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Abstract

An explicit result for the equivalent (or effective) permittivity tensor is derived for dispersions of anisotropic (biaxial) particles

embedded in an isotropic matrix. The overall medium has a positional disorder but an orientational order and it exhibits a uniaxial

behaviour. Each crystal is partially oriented along a given director (preferential direction) and the degree of orientation is taken into

account by a suitable order parameter. The equivalent permittivity tensor of the whole heterogeneous material is described in terms of the

order parameter, the volume fraction of the dispersed phase, the principal values of the permittivity tensor of the crystals and the

components of the director along which the crystals are preferentially aligned.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A widely investigated topic in material science is that of
calculating the permittivity or other specific quantities of
heterogeneous media starting from the knowledge of the
properties of each medium composing the mixture and
from the microstructure of the composite medium itself.
We find in literature a large number of methods to
evaluate, both at numerical and theoretical level, the
effective permittivity of composed media, as a function of
the permittivity of its homogeneous constituents and some
stoichiometric parameter [1,2]. From the historical point of
view, one of the most famous results is the Maxwell
formula for a strongly diluted suspension of spheres [1–3].
An alternative model is provided by the differential
method, which derives from the mixture characterisation
approach used by Bruggeman [4,5]. A great number of
works have been devoted to describe the relationship
between microstructure and properties. In [6] a functional
unifying approach has been applied to better understand
the intrinsic mathematical properties of a general mixing
formula. A fundamental result is given by Hashin-Shtrik-
e front matter r 2005 Elsevier B.V. All rights reserved.
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man’s variational analysis [7], which provides an upper and
lower bound for composite materials, irrespective of the
microstructure. In particular, for a two-phase material,
these bounds are given by two expressions of the Maxwell
type. Finally, a method to find the relation between the
spatial correlation function of the dispersed component
and the final properties of the material is derived from the
Brown expansion [8]. In this work we analyse the dielectric
behaviour of dispersions of anisotropic inclusions. In
particular we take into account spherical anisotropic
objects embedded in a homogeneous matrix. Because of
the anisotropy of the embedded particles the most relevant
aspect in the microstructure is the orientation of the
spherical particles themselves. We take into account a
partial orientational order described by an order parameter
S, which has the following meaning. When S ¼ 0, the
orientation of the particles is completely random, generat-
ing an overall isotropic medium. When S ¼ 1, all the
particles are aligned along a given director allowing the
formation of a uniaxial material. Finally, when S ¼ �1=2,
all the particles are lying randomly in planes perpendicular
to the given director. In this work we take into account all
the intermediate configurations between order and disorder
with the aim to characterise a material with particles
partially aligned. As we will explain later, the order
parameter S can assume all the fractional values between
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Fig. 1. Principal directions and permittivities of the spherical particles

used in the composite material. An arbitrary unit vector w̄ (director) is

indicated and represents the privileged direction of alignment among the

particles.
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�1=2 and 1. The three cases S ¼ 0, S ¼ 1 and S ¼ �1=2
are simply presented as representative values on a
continuum of values. We present, as result, the effective
permittivity tensor of such a material depending on S. This
analysis has immediate application to the field of the liquid
crystals. Actually, our microstructure describes a material
positionally disordered, but orientationally ordered, which
corresponds to a nematic phase in liquid crystals [9,10].
The level of ordering is reflected in the macroscopic
properties. For example, from an optical point of view,
we may observe that the optical axis is given by the
direction of orientation of the single crystals.

2. Single anisotropic inclusion

We first consider a single anisotropic sphere (characterised
by its permittivity tensor e [11]) embedded in an isotropic
medium with permittivity e0. If we expose the system to a
uniform electric field Ē0, a perturbation to this field appears
both inside and outside the sphere. We are interested in the
electric field which is present inside the sphere after the
application of the external field. In an arbitrary reference
frame, we may evaluate the internal electric field Ēs and the
internal electric displacement D̄s using [12]

Ēs ¼ 3e0½eþ 2e0I��1Ē0 and D̄s ¼ 3e0e½eþ 2e0I��1Ē0.

(1)

Here I represents the identity tensor of order three. These
fields are uniform within the sphere volume, and determined
by the exciting field and the anisotropic permittivity tensor.
Note that the internal electrical field is not necessarily
parallel to the external applied field. In this equation, the
anisotropy is completely general. It covers not only uniaxial
and biaxial materials, but also gyrotropic media in which the
permittivity tensor contains an antisymmetric part. However,
in the following we consider a symmetric permittivity tensor
in order to apply diagonalisation by means of a suitable
orthogonal matrix (rotation matrix R):

e ¼ R

ex 0 0

0 ey 0

0 0 ez

2
64

3
75R�1 ¼ R edR

�1, (2)

where ex, ey, ez are the three principal permittivities of the
anisotropic sphere; the rotation matrix R represents the
angular position (orientation) of the sphere with respect to a
reference frame with axis parallel to the principal directions
of the permittivity tensor.

If we consider an arbitrary reference frame in the space,
we may thus calculate the internal electric field and electric
displacement using the following relations:

Ēs ¼ 3e0½R edR
�1 þ 2e0I��1Ē0

¼ 3e0R½ed þ 2e0I��1R�1Ē0, ð3Þ

D̄s ¼ 3e0R edR
�1½R edR

�1 þ 2e0I��1Ē0

¼ 3e0R ed½ed þ 2e0I��1R�1Ē0. ð4Þ
In our scheme, the rotation matrix R is a random one
describing the distribution of the orientations of the
spheres embedded in the hosting isotropic medium. In
order to simplify successive computations, we define
Ad ¼ ½ed þ 2e0I��1. It follows that the average values of
the electric field and the displacement vectors (over the
sphere dispositions) are given by the relationships:

Ēs

� �
¼ 3e0 RAdR

�1
� �

Ē0 and

D̄s

� �
¼ 3e0 R edAdR

�1
� �

Ē0. ð5Þ

We may now define the statistical distribution of the
orientations to calculate the above-indicated average
values. The entire material that we wish to characterise is
positionally disordered, but partially orientationally or-
dered. This means that the centres of the spheres are
randomly distributed inside the medium but the orientation
of principal axis of the permittivity tensor of each particle
follow some statistical rules. We consider a single
anisotropic (in general biaxial) sphere with a reference
frame aligned along the principal directions of the
permittivity tensor. In this frame we consider a given
unit vector w̄ (director), which helps to define the
orientational order (see Fig. 1). Thus, all the spheres are
oriented, but do not generate a perfect alignment among all
these directors. As we will explain later, we can define an
order parameter (the average value of the second Legendre
polynomial):

S ¼
3

2
cos2 W�

1

2

� �
W
, (6)

where W is the angle each particle (each unit vector w̄) makes
with the preferential direction given by the x-axis of a global
reference frame (the symbol h iW represents the average value
over the angle W). The meaning of this parameter can be
described as follows. If S ¼ 1, the alignment is perfect
(W ¼ 0), if S ¼ 0 the alignment is completely random and if
S ¼ �1=2 all the particles (the corresponding unit vectors w̄)
are lying randomly in planes perpendicular to the director
(W ¼ p=2). We take into account all the intermediate
configurations between order and disorder with the aim to
characterise a material with particles partially aligned with
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an arbitrary degree of order (see Fig. 2 for some examples of
degree of order in the entire composite material). Once the
direction of orientation is taken for a single sphere, it may be
arbitrarily (randomly) rotated along the director. This
means that we subdivide the complete rotation process in
two elementary steps:
(1)
Fig.

The
first, we create non-perfect alignment by randomly
fixing the angle W (W ¼ 0 means perfect alignment),
(2)
 secondly, we randomly rotate the sphere around the
director, in order to establish a single preferential
direction in the behaviour of the entire medium.
To perform the calculation, we explain in more detail the
relevant phases. We begin with the first phase and for the
given unit vector w̄ we define the associated anti-symmetric
matrix w as follows:
w

S=0

S=-1/2

w
w

w

w

w

w

w

w

w

2
�

�

ϑ = 0

ϑ =

2. Structure of a dispersion of pseudo-oriented anisotropic spheres. One

two-phase material is described by the electric response of each phase, by
w̄ ¼

wx

wy

wz

2
64

3
75) w ¼

0 �wz wy

wz 0 �wx

�wy wx 0

2
64

3
75. (7)

This definition will be used to better describe the
generation of the tilting angle W. To this aim, we take into
account an arbitrary unit vector orthogonal to w̄ and we
name it w̄?; moreover, we complete the base with the unit
vector w̄ ^ w̄?. For example, we may assume the following
components for the unit vector w̄?:

w?x ¼
wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
x þ w2

y

q ; w?y ¼ �
wxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
x þ w2

y

q ; w?z ¼ 0. (8)

Therefore, on the plane formed by the vectors w̄? and w̄ ^

w̄? we may take into account the arbitrary unit vector v̄

orthogonal to w̄, as sketched in Fig. 3. Thus, the following
w

0<S<1

S=1

w

w
w

w

w

w

w

w

w

Nearly aligned

Randomly 
oriented

can find some orientational distributions ranging from order to disorder.

the state of order and by the volume fraction of the inclusions.
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Fig. 3. Scheme of the vectors considered on the plane perpendicular to the

director w̄. Given the unit vector w̄, we form a base by means of the unit

vector w̄? and the cross product w̄ ^ w̄?; an arbitrary unit vector v̄

perpendicular to w̄ is defined as a linear combination of w̄? and w̄ ^ w̄?
and identified by using the angle j.
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relation holds:

v̄ ¼ cosjw̄? þ sinjw̄ ^ w̄?, (9)

where the angle j is considered as a random variable
uniformly distributed over the entire range ½0; 2p�. Accord-
ing to the rule expressed in Eq. (7), we may define the anti-
symmetric matrix v associated with the vector v̄:
v ¼ cosj

0 �w?z w?y

w?z 0 �w?x

�w?y w?x 0

2
664

3
775

þ sinj

0 �ðwxw?y � wyw?xÞ wzw?x � wxw?z

wxw?y � wyw?x 0 �ðwyw?z � wzw?yÞ

�ðwzw?x � wxw?zÞ wyw?z � wzw?y 0

2
664

3
775. ð10Þ
The first rotation of the orthonormal base is made around
the unit vector v̄ (which is stochastic for the presence of j)
with an angle W; this rotation generates an inclination angle
W with respect to the director, as shown in Fig. 4.

The well-known Euler theorem states that each rotation
may be described by a unit vector (v̄ in our case) and an
angle (W in our case) and the relative rotation matrix is
given by

R1 ¼ expðvWÞ ¼ Iþ v sin Wþ v2ð1� cos WÞ,

R�11 ¼ expð�vWÞ ¼ I� v sin Wþ v2ð1� cos WÞ. ð11Þ

The first rotation thus fixes the orientation of the particles;
now the spheres may rotate around the directors, and the
relative angle of rotation c is considered to be randomly
distributed over the range ½0; 2p� (see Fig. 5). The rotation
matrix of this second phase is given by

R2 ¼ expðwcÞ ¼ Iþ w sincþ w2ð1� coscÞ,

R�12 ¼ expð�wcÞ ¼ I� w sincþ w2ð1� coscÞ. ð12Þ

The combination of the two rotations defines a statistical
medium where a privileged direction is given by the unit vector
w̄; the orientational order is described by the random variable
W and in particular by the order parameter S (Eq. (6)), as we
will verify later on. The statistical description of the orientation
of each particle is given by the final rotation matrix
R ¼ R2R1, where (I) the unit vector w̄ is a given and fixed
director, (II) the unit vector v̄ is given by Eqs. (8) and (9), (III)
the angles j and c are uniform random variables over the
interval ½0; 2p�, (IV) the angle W is a random variable of which
we know the expectation S (the order parameter). Under these
hypotheses we may calculate the following mean value useful
for evaluating the average electric field inside the particles (see
Eq. (5)):

RAdR
�1

� �
j;c ¼ R2R1AdR

�1
1 R�12

� �
j;c

¼
1

4p2

Z 2p

0

Z 2p

0

R2R1AdR
�1
1 R�12 dj dc

¼
1

4p2

Z 2p

0

Z 2p

0

½Iþ w sincþ w2ð1� coscÞ�

� ½Iþ v sin Wþ v2ð1� cos WÞ�

� Ad½I� v sinWþ v2ð1� cos WÞ�

� ½I� w sincþ w2ð1� coscÞ� dj dc. ð13Þ
Here the symbol h ij;c denotes ‘‘average over the uniformly
distributed angles j and c’’. A long but straightforward
integration performed taking into account the definition of v,
given in Eqs. (10) and (8), allows us to write down a first
important result

RAdR
�1

� �
j;c ¼

3

2
cos2 W�

1

2

� �
Ad þ Adw

2 þ w2Ad

�

�
1

2
wAdwþ

3

2
w2Adw

2

	

þ
1

2
sin2 W trðAdÞI. ð14Þ

Finally, performing the last averaging over the angle W over
the range ½0;p�:

RAdR
�1

� �
j;c;W

¼ S Ad þ Adw
2 þ w2Ad �

1

2
wAdwþ

3

2
w2Adw

2

� 	

þ
1

3
ð1� SÞ trðAdÞI, ð15Þ
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Fig. 4. First rotation (described by the matrix R1) is obtained by means of

rotation by an angle W around the unit vector v̄; correspondingly, the unit

vector w̄ is tilted at the same angle W. In this way, partial alignment of the

particles is obtained.
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Fig. 5. Second rotation (described by the matrix R2) is obtained by

performing a random rotation around the director w̄ by an angle c. As a

consequence, the particle is partially aligned along the director without

restriction regarding the rotational position around the director.
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where the order parameter S is defined by Eq. (6). It is
interesting to note that if S ¼ 0, we obtain the standard
relation RAdR

�1
� �

j;c;W ¼
1
3
trðAdÞI which corresponds to

isotropic orientation of the sphere, and if S ¼ 1 we have the
new result RAdR

�1
� �

j;c;W ¼ Ad þ Adw
2 þ w2Ad �

1
2
wAdwþ

3
2
w2Adw

2 which corresponds to perfect alignment of the
sphere to the director. Therefore, the average electric field
inside an embedded sphere is given by

Ēs

� �
¼ 3e0S Ad þ Adw

2 þ w2Ad �
1

2
wAdw

�
þ
3

2
w2Adw

2

	
Ē0

þ e0ð1� SÞ trðAdÞĒ0. ð16Þ

A similar relation holds on for the electrical displacement with
edAd substituted for Ad (see Eq. (5)). The statistical
distribution of orientations generates an overall material that
is uniaxial from a macroscopic point of view, and the principal
axis is given by the director w̄. Therefore, we are interested in
the average value of the electric field and the electric
displacement when the applied field Ē0 is parallel or
perpendicular to the unit vector w̄. We start this computation
taking into account the case with Ē0 parallel to w̄. In this
condition, we have w̄ ^ Ē0 ¼ 0 which means wĒ0 ¼ 0 (the
matrix w acts on the components of the electric field in a
manner similar to a cross product w̄^). By applying this
consideration to Eq. (16), we obtain the simplified relationship

Ēs

� �
¼ 3e0S½Iþ w2�AdĒ0 þ e0ð1� SÞ trðAdÞĒ0. (17)

Taking into account the definition of w (Eq. (7)), it is easy to
verify that the following formula is also true:

½Iþ w2�ij ¼ wiwj i; j ¼ x; y; z. (18)

Therefore, from Eq. (17) and from the relations E0;k ¼

E0wk (where E0 ¼ jE0j), Ad;j ¼ ½ej þ 2e0��1, ½Ad�jk ¼ Ad;jdjk

we deduce that

Ēs

� �
i
¼ 3e0S

X
j;k

wiwjAd;jdjkE0;k þ e0ð1� SÞ
X

k

Ad;kE0;i

¼ 3e0S
X

k

wiwkAd;kE0wk þ e0ð1� SÞ
X

k

Ad;kE0;i

¼ e0
X

k

3Sw2
k þ 1� S

ek þ 2e0
E0;i. ð19Þ

This result and a similar one for the electric displacement can
be summed up as follows for the case where
Ē0 is parallel to w̄:

Ē0kw̄)

Ēs

� �
¼ e0

P
j

3Sw2
j þ 1� S

ej þ 2e0
Ē0 ¼ akĒ0;

D̄s

� �
¼ e0

P
j

ejð3Sw2
j þ 1� SÞ

ej þ 2e0
Ē0 ¼ bkĒ0:

8>>>><
>>>>:

(20)

We can now begin the computation that takes into account
the case of an applied electric field perpendicular to the
director w̄. In this case the following relation holds: w̄ ^ ðw̄ ^

Ē0Þ ¼ �Ē0 or, in other terms, w2Ē0 ¼ �Ē0 (recall that the
matrix w acts on the components of the electric field as works
the cross product w̄^). Eq. (16), under this hypothesis, can be
rewritten as

Ēs

� �
¼ 3e0S w2Ad �

1

2
wAdw�

3

2
w2Ad

� 	
Ē0

þ e0ð1� SÞ trðAdÞĒ0

¼ �
3

2
e0S½w2Ad þ wAdw�Ē0

þ e0ð1� SÞ trðAdÞĒ0. ð21Þ

A tedious but straightforward calculation allows us to observe
that, if Ē0 ? w̄ (i.e. Ē0 � w̄ ¼ 0), the following relationship
holds:

½w2Ad þ wAdw�Ē0 ¼ �
X

k

Ad;kð1� w2
kÞĒ0. (22)

Summing up, Eqs. (21) and (22) lead to the following relation
for the internal average electric field and the analogous one for
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the electric displacement:

Ē0 ? w̄)

Ēs

� �
¼ e0

P
j

3

2
Sð1� w2

j Þ þ 1� S

ej þ 2e0
Ē0 ¼ a?Ē0;

D̄s

� �
¼ e0

P
j

ej
3

2
Sð1� w2

j Þ þ 1� S

� 	
ej þ 2e0

Ē0 ¼ b?Ē0:

8>>>>>>><
>>>>>>>:

(23)
3. Effective permittivity tensor

Until now, we have analysed the average electric
behaviour of a single spherical particle embedded in a
random medium with a given statistical orientation in both
principal directions, e.g. parallel and perpendicular to w̄.
We now consider a random medium where many particles,
as described above (see Fig. 2), are embedded in an
isotropic matrix having permittivity e0. The volume
fraction of the dispersed phase will be indicated by c,
where 0oco1, and at the beginning it will be considered
very small (indicatively co0.2). Thus, we are dealing with a
very diluted dispersion. This means that we do not take
into account the interactions among the inclusions because
of the very low concentration of spheres. For example, if
we are dealing with N spheres of radius R in a cube of size l

the volume fraction is given by c ¼ 4pR3N=ð3l3Þ and the
low concentration condition is N � 3l3=ð4pR3Þ. We now
search for the electric behaviour of the overall dispersion of
anisotropic spheres. Of course, from a macroscopic point
of view, the permittivity tensor of such an overall medium
will describe a uniaxial behaviour. The following con-
siderations are valid both in the direction along w̄ and in
the directions orthogonal to w̄. Specifically, we define e
(ek or e?) as the equivalent permittivity of the entire
mixture by means of the relation D̄

� �
¼ e Ē
� �

. To evaluate
e, we may compute the average value of the electric field
and of displacement vector inside the random material. We
also define V as the total volume of the mixture, V e as the
total volume of the embedded spheres, and Vo as the
volume of the remaining space among the inclusions (so
that V ¼ V e [ V 0). The average value of the electric field is
assumed to be the following:

Ē
� �
¼ c Ēs

� �
þ ð1� cÞĒ0 ¼ ðcaþ 1� cÞĒ0. (24)

Here a and b stand for ak; bk or a?; b? depending on the
direction under consideration. Eq. (24) means that, as we
have above stated, we do not take into account the
interactions among the inclusions because of the very low
concentration of spheres; each sphere behaves as a single
one in the entire space. Once more, we have approximately
taken into account a uniform electric field Ē0 in the space
outside the inclusions. This is the sole approximation
introduced in this work and it corresponds to the classic
approximation adopted to derive the standard Maxwell
mixing formula [1–3]. The average value of D̄ðr̄Þ ¼ eðr̄ÞĒðr̄Þ
is evaluated as follows:

D̄
� �
¼

1

V

Z
V

eðr̄ÞĒðr̄Þ dr̄

¼
1

V
e0

Z
Vo

Ēðr̄Þ dr̄þ
1

V

Z
V e

D̄ðr̄Þ dr̄

¼
1

V
e0

Z
Vo

Ēðr̄Þ dr̄þ
1

V
e0

Z
V e

Ēðr̄Þ dr̄

þ
1

V

Z
V e

D̄ðr̄Þ dr̄�
1

V
e0

Z
V e

Ē r̄ð Þ dr̄

¼ e0 Ē
� �
þ c D̄s

� �
� ce0 Ēs

� �
¼ e0 Ē

� �
þ cðb� e0aÞĒ0. ð25Þ

Drawing a comparison between Eqs. (24) and (25) and
recalling the definition of equivalent permittivity
D̄
� �
¼ e Ē
� �

, we may now find a complete expression that
allows us to estimate the equivalent permittivity e in the
given direction and its first-order expansion with respect to
the volume fraction c:

e ¼ e0 þ c
b� e0a

1� cþ ca
ffi e0 þ cðb� e0aÞ. (26)

By using Eq. (20), we characterise the heterogeneous
material along the director w̄:

ek ¼ e0 þ c
e0
P

j

ðej�e0Þð3Sw2
j þ1�SÞ

ejþ2e0

1� cþ ce0
P

j

3Sw2
j
þ1�S

ejþ2e0

ffi e0 1þ c
X

j

ðej � e0Þð3Sw2
j þ 1� SÞ

ej þ 2e0

" #
. ð27Þ

Similarly, by using Eq. (23), we find the permittivity in the
directions orthogonal to w̄:

e? ¼ e0 þ c
e0
P

j

ðej�e0Þ½32Sð1�w2
j
Þþ1�S�

ejþ2e0

1� cþ ce0
P

j

3
2Sð1�w2

j
Þþ1�S

ejþ2e0

ffi e0 1þ c
X

j

ðej � e0Þ½32 Sð1� w2
j Þ þ 1� S�

ej þ 2e0

" #
. ð28Þ

Eqs. (27) and (28) are the main results of this work and
represent the principal permittivities of an anisotropic
uniaxial material formed by biaxial spheres positionally
disordered but orientationally ordered. These relation-
ships have been expressed in terms of the order parameter
S, the director w̄, the principal values of the permittivity
tensor of the constituent crystals and their corres-
ponding volume fraction. As we will show later on,
these expressions represent a generalisation of the well-
known standard Maxwell mixing formula for isotropic
spheres in isotropic matrix. Some particular limiting cases
follow:
If the spheres are made of isotropic material, we have

ex ¼ ey ¼ ez ¼ em and, as expected, both Eqs. (27) and (28)
reduce to the classical Maxwell formula, independently on
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the value of S [1–3]:

ek ¼ e? ¼ e0 þ 3c
e0ðem � e0Þ

ð1� cÞðem þ 2e0Þ þ 3ce0

ffi e0 1þ 3c
em � e0
em þ 2e0

� 	
. ð29Þ

In this latter case the orientation of the spheres does not
affect the electric behaviour and, in effect, the components
of the director w̄ do not appear in the results.

If S ¼ 0, the microstructure is completely disordered,
and from a macroscopic point of view, the resulting
material is exactly isotropic with permittivity given, in the
dilute limit, by

ek ¼ e? ffi e0 1þ c
X

j

ej � e0
ej þ 2e0

" #
. (30)

It can be useful to write this formula in terms of the
invariants of the permittivity tensor:

ek ¼ e? ffi e0 1þ c
3I3 þ 3e0I2 � 12e30

I3 þ 2e0I2 þ 4e20I1 þ 8e30

� 	
, (31)

where the three invariants are defined as follows:

I1 ¼ tr e,

I2 ¼
1

2
½ðtr eÞ2 � trðe2Þ�,

I3 ¼ det e. ð32Þ

Conversely, if S ¼ 1 all the anisotropic particles are
perfectly aligned along the director and we obtain from
Eqs. (27) and (28) the simpler results

ek ¼ e0 þ c
e0
P

j

3w2
j ðej�e0Þ
ejþ2e0

1� cþ ce0
P

j

3w2
j

ejþ2e0

ffi e0 1þ c
X

j

3w2
j ðej � e0Þ

ej þ 2e0

" #
, ð33Þ

e? ¼ e0 þ c
e0 3

2

P
j

ð1�w2
j Þðej�e0Þ

ejþ2e0

1� cþ ce0 3
2

P
j

1�w2
j

ejþ2e0

ffi e0 1þ c
3

2

X
j

ð1� w2
j Þðej � e0Þ

ej þ 2e0

" #
. ð34Þ

If S ¼ �1=2, all the anisotropic particles are lying
randomly on planes perpendicular to the director and we
obtain from Eqs. (27) and (28) the results

ek ¼ e0 þ c
e0 3

2

P
j

ð1�w2
j Þðej�e0Þ

ejþ2e0

1� cþ ce0 3
2

P
j

1�w2
j

ejþ2e0

ffi e0 1þ c
3

2

X
j

ð1� w2
j Þðej � e0Þ

ej þ 2e0

" #
, ð35Þ
e? ¼ e0 þ c
e0 3

4

P
j

ð1þw2
j Þðej�e0Þ

ejþ2e0

1� cþ ce0 3
4

P
j

1þw2
j

ejþ2e0

ffi e0 1þ c
3

4

X
j

ð1þ w2
j Þðej � e0Þ

ej þ 2e0

" #
. ð36Þ

From previous results given by Eqs. (34) and (35), it is easy
to observe the relationship that e?ðS ¼ 1Þ ¼ ekðS ¼ �1=2Þ.
This relation derives from a most general property of our

solutions: e?ðS ¼ xÞ ¼ ekðS ¼ �x=2Þ, valid for any value of
x, which immediately follows from Eqs. (27) and (28).
Finally, results often useful in practical applications are

obtained by letting ex ¼ ey (uniaxial particles) partially
aligned along the optical axis given by wx ¼ 0, wy ¼ 0 and
wz ¼ 1. This case corresponds, for example, to a nematic
liquid crystal where each uniaxial molecule is modelled by a
spherical anisotropic particle. In any case, if we apply the
general solutions given in Eqs. (27) and (28) to the present
case we may obtain the final relationships:

ek ¼ e0 þ c
e0 2 ex�e0

exþ2e0
ð1� SÞ þ ez�e0

ezþ2e0
ð1þ 2SÞ

h i
1� cþ ce0 2 1�S

exþ2e0
þ 1þ2S

ezþ2e0

h i
ffi e0 1þ 2c

ex � e0
ex þ 2e0

ð1� SÞ þ c
ez � e0
ez þ 2e0

ð1þ 2SÞ

� 	
, ð37Þ

e? ¼ e0 þ c
e0 2 ex�e0

exþ2e0
ð1þ 1

2
SÞ þ ez�e0

ezþ2e0
ð1� SÞ

h i
1� cþ ce0 2 1þS=2

exþ2e0
þ 1�S

ezþ2e0

h i
ffi e0 1þ 2c

ex � e0
ex þ 2e0

1þ
1

2
S

� �
þ c

ez � e0
ez þ 2e0

ð1� SÞ

� 	
.

ð38Þ

These particular results are in perfect agreement with those
obtained in reference [13], which uses a complicated
statistical technique from the standpoint of statistical
continuum mechanics.
Fig. 6 shows plots of the equivalent permittivities

ek and e? versus the order parameter S for the case �1/2o
So1 using the parameters: wx ¼ 0, wy ¼ 0, wz ¼ 1,
ex ¼ 15, ey ¼ 15, ez ¼ 3 and e0 ¼ 1. Six curves are presented
for ek and for e? which correspond to six different values
of the volume fraction c starting from c ¼ 0 and reaching
the limiting value c ¼ 1. One can observe the validity of the
relation e?ðS ¼ 1Þ ¼ ekðS ¼ �1=2Þ.

4. Differential effective medium theory

The differential effective medium theory, sometimes
called the Bruggeman’s procedure, is a method for finding
a second mixture relationship by considering a first theory
describing the composite material. This second theory is
usually more efficient than the first one, even if the mixture
is not strongly diluted. In Bruggeman’s scheme [4] the
initially low concentration is gradually increased by
infinitesimal additions of the dispersed component [1,5].



ARTICLE IN PRESS

-0.5 0 0.5 1
0

5

10

15

 S 

c 
�//

� /
/ ,

 �
⊥

�⊥

Fig. 6. Plots of the equivalent permittivities ek and e? given by Eqs. (37)

and (38) versus the order parameter S (�1=2oSo1) with the values

wx ¼ 0, wy ¼ 0, wz ¼ 1, ex ¼ 15, ey ¼ 15, ez ¼ 3 and e0 ¼ 1. Six curves are

presented, and they correspond to six different values of the volume

fraction c starting from c ¼ 0 and reaching the limiting value c ¼ 1.

Fig. 7. Plots of the surfaces describing the behaviour of the equivalent

permittivities ek (Fig. 7(a)) and e? (Fig. 7(b)) given by the differential

effective medium theory. The equivalent permittivities have been

represented in terms of the order parameter S (�1=2oSo1) and the

volume fraction c (0oco1), with the same parameters used to obtain the

plots of Fig. 6.
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In other words we may say that the differential procedure
is a method that allows us to take into account
approximately the interactions among the particles when
the volume fraction is not very low. Of course, the limiting
value c ¼ 1 is never reached because the higher admissible
values for the volume fraction correspond to uniform
packing of touching spheres in the medium (for example
c ¼ p=6 for cubic packing of spheres). Typically, the
mixing laws reported in literature and the results here
presented are not correct for these extreme cases because of
the strong interaction of the multipole moment terms
among the spheres. Moreover, we may say that Eqs. (27)
and (28) of the previous section are valid for values of c up
to 0.1–0.2 and that results of the differential theory
(described in this section) are valid for values of c up to
0.4–0.5. This restriction on the volume fraction of the
mixture is very important but there are no direct
restrictions on the size of the spheres embedded in the
matrix. Anyway, we start from the simple mixing rule e ¼
F ðe0; fekg; cÞ where c is the volume fraction of embedded
phase in the matrix (e0) and e is the equivalent permittivity.
In this work the function F is explicitly given in the final
relations Eqs. (27) or (28). The set of parameters fekg

defines the microstructure and the material of the
embedded particles. In our case, these parameters are
given by wx, wy, wz, ex, ey, ez plus the order parameter
S. The standard differential procedure furnishes
another relation describing the mixture for higher
values of the volume fraction, and it is a solution of
the following differential equation: de=dc ¼ ð1=ð1� cÞÞ

ðqF ðe; fekg; cÞ=qcÞjc¼0 (see Refs. [1,4,5] for details). This
equation, when the function F is given, defines a new
function, which should better describe the mixture when it
is not strongly diluted. We may apply the method to the
two expressions given in Eqs. (27) and (28), thereby
obtaining the following differential equations:

dek
dc
¼

1

1� c

qekðc ¼ 0; e0 ¼ ekÞ
qc

,

de?
dc
¼

1

1� c

qe?ðc ¼ 0; e0 ¼ e?Þ
qc

. ð39Þ

Calculating the pertinent partial derivatives from Eqs. (27)
and (28) result in

qek
qc






c¼0

¼ e0
X

j

ðej � e0Þð3Sw2
j þ 1� SÞ

ej þ 2e0
,

qe?
qc






c¼0

¼ e0
X

j

ðej � e0Þ½32 Sð1� w2
j Þ þ 1� S�

ej þ 2e0
. ð40Þ

We then can obtain the final system of ordinary differential
equations representing the differential effective medium
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theory for the permittivity tensor in anisotropic random
media:

dek
dc
¼

ek
1� c

X
j

ðej � ekÞð3Sw2
j þ 1� SÞ

ej þ 2ek
;

ekðc ¼ 0Þ ¼ e0;

de?
dc
¼

e?
1� c

X
j

ðej � e?Þ½
3

2
Sð1� w2

j Þ þ 1� S�

ej þ 2e?
;

e?ðc ¼ 0Þ ¼ e0:

8>>>>>>>>>>><
>>>>>>>>>>>:

(41)

An example of a solution of such system is given in Fig. 7,
where one can find the plots of the equivalent permittivities
ek (Fig.7(a) and e? (Fig. 7(b)) versus the order parameter S

ð�1=2oSo1Þ and the volume fraction c (0oco1), with
the same parameters used in Fig. 6: wx ¼ 0, wy ¼ 0, wz ¼ 1,
ex ¼ 15, ey ¼ 15, ez ¼ 3 and e0 ¼ 1. These plots show two
contours that describe the behaviour of the equivalent
permittivities ek (Fig. 7(a)) and e? (Fig. 7(b)) in terms of the
parameters S and c. The differential system given in
Eq. (41) could be solved in closed form because it involves
the integration of rational functions. The explicit solutions
are given by very complicated formulas, which provide no
further understanding beyond the numerical solutions
represented in Fig. 7. Hence, these relative expressions
are not reported here.

5. Conclusions

We have set down the general equations for describing
the tensor behaviour of an anisotropic random media in
the dilute limit and by means of the differential scheme.
The microstructure of the composite material is one of the
most interesting, appearing, for example, in nematic liquid
crystals and in other partially ordered physical systems.
Distributions of anisotropic particles embedded in iso-
tropic matrices have completely translational disorder but
partial orientational order. The degree or orientation of the
particles along a given director is described by a suitable
order parameter. In both the dilute limit and in the
differential scheme, the results are given by the equivalent
permittivities of the overall uniaxial material; i.e. a
permittivity along the director and a permittivity in the
direction perpendicular to the director itself. These proper-
ties of the whole heterogeneous material are expressed in
terms of the order parameter, the volume fraction of the
dispersed phase, the principal values of the permittivity
tensor of the crystals and the components of the director
along which the crystals are preferentially aligned. These
results have been found with a geometrical statistical
approach and represent a strong generalisation of the
standard mixing rules well known in the theory of
composite materials.
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