Þ

1

3

ðS þ 2Þ
e? þ Lðe2 � e?Þ

þ ð1� SÞ
e? þ ð1� 2LÞðe2 � e?Þ

� �
dek
dc

¼ 1

1� c
ekðe2 � ekÞ

1

3

2ð1� SÞ
ek þ Lðe2 � ekÞ

þ ð2S þ 1Þ
ek þ ð1� 2LÞðe2 � ekÞ

� �
8>>><>>>: ð15Þ
The solution of these equations depends on the values of the depolarisation factor and of the
order parameter showing the relationship between the overall permittivities and the microstruc-
ture. Expressions in Eq. (15) reduce, after some straightforward computations, to the following
ones:
dc
1� c

¼ 1

e2� e?
þ3Lð1�2LÞ

Pe?
þð1�3LÞ2ð2þSÞð1�SÞ

P ½ð3�PÞe?þP e2�

" #
de? where P ¼ 2�3LþS�3SL

dc
1� c

¼ 1

e2� ek
þ3Lð1�2LÞ

Qek
þ2ð1�3LÞ2ð2Sþ1Þð1�SÞ

Q½ð3�QÞek þQe2�

" #
dek where Q¼ 2�3L�2Sþ6SL

8>>>>><>>>>>:
ð16Þ
The integration of the above partial fraction expansions, with the conditions e?(c = 0) = e1, and
ek(c = 0) = e1, yields the final result:
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1� c ¼ e2 � e?
e2 � e1

e1
e?

� � 3Lð1�2LÞ
2�3LþS�3SL

� ð1þ 3L� S þ 3SLÞe1 þ ð2� 3Lþ S � 3SLÞe2
ð1þ 3L� S þ 3SLÞe? þ ð2� 3Lþ S � 3SLÞe2

� � ð1�3LÞ2ð2þSÞð1�SÞ
ð2�3LþS�3SLÞð1þ3L�Sþ3SLÞ

1� c ¼ e2 � ek
e2 � e1

e1
ek

� � 3Lð1�2LÞ
2�3L�2Sþ6SL

� ð1þ 3Lþ 2S � 6SLÞe1 þ ð2� 3L� 2S þ 6SLÞe2
ð1þ 3Lþ 2S � 6SLÞek þ ð2� 3L� 2S þ 6SLÞe2

� � 2ð1�3LÞ2ð2Sþ1Þð1�SÞ
ð2�3L�2Sþ6SLÞð1þ3Lþ2S�6SLÞ

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð17Þ
This is the main result for the electrical characterisation presented in this work. We define the
eccentricity e as the ratio e = az/ax = az/ay. The depolarisation factor L may be computed in
closed form as follows and the result depend on the shape of the ellipsoid; it is prolate (of ovary
or elongated form) if e > 1 and oblate (of planetary or flattened form) if e < 1 [16,23]:
L ¼ e
2

Z þ1

0

dn

ðnþ 1Þ2ðnþ e2Þ1=2
¼

e

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p� 	3
2e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
þ ln

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p

eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
" #

if e > 1

e

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p� 	3
p� 2e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 2 arctg

effiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� �

if e < 1

8>>>>>><>>>>>>:
ð18Þ
The factor L assumes some characteristic values in correspondence to special shapes of the par-
ticles: for spheres L = 1/3, for cylinders L = 1/2 and for lamellae or penny shaped inclusions
L = 0. Moreover, the parameter S assume special values in some particular conditions of degree
of order: S = 1 with perfect order, S = 0 with complete disorder and S = �1/2 when all the par-
ticles have the axes of rotation orthogonal to the z-axis of the main reference frame (all particles
are lying randomly in planes perpendicular to the z-axis). Such particular values of the parameters
S and L in Eq. (17) generate a series of analytical results, which are summarised below.

If S = 0we are in a state of complete disorder andwe obtain a simplified result where e? = ek = e:
1� c ¼ e2 � e
e2 � e1

e1
e

� 	3Lð1�2LÞ
2�3L ð1þ 3LÞe1 þ ð2� 3LÞe2

ð1þ 3LÞeþ ð2� 3LÞe2

� � 2ð3L�1Þ2
ð2�3LÞð1þ3LÞ

ð19Þ
Eq. (19) solves the electrical characterisation of a dispersion of randomly oriented ellipsoids of
rotation [16]. We may observe that, if e = 1 (spherical inclusions) we have L = 1/3 and thus
Eq. (19) reduce to the following famous one, which characterises dispersions of dielectric spheres:
1� c ¼ e2 � e
e � e

e1
e

� 	1
3 ð20Þ
2 1
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If e ! 1 (L! 1/2) the inclusions become strongly prolate ellipsoids (circular cylinders or rods)
randomly distributed in the space and Eq. (19) reduces to Eq. (21) below:
1� c ¼ e2 � e
e2 � e1

e2 þ 5e1
e2 þ 5e

� �2
5

ð21Þ
Finally, if e! 0 we deal with a mixture of random oriented strongly oblate (lamellae or penny
shaped) inclusions (in this case L = 0) and Eq. (19) degenerates to the following one:
e ¼ e2
3e1 þ 2cðe2 � e1Þ
3e2 � cðe2 � e1Þ

ð22Þ
If S = 1 we are in a state of complete order and all the ellipsoids are perfectly aligned. The system
in Eq. (17) reduces to the simpler one, where each permittivity directly depends on the correspon-
dent depolarisation factor:
1� c ¼ e2 � e?
e2 � e1

e1
e?

� �L

1� c ¼ e2 � ek
e2 � e1

e1
ek

� �1�2L

8>>><>>>: ð23Þ
If S = �1/2 all the particles have the axes of rotation orthogonal to the z-axis of the main refer-
ence frame; it means that all the particles are lying randomly in planes perpendicular to the z-axis.
Eq. (17) with the assumption S = �1/2 leads to the result:
1� c ¼ e2 � e?
e2 � e1

e1
e?

� �2Lð1�2LÞ
1�L ð1þ LÞe1 þ ð1� LÞe2

ð1þ LÞe? þ ð1� LÞe2

� � ð1�3LÞ2
ð1�LÞð1þLÞ

1� c ¼ e2 � ek
e2 � e1

e1
ek

� �L

8>>>><>>>>: ð24Þ
We may observe that, if e = 1 (spherical inclusions) we have L = 1/3 and thus Eq. (24) reduce to
Eq. (20) as expected. If e! 1 (L! 1/2) the inclusions become circular cylinders lying randomly
in planes perpendicular to the z-axis and Eq. (24) reduces to Eq. (25) below:
1� c ¼ e2 � e?
e2 � e1

3e1 þ e2
3e? þ e2

� �1
3

1� c ¼ e2 � ek
e2 � e1

e1
ek

� �1
2

8>>>><>>>>: ð25Þ
Finally, if e! 0 we deal with a mixture of random oriented lamellae with the plane parallel to the
z-axis (in this case L = 0) and Eq. (24) degenerates to the following one:
e? ¼ e2
2e1 þ cðe2 � e1Þ
2e2 � cðe2 � e1Þ

ek ¼ ce2 þ ð1� cÞe1

8<: ð26Þ
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We are conscious that Eq. (17), the main result, has been derived with a not rigorous mathemat-
ical procedure because of the application of the differential method of Bruggeman to this type of
not isotropic material. Nevertheless, the expressions are interesting because, although approxi-
mately, describe in explicit form the interaction between the degree of order and the shape of par-
ticles embedded in the microstructure. However, we have solved Eq. (17) numerically and the
results are shown in Fig. 2. More precisely, in Fig. 2a one can find the results when e2/e1 = 10,
in Fig. 2b the results when e2/e1 = 1/10; in both cases we have considered a volume fraction
c = 1/3 and we have plotted the longitudinal and transversal permittivities versus the order
parameters S and decimal logarithm of the eccentricity log10e. We may observe that the effect
of the order/disorder has opposite behaviour for prolate and oblate particles. This analysis has
immediate applications to the field of the liquid crystals. The use of the order parameter in such
Fig. 2. Transversal and longitudinal dielectric permittivities versus the order parameters S and decimal logarithm of the
eccentricity log10e. In (a) one can find the results when e2/e1 = 10, in (b) the results when e2/e1 = 1/10; in both cases we
have considered a volume fraction c = 1/3.
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field can be found in [24]. Our microstructure describes a material positionally disordered, but
orientationally ordered, which corresponds to a nematic phase in liquid crystals [25,26]. So, the
theory may be applied to a better understanding of the anisotropic optical behaviour of such
materials.

It must be underlined that from a merely mathematical standpoint, the problem of calculating
the mixture permittivity is identical to a number of others, for instance to that regarding perme-
ability (in a magnetostatic situation), electrical conductivity (in the stationary case), thermal con-
ductivity (in a steady-state thermal regime) and so on. In other words, all the transport properties
in heterogeneous materials follow the same mixing law when we are referring to the same micro-
structure, except for the elastic moduli that will be treated in the next section.
3. Elastic theory

The elastic properties of two-phase materials depend on the geometrical nature of the mixture
(microstructure) and on the volume fraction of the two media. Such a composite material can be
thought as a heterogeneous solid continuum that bonds together two homogeneous continua:
each part of the media has a well-defined sharp boundary. The bonding at the interfaces remains
intact in our models when the whole mixture is placed in an equilibrated state of infinitesimal elas-
tic strain by external loads or constraints. In the present case, the boundary conditions require
that both the vector displacement and the stress tensor be continuous across any interfaces. Each
separate homogeneous region is characterised by its stiffness tensor, which describes the stress–
strain relation. If both materials are linear and homogeneous this relation is given by:
Tij ¼ Ls
ijklEkl s ¼ 1; 2 ð27Þ
where T is the stress tensor (3 · 3 sized), E is the strain tensor (3 · 3 sized) and L is the constant
stiffness tensor, which depends on the medium considered (s = 1,2). For isotropic media this latter
is written, for example in terms of the bulk and shear constants, as follows:
Ls
ijkl ¼ ksdijdkl þ 2ls dikdjl �

1

3
dijdkl

� �
s ¼ 1; 2 ð28Þ
where ks and ls are the bulk and shear moduli of the sth medium (s = 1,2) and dnm is the
Kronecker�s delta. To solve a mixture problem consists in finding the equivalent macroscopic stiff-
ness tensor for the whole composite material. We start with some definitions used to simplify the
problem. Instead of describing the strain with the complete symmetric tensor we adopt a vector,
which contains the six independent elements in a given order; the same approach is used for the
stress T means transposed):
bE ¼ ½E11 E22 E33 E12 E23 E13�T; bT ¼ ½T 11 T 22 T 33 T 12 T 23 T 13�T ð29Þ
Adopting this notation scheme the stiffness four-index tensor for the isotropic components is
represented by a simpler matrix with six rows and six columns:
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bLs
¼

ks þ
4

3
ls ks �

2

3
ls ks �

2

3
ls 0 0 0

ks �
2

3
ls ks þ

4

3
ls ks �

2

3
ls 0 0 0

ks �
2

3
ls ks �

2

3
ls ks þ

4

3
ls 0 0 0

0 0 0 2ls 0 0

0 0 0 0 2ls 0

0 0 0 0 0 2ls

266666666666664

377777777777775
s ¼ 1; 2 ð30Þ
so that the stress–strain relations became bT ¼ bL1bE in the matrix and bT ¼ bL2bE inside each inclu-
sion. At this point, to begin the strain computation we take into consideration a single ellipsoidal
isotropic inclusion (medium 2) embedded in a isotropic matrix (medium 1); we suppose that the
matrix is placed in an equilibrated state of infinitesimal constant elastic strain by external loads
and then the inclusion is added to the matrix reaching a corresponding state of strain, which is
well described by the Eshelby theory [27,28]. In particular it is important to notice that the inter-
nal strain is constant (all the entries are constant) if the external or bulk strain is constant. The
Eshelby theory allows us to write down a relationship between the internal and original strain
when they are constant (or uniform) in the space. Accordingly with the Eshelby theory [27,29]
the relationship between the original external strain and the induced internal strain is given by:
bEi ¼ I� bS I� ðbL1
Þ�1bL2

h in o�1bE0 ¼ bAbE0 ð31Þ
where I is the identity matrix with size 6� 6; bEi is the internal strain, bE0 is the original external

strain, bL1
and bL2

are the stiffness tensor of the matrix and the inclusion respectively and bS is
the Eshelby tensor, which depends on the eccentricity e of the ellipsoid of rotation and on the
Poisson ratio m = (3k1 � 2l1)/ [2(3k1 + l1)] of the matrix. Here, we remember that the general
structure of bS is given by:
bS ¼

s1111 s1122 s1133 0 0 0

s1122 s1111 s1133 0 0 0

s3311 s3311 s3333 0 0 0

0 0 0 s1111 � s1122 0 0

0 0 0 0 s1313 0

0 0 0 0 0 s1313

2666666664

3777777775
ð32Þ
where the symmetries are evident and correctly describe the ellipsoid of rotation which has two
equivalent axes and a third one with different behaviour. In Table 1 one can find the complete
expressions of all the entries of the tensor defined in Eq. (32). Moreover, see Appendix A for some
special cases of the Eshelby tensor. The depolarisation factor L, which appears inside expressions
in Table 1, may be computed by means of Eq. (20) and the result depends on the eccentricity e.

Matrix bA is simply defined by Eq. (31). We remember that Eq. (31) is written taking into
account a particular reference frame with axes aligned to the three principal directions of the



Table 1
List of the complete expressions of all the entries of the Eshelby tensor defined in Eq. (32)

s1111 1

8

�3e2 þ 13L� 4e2Lþ 8Lme2 � 8Lm
ðe2 � 1Þð�1þ mÞ

s1122 � 1

8

e2 þ L� 4e2Lþ 8Lme2 � 8Lm
ðe2 � 1Þð�1þ mÞ

s1133 � 1

2

2e2L� e2 þ Lþ 2Lme2 � 2Lm
ðe2 � 1Þð�1þ mÞ

s3311
1

2

�Lþ e2 � 2e2L� 2me2 þ 2mþ 4Lme2 � 4Lm
ðe2 � 1Þð�1þ mÞ

s3333 � 2e2 � 1� 4e2Lþ L� me2 þ mþ 2Lme2 � 2Lm
ðe2 � 1Þð�1þ mÞ

s1313 � 1

2

e2Lþ 2L� 1þ Lme2 � Lm� me2 þ m
ðe2 � 1Þð�1þ mÞ

It corresponds to spheroids with eccentricity e and depolarisation factor L. The symbol m represents the Poisson ratio of
the matrix.
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embedded ellipsoid. In these conditions matrix bA has the following mathematical form (which de-
rives from the corresponding form of the Eshelby tensor, Eq. (32)):
bA ¼

t1111 t1122 t1133 0 0 0

t1122 t1111 t1133 0 0 0

t3311 t3311 t3333 0 0 0

0 0 0 t1111 � t1122 0 0

0 0 0 0 t1313 0

0 0 0 0 0 t1313

2666666664

3777777775
ð33Þ
Obviously, by using Eqs. (31) and (32), it could be possible to write down the explicit expressions
giving each element tijkl as function of k1, k2, l1, l2, e but these formulas are very complicated and
not particularly useful at this stage of the work. Moreover, all the coefficients tijkl that not appear in
Eq. (33) are always zero. With the aim of analysing the behaviour of a mixture of pseudo-oriented
ellipsoids, we need to evaluate the average value of the internal strain inside the ellipsoid over all its
possible orientations or rotations in the space (in agreement with the given orientational distribu-
tion). To perform this averaging over the rotations we name the original reference frame with the
letter B and we consider another generic reference frame that is named with the letter F.

The relation between these bases B and F is described by means of a generic rotation matrix
R(w,h,u) where w, h and u are the Euler angles; we may consider this matrix as the product of
three elementary rotations along the axes z, x and z respectively:
Rðw; h;uÞ ¼
cosw � sinw 0

sinw cosw 0

0 0 1

264
375 �

1 0 0

0 cos h � sin h

0 sin h cos h

264
375 �

cosu � sinu 0

sinu cosu 0

0 0 1

264
375 ð34Þ
The angle that defines the pseudo-orientational distribution is h. Therefore the following relations
hold on between the different frames: EB

i ¼ REF
i R

T for the internal strain and EB
0 ¼ REF

0R
T for the
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bulk strain (here the subscript T means transposed). These expressions have been written with
standard notation for the strain (3 · 3 sized matrix). They may be converted in our notation defin-
ing a matrix cMðw; h;uÞ; 6� 6 sized, which acts as a rotation matrix on our strain vectors: so, we

may write bEB

i ¼ cMbEF

i inside the ellipsoid and bEB

0 ¼ cMbEF

0 outside it. The entries of the matrix cM
are completely defined by the comparison between the relations EB

i ¼ REF
i R

T and bEB

i ¼ cMbEF

i and
by considering the notation adopted for the strain. Eq. (31) is written on the frame B and there-

fore it actually reads bEB

i ¼ bAbEB

0 ; this latter may be reformulated on the generic frame F simply
obtaining:
bEF

i ¼ cMðW; h;uÞ�1 bAcMðW; h;uÞ
n obEF

0 ð35Þ
The first average value of the strain inside the inclusion may be computed by means of the follow-
ing integration over all the possible rotations over the angles u and w (they are uniformly distrib-
uted over the whole range [0 2p]):
bEi

D E
W;u

¼ 1

4p2

Z 2p

0

Z 2p

0

cMðW; h;uÞ�1 bAcMðW; h;uÞ
n o

dudWbE0 ð36Þ
By means of a very long but straightforward integration we have obtained an explicit relation

between the external strain bE0ð¼ bEF

0 Þ and the first average value hbEiiW;u inside the randomly
oriented ellipsoid:
hbEiiW;u ¼

b1111 b1122 b1133 0 0 0

b1122 b1111 b1133 0 0 0

b3311 b3311 b3333 0 0 0

0 0 0 b1111 � b1122 0 0

0 0 0 0 b1313 0

0 0 0 0 0 b1313

2666666664

3777777775
bE0 ¼ bBðhÞbE0 ð37Þ
where the parameters bijkl depend on the coefficients tijkl and the angle h, which is, still now, unde-
fined. The results are summarised in Table 2 where the explicit expressions of all the coefficients
bijkl are shown.

Finally, now we may perform the second averaging over the angle h described by an arbitrary
probability density f (h) defined on the range [0,p]:
hbEiiW;u;h ¼
Z p

0

f ðhÞbBðhÞdhbE0 ¼ bCbE0 ¼

c1111 c1122 c1133 0 0 0

c1122 c1111 c1133 0 0 0

c3311 c3311 c3333 0 0 0

0 0 0 c1111 � c1122 0 0

0 0 0 0 c1313 0

0 0 0 0 0 c1313

2666666664

3777777775
bE0

ð38Þ



Table 2
List of the complete expressions of all the entries of the tensor bBðhÞ defined in Eq. (37)

b1111 1
2 cosðhÞ

2 � 3
4 cosðhÞ

4 þ 1
4

� 	
t1313 þ � 3

4 cosðhÞ
2 þ 3

8 cosðhÞ
4 þ 3

8

� 	
t3333 þ � 3

8 cosðhÞ
4 þ 1

4 cosðhÞ
2 þ 1

8

� 	
t3311

þ � 3
8 cosðhÞ

4 þ 1
4 cosðhÞ

2 þ 1
8

� 	
t1133 þ 3

8 þ 1
4 cosðhÞ

2 þ 3
8 cosðhÞ

4
� 	

t1111

b1122 � 1
4 þ 1

2 cosðhÞ
2 � 1

4 cosðhÞ
4

� 	
t1313 þ � 1

4 cosðhÞ
2 þ 1

8 cosðhÞ
4 þ 1

8

� 	
t3333 þ � 1

4 cosðhÞ
2 þ 3

8 � 1
8 cosðhÞ

4
� 	

t3311

þ � 1
4 cosðhÞ

2 þ 3
8 � 1

8 cosðhÞ
4

� 	
t1133 þ � 1

4 cosðhÞ
2 þ 1

8 cosðhÞ
4 þ 1

8

� 	
t1111 þ t1122 cosðhÞ2

b1133 ðcosðhÞ4 � cosðhÞ2Þt1313 þ 1
2 cosðhÞ

2 � 1
2 cosðhÞ

4
� 	

t3333 þ 1
2 � cosðhÞ2 þ 1

2 cosðhÞ
4

� 	
t3311

þ 1
2 cosðhÞ

4 þ 1
2 cosðhÞ

2
� 	

t1133 þ 1
2 � 1

2 cosðhÞ
2

� 	
t1122 þ 1

2 cosðhÞ
2 � 1

2 cosðhÞ
4

� 	
t1111

b3311 ðcosðhÞ4 � cosðhÞ2Þt1313 þ 1
2 cosðhÞ

2 � 1
2 cosðhÞ

4
� 	

t3333 þ 1
2 cosðhÞ

4 þ 1
2 cosðhÞ

2
� 	

t3311

þ 1
2 � cosðhÞ2 þ 1

2 cosðhÞ
4

� 	
t1133 þ 1

2 � 1
2 cosðhÞ

2
� 	

t1122 þ 1
2 cosðhÞ

2 � 1
2 cosðhÞ

4
� 	

t1111

b3333 ð�2 cosðhÞ4 þ 2 cosðhÞ2Þt1313 þ ð� cosðhÞ4 þ cosðhÞ2Þt3311 þ ð� cosðhÞ4 þ cosðhÞ2Þt1133

þð1� 2 cosðhÞ2 þ cosðhÞ4Þt1111 þ t3333 cosðhÞ4

b1313
1
2 � 3

2 cosðhÞ
2 þ 2 cosðhÞ4

� 	
t1313 þ ð� cosðhÞ4 þ cosðhÞ2Þt3333 þ ðcosðhÞ4 � cosðhÞ2Þt3311

þðcosðhÞ4 � cosðhÞ2Þt1133 þ � 1
2 þ 1

2 cosðhÞ
2

� 	
t1122 þ 1

2 cosðhÞ
2 � cosðhÞ4 þ 1

2

� 	
t1111
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We define two order parameters S and T as follows:
S ¼ hP 2ðcos hÞih ¼
3

2
cos2ðhÞ � 1

2

� �
h

¼
Z p

0

3

2
cos2ðhÞ � 1

2

� �
f ðhÞdh ð39Þ

T ¼ hP 4ðcos hÞih ¼
35

8
cos4ðhÞ � 15

4
cos2ðhÞ þ 3

8

� �
h

¼
Z p

0

35

8
cos4ðhÞ � 15

4
cos2ðhÞ þ 3

8

� �
f ðhÞdh ð40Þ
They correspond to the average values of the Legendre polynomial of order two and four, com-
puted by means of the density probability f (h) defined on the range [0,p]. In Table 3 one can find
the complete expressions of all the entries of the tensor bC defined in Eq. (38). Once again, the coef-
ficients cijkl could be explicitly written in terms of k1, k2, l1, l2, e, S and T; we prefer to recall the
main stages of the procedure applied to obtain them. Firstly, we evaluate the matrix bA by means
of Eq. (31) (using the pertinent Eshelby tensor) and then we apply Eq. (38) and Table 3 to average
the internal strain over the possible orientation of the ellipsoid (micro-mechanical averaging tech-
nique). In other words we may say that the matrix bC represents the average value of bA over all the
possible rotations of the inclusion. We wish to point out that the expressions given in Table 3 are
extremely convenient to perform the micro-mechanical averaging because it removes the problem
of the integral evaluation and allows us to obtain results in closed form.

The two order parameters S and T defined in Eqs. (39) and (40) are subjected to the following
constraints: �1/2 < S < 1 and �3/7 < T < 1. A point in the S–T plane, as indicated in Fig. 3,



Table 3
List of the complete expressions of all the entries of the tensor bC defined in Eq. (38) in terms of the order parameters S
and T

c1111 � 2
21 S þ 4

15 � 6
35 T


 �
t1313 þ � 2

7 S þ 1
5 þ 3

35 T

 �

t3333 þ � 3
35 T � 1

21 S þ 2
15


 �
t3311

þ � 3
35 T � 1

21 S þ 2
15


 �
t1133 þ 8

15 þ 8
21 S þ 3

35 T

 �

t1111

c1122 � 2
15 þ 4

21 S � 2
35 T


 �
t1313 þ � 2

21 S þ 1
15 þ 1

35 T

 �

t3333 þ � 5
21 S þ 4

15 � 1
35 T


 �
t3311

þ � 5
21 S þ 4

15 � 1
35 T


 �
t1133 þ � 2

21 S þ 1
15 þ 1

35 T

 �

t1111 þ t1122 2
3 S þ 1

3


 �
c1133

8
35 T � 2

21 S � 2
15


 �
t1313 þ 1

21 S þ 1
15 � 4

35 T

 �

t3333 þ 4
15 � 8

21 S þ 4
35 T


 �
t3311

þ 4
35 T þ 13

21 S þ 4
15


 �
t1133 þ 1

3 � 1
3 S


 �
t1122 þ 1

21 S þ 1
15 � 4

35 T

 �

t1111

c3311
8
35 T � 2

21 S � 2
15


 �
t1313 þ 1

21 S þ 1
15 � 4

35 T

 �

t3333 þ 4
35 T þ 13

21 S þ 4
15


 �
t3311

þ 4
15 � 8

21 S þ 4
35 T


 �
t1133 þ 1

3 � 1
3 S


 �
t1122 þ 1

21 S þ 1
15 � 4

35 T

 �

t1111

c3333 � 16
35 T þ 4

21 S þ 4
15


 �
t1313 þ � 8

35 T þ 2
21 S þ 2

15


 �
t3311 þ � 8

35 T þ 2
21 S þ 2

15


 �
t1133

þ 8
15 � 16

21 S þ 8
35 T


 �
t1111 þ t3333 8

35 T þ 4
7 S þ 1

5


 �
c1313

1
7 S þ 16

35 T þ 2
5


 �
t1313 þ � 8

35 T þ 2
21 S þ 2

15


 �
t3333 þ 8

35 T � 2
21 S � 2

15


 �
t3311

þ 8
35 T � 2

21 S � 2
15


 �
t1133 þ � 1

3 þ 1
3 S


 �
t1122 þ � 5

21 S þ 7
15 � 8

35 T

 �

t1111

S

T0

1

-1/2

1-3/7

Order

Disorder Planar distribution

3/8

Fig. 3. The degree of orientational order is represented by a point in the S–T plane. Three particular cases of state of
order can be observed: if S = T = 1 we are in the state of order, if S = T = 0 we are in the state of disordered and if
S = �1/2 and T = 3/8 all particles are lying randomly in planes perpendicular to the z-axis.
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represents the degree of orientational order. Three particular cases of state of order can be taken
into consideration: if S = T = 1 we are in the state of order (particles aligned), if S = T = 0 we are
in the state of disorder (particles randomly oriented) and, finally, if S = �1/2 and T = 3/8 all par-
ticles are lying randomly in planes perpendicular to the z-axis. These three cases are indicated in
Fig. 3. The results displayed in Table 3 may be simplified in such particular cases. If S = T = 1 the
averaging procedure over rotations is not important because of the alignment of the particles and
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this relationship holds on among the coefficients: cijkl = tijkl. If S = T = 0 we are dealing with ran-
domly oriented particles and the relations reduce to overall isotropic behaviour:
c1111 ¼ c3333 ¼
4

15
t1313 þ

1

5
t3333 þ

2

15
t3311 þ

2

15
t1133 þ

8

15
t1111

c1122 ¼ c1133 ¼ c3311 ¼ � 2

15
t1313 þ

1

15
t3333 þ

4

15
t3311 þ

4

15
t1133 þ

1

15
t1111 þ

1

3
t1122

c1313 ¼ c1111 � c1122

8>>><>>>: ð41Þ
If S = �1/2 and T = 3/8 all the particles have the axes of rotation orthogonal to the z-axis of the
main reference frame and therefore they are lying randomly in planes perpendicular to the z-axis.
The results of Table 3 reduce to the following:
c1111 ¼
1

4
t1313 þ

3

8
t3333 þ

1

8
t3311 þ

1

8
t1133 þ

3

8
t1111

c3333 ¼ t1111

c1122 ¼ � 1

4
t1313 þ

1

8
t3333 þ

3

8
t3311 þ

3

8
t1133 þ

1

8
t1111

c1133 ¼
1

2
t3311 þ

1

2
t1122

c3311 ¼
1

2
t1133 þ

1

2
t1122

c1313 ¼
1

2
t1313 �

1

2
t1122 þ

1

2
t1111

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð42Þ
Still now, we have considered a single ellipsoidal particle and we have calculated the averaged
internal strain hbEii ¼ hbEiiW;u;h when it is pseudo-randomly placed in a matrix with a given con-
stant strain bE0; from now on, we have to deal with an ensemble of inclusions (see Fig. 1) pseu-
do-oriented and distributed in the solid matrix with order parameters S and T. We consider a
low value of the volume fraction of the dispersed component so that we may neglect the interac-
tions among the inclusions. Therefore, each ellipsoidal particle behaves as a single one in the
whole space. As before, we define c as the volume fraction of the inclusions. We may compute
the average value of the elastic strain over the whole heterogeneous material by means of the
relation:
hbEi ¼ ð1� cÞbE0 þ chbEii ¼ ð1� cÞIþ cbCh ibE0 ð43Þ
where we have considered the strain outside the inclusions approximately constant and identical
to the bulk strain bE0. Moreover, we define bLeq as the equivalent stiffness tensor of the whole mix-
ture (which is anisotropic because of the pseudo-randomness of the orientations of the inclusions)
by means of the relation hbTi ¼ bLeqhbEi; to evaluate bLeq we compute the average value hbTi of the
stress inside the random material. We also define V as the total volume of the mixture, Ve as
the total volume of the embedded ellipsoids and V0 as the volume of the remaining space among
the inclusions (so that V = Ve [ V0). The average value of bT ¼ bLðrÞbE over the volume of the

whole material is evaluated as follows (bLðrÞ ¼ bL1
if r 2 V 0 and bLðrÞ ¼ bL2

if r 2 V e):
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hbTi ¼ 1

V

Z
V

bLðrÞbEðrÞdr ¼ 1

V
bL1

Z
V 0

bEðrÞdr þ 1

V
bL2

Z
V e

bEðrÞdr
¼ 1

V
bL1

Z
V 0

bEðrÞdr þ 1

V
bL2

Z
V e

bEðrÞdr þ 1

V
bL1

Z
V e

bEðrÞdr � 1

V
bL1

Z
V e

bEðrÞdr
¼ bL1

hbEi þ cðbL2
� bL1

ÞhbEii ¼ bL1
hbEi þ c bL2

� bL1
� 	bCbE0 ð44Þ
Drawing a comparison between Eqs. (43) and (44) we may find a complete expression, which
allows us to estimate the equivalent stiffness tensor bLeq:
bLeq ¼ bL1

þ c bL2
� bL1

� 	bC ð1� cÞIþ cbCh i�1

ð45Þ
It is a very long but straightforward task to verify that the general form of bLeq is given by the
following expression, in perfect agreement with transversely isotropic composites:
bLeq ¼

k þ m k � m l 0 0 0

k � m k þ m l 0 0 0

l l n 0 0 0

0 0 0 2m 0 0

0 0 0 0 2p 0

0 0 0 0 0 2p

2666666664

3777777775
ð46Þ
The parameters here involved are known as Hill parameters [30]. A transversely isotropic material
is always described by five elastic moduli as indicated. At the end of this procedure, they are
depending on k1, k2, l1, l2, S, T, L (or the eccentricity e) and on the volume fraction c. Some par-
ticular cases follow. For spheres the averaging technique over all the orientations is not necessary
but it may be used as check of the procedure. Anyway, the final result is given by the following
relationships, which explicitly give the bulk modulus and the shear modulus of the overall iso-
tropic composite material:
keq ¼
k1ð4l1 þ 3k2Þ þ 4cl1ðk2 � k1Þ

4l1 þ 3k2 � 3cðk2 � k1Þ
¼ k1 þ

4l1 þ 3k1
4l1 þ 3k2

ðk2 � k1ÞcþOðc2Þ

leq ¼ l1

ð1� cÞl1 þ cl2½ �ð9k1 þ 8l1Þ þ 6l2ðk1 þ 2l1Þ
l1ð9k1 þ 8l1Þ þ 6 ð1� cÞl2 þ cl1½ �ðk1 þ 2l1Þ

¼ l1 þ
5l1ð4l1 þ 3k1Þðl2 � l1Þ

l1ð9k1 þ 8l1Þ þ 6l2ðk1 þ 2l1Þ
cþOðc2Þ

ð47Þ
This is the well known result obtained by several authors in the earlier literature as described in
[18,19]. When we adopt the Eshelby tensor for spheres (see Appendix A), the complete procedure
furnishes, as results, Eq. (47) independently on the values of the order parameters S and T. A par-
ticular attention will be given to fibrous materials where the fibre may be considered in three dif-
ferent arrangements: randomly oriented in the space (S = T = 0) , aligned along a given direction
(S = T = 1) and lying randomly in planes perpendicular to a given direction (S = �1/2 and T =
3/8). If we consider the characteristic Eshelby tensor (see Appendix A) for cylinders and we apply
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the previously outlined procedure with S = T = 0 (randomly oriented cylinders in the space), in
closed form, we obtain, after a long and tedious algebraic computation, the explicit results:
Fig. 4
space.
keq ¼ k1 þ
l2 þ 3l1 þ 3k1
l2 þ 3l1 þ 3k2

ðk2 � k1ÞcþOðc2Þ ð48Þ

leq ¼ l1þ
1

5

ðl2�l1Þ
64l4

1þ63l3
1k2þ184l3

1l2þ156l2
1k2l2þ72l2

1l
2
2þ90k1k2l1l2þ

120k1l2
1l2þ81k1l2

1k2þ36k1l2
2l1þ21k2l1l

2
2þ9k1k2l2

2þ84k1l3
1

( )
ðl1þl2Þðl2þ3k2þ3l1Þ 3l1k1þl2

1þ3k1l2þ7l1l2ð Þ cþOðc2Þ
Here, we have reported, for sake of brevity, only the first order approximations instead of the
complete expressions, which are very complicated. The medium is overall isotropic and we have
reported bulk and shear modulus. These are relations that hold on for a fibrous material where
each fibre or rod is randomly oriented in the space. In Fig. 4 one can find the plots of the elastic
moduli versus the volume fraction of fibres. We may observe that the overall Hill parameters for
an isotropic medium are given by: k = keq + (1/3)leq, l = keq � (2/3)leq, n = (1/2)keq + (2/3)leq
and p = m = leq.

We may analyse a system of parallel cylinders by considering S = T = 1 and adopting the
Eshelby tensor of cylindrical particles; we obtain a transversely isotropic material described by
the following Hill parameters in the limit of very low values of the volume fraction:
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. Plots of the Hill parameters for a fibrous material where each fibre or rod is completely random oriented in the
The elastic moduli are given in terms of the volume fraction of fibres. In this case S = T = 0.
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k ¼ 1

3
l1 þ k1

� �
� 1

3

ð4l1 þ 3k1Þðl1 þ 3k1 � l2 � 3k2Þ
3l1 þ l2 þ 3k2

cþOðc2Þ

m ¼ l1 � 2
l1ð4l1 þ 3k1Þðl1 � l2Þ

l2
1 þ 3k1l1 þ 7l2l1 þ 3k1l2

cþOðc2Þ

l ¼ k1 �
2

3
l1

� �
þ 1

3

ð4l1 þ 3k1Þð2l1 � 3k1 þ 3k2 � 2l2Þ
3l1 þ l2 þ 3k2

cþOðc2Þ

n ¼ 2

3
l1 þ

1

2
k1

� �
� 1

6

�3k1l1 þ 15k1l2 þ 15l1k2 � 27k2l2 � 16l2l1 þ 16l2
1 þ 9k21 � 9k2k1

3l1 þ l2 þ 3k2
cþOðc2Þ

p ¼ l1 � 2
ðl1 � l2Þl1

l1 þ l2

cþOðc2Þ

ð49Þ

These are relations that hold on for a fibrous material where each fibre is aligned to a given direc-
tion in the space. In Fig. 5 the behaviour of the elastic moduli versus the volume fraction of fibres
is shown. Finally, we may take into account a mixture of cylinders lying randomly in planes
perpendicular to the z-axis; in this case S = �1/2 and T = 3/8 and the results are:
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. Plots of the Hill parameters for a fibrous material where each fibre is aligned to a given direction in the space.
ehaviour of the elastic moduli versus the volume fraction of fibres is shown. This case corresponds to S = T = 1.
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k ¼ 1
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. Hill parameters for a mixture of fibres lying randomly in planes perpendicular to the z-axis; in this case
1/2 and T = 3/8. The results are shown in terms of the volume fraction.
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In Fig. 6 the behaviour of the elastic moduli is reported versus the volume fraction of fibres. Fi-
nally, we have developed a software code that implements the complete procedure furnishing the
five elastic moduli of the overall composite materials formed by non-randomly included spher-
oids. At the end of this procedure, as above said, they are depending on k1, k2, l1, l2, S, T, c
and the eccentricity e: in Fig. 7 one can find several simulations describing different states of order
of the material. For each orientational distribution (fixed S and T) we have plotted the five Hill
parameters versus the eccentricity value of the embedded spheroids. This is done maintaining the
same materials for inclusions and matrix and the same volume fraction of the inhomogeneities.
0

0

-4 -3 -2 -1 1 2 3 4
0

5

10

15

20

25

30

-4 -3 -2 -1 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

S=0
T=0 
k1=1
µ1=0.35 
k2=100
µ2=30 
c=0.3

S=1
T=1 
k1=1
µ1=0.35 
k2=100
µ2=30 
c=0.3

log10(e) 

log10(e) 
-4 -3 -2 -1 0 1 2 3 4

0

5

10

15

20

25

30

35

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

S=1/2
T=1/2 
k1=1
µ1=0.35 
k2=100
µ2=30 
c=0.3

S=-1/2 
T=3/8 
k1=1
µ1=0.35 
k2=100
µ2=30 
c=0.3

log10(e) 

log10(e) a

b

c

d

Fig. 7. Several results for the Hill parameters are reported in various states of order/disorder. Each plot corresponds to
the indicated couple of order parameters S and T. The following lines describe the Hill parameters: continuous
line! m, dotted line! p, circles ! n, dashed line ! k and dotted continuous line ! l. In all cases we have considered
the same materials for inclusions and matrix and the same volume fraction of the inhomogeneities.
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4. Conclusions

In this work we have analysed the effects of the orientational order/disorder of not spherical
particles in composite or heterogeneous materials. As result of this analysis we have found the cor-
rect definition of some order parameters in such a way to predict the macroscopic electric and
elastic properties as function of the state of microscopic order. In particular, for the electric char-
acterisation we have found out new explicit relationships that allow us the computation of the per-
mittivity tensor in terms of the shape of the embedded particles and the order parameter. On the
other hand, from the point of view of the elastic properties of the overall medium, we have delin-
eated and applied a complete procedure which takes into account any given orientational distri-
bution of ellipsoids in the matrix. The theory can find many applications to real physical
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situations ranging from technological aspects of composite materials to optical characterisation of
nematic liquid crystals and to tissues modelling in biophysics: for example, the mechanical prop-
erties of bone, influenced by the trabecular architecture, can be investigated with these models.
Appendix A. Eshelby tensor for special cases

In this appendix we review the mathematical form of the Eshelby tensor [27] for special shapes
of ellipsoids, which is used in the main text to describe the homogenisation procedure. We follow
the conventions adopted in Mura [29]. It depends on the Poisson ratio m = (3k1 � l1)/[2(3k1 + l1)]
of the matrix.
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For spheres we have:
bS ¼

1
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For cylinders:
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And finally, for planar inclusions:
bS ¼

0 0 0 0 0 0

0 0 0 0 0 0
m

1�m
m

1�m 1 0 0 0
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0 0 0 0 1 0
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