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Relation Between Microscopic
and Macroscopic Mechanical
Properties in Random Mixtures of
Elastic Media

A material composed of a mixture of distinct homogeneous media can be considered as a
homogeneous one at a sufficiently large observation scale. In this work, the problem of
the elastic mixture characterization is solved in the case of linear random mixtures, that
is, materials for which the various components are isotropic, linear, and mixed together
as an ensemble of particles having completely random shapes and positions. The pro-
posed solution of this problem has been obtained in terms of the elastic properties of each
constituent and of the stoichiometric coefficients. In other words, we have explicitly given
the features of the micro-macro transition for a random mixture of elastic material. This
result, in a large number of limiting cases, reduces to various analytical expressions that
appear in earlier literature. Moreover, some comparisons with the similar problem con-
cerning the electric characterization of random mixtures have been drawn. The specific
analysis of porous random materials has been performed and largely discussed. Such an
analysis leads to the evaluation of the percolation threshold, to the determination of the
convergence properties of Poisson’s ratio, and to good agreements with experimental

data. [DOI: 10.1115/1.2400282]
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Introduction

A widely dealt-with topic concerning the physical behavior of
heterogeneous materials (mixtures) is that of calculating their
elastic moduli starting from the knowledge of the moduli of each
medium composing the mixture as well as of the structural prop-
erties of the mixture itself (percentage of each medium, shapes
and relative positions of the single parts of the various media)
[1,2]. Clearly, it concerns isotropic linear media, which combine
to form linear mixtures. We find in the literature a large number of
exact and approximate analytical expressions for the effective
moduli of composed media as a function of the moduli of their
homogeneous constituents and some stoichiometric parameters.
At present, it is well known the details of the micro-geometry play
a crucial role in determining the overall properties, particularly
when the crystalline grains have highly anisotropic behavior or
when there is a large difference in the properties of the constituent
materials. Therefore, the elastic (thermal, electrical, and so on)
properties of composite materials are strongly microstructure de-
pendent. So, each approximate analytical expression, which ap-
pears in the literature, yields accurate predictions only for a par-
ticular kind of microstructure of the heterogeneous material. The
most frequently analyzed elastic mixture theory regards a compos-
ite material formed by spherical inclusions embedded in a solid
matrix. The related results have been reported by several authors
(see, for example, Refs. [1,3]). Furthermore, the differential ap-
proach has been used to adapt this theory to higher volume frac-
tion of the embedded inclusions [4—6]. Recent developments in
the vast field of the homogenization in composite materials can be
found in Ref. [7]. This work is devoted to an investigation on the
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linear random mixtures (perfectly random microstructure).
Roughly speaking, a random (or statistical) mixture is a material
composed of little particles, having completely haphazard sizes,
positions, and shapes; each particle is entirely composed of one of
some given homogeneous isotropic materials. This definition has a
clear intuitive meaning, though it does not withstand an accurate
criticism. In a recent paper [8] the same problem has been ad-
dressed for the linear electrical conductivity and a generalization
to nonlinear electrical mixtures has been made. In such a work, in
the linear case, the authors dealt with random mixtures composed
of N homogeneous media, having volume fractions cy, ¢;,...,Cy
(Zc;=1) and conductivities o, 0,,...,0y, respectively. They
found an expression of the effective mixture conductivity o in
terms of the above quantities. This result depends on the dimen-
sionality of the mixture. In the three-dimensional case, the equa-
tion for the effective conductivity is the following:
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Similarly, for two-dimensional mixture the result is given by:
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In this paper we study similar relationships, which describe a
random mixture from the elastic point of view. In other words, we
obtain some results, similar to Eq. (1) or (2), that allow us to
estimate the elastic moduli (or more generally, the stiffness tensor)
concerning the overall elastic behavior of a linear elastic random
mixture.

From Diluted Dispersions to Random Mixtures

A composite material can be thought of as a heterogeneous
solid continuum that bonds together different homogeneous con-
tinua: each part of the media has a well-defined sharp boundary.
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The bonding at the interfaces remains intact in our models when
the whole mixture is placed in an equilibrated state of infinitesi-
mal elastic strain by external loads or constraints. So, the bound-
ary conditions require that both the vector displacement and the
stress tensor be continuous across any interfaces. Each separate
homogeneous region has its characteristic stiffness tensor, which
describes the stress-strain relation. If the materials are linear, iso-
tropic, and homogeneous this relation is given by:

Ty=LyEy s=1.2,....N 3)

where T is the stress tensor, E is the strain tensor, and L is the
constant stiffness tensor, which depends on the medium consid-
ered (s=1,2,...,N with N different phases). For isotropic media
the latter is written, for example in terms of bulk modulus and
shear modulus, as follows:

1
L= k8,0 + 2,"«5(51'/(5_;/— g‘sij‘skl) s=1,2,....,N (4

where k, and w, are the bulk and shear moduli of the sth medium
and J,,, is the Kronecke delta. For preliminary analysis of tensors
and generic elastic behavior one can see Refs. [2,9].

To solve a mixture problem consists in finding the equivalent
macroscopic stiffness tensor for the whole composite material
and, then, for overall isotropic behavior, this means that we have
to evaluate the equivalent k and w constants.

The most famous and studied elastic mixture theory regards a
composite material formed by spherical inclusions of medium 2
embedded in a solid matrix of medium 1. In this case the theory
can be outlined as follows: first, one has to study the behavior of
a single spherical inclusion inserted in a homogeneous matrix.
This problem has been completely solved by Eshelby [10], who
obtained the following fundamental result: if the strain tensor is
constant in the matrix (whole three-dimensional space) before in-
serting any inclusion, when we embed a sphere of different mate-
rial we obtain a constant strain inside the sphere itself. This result
may be generalized to ellipsoidal inclusions and to the computa-
tion of the strain field outside the inclusions [10,11]. The relation
between the constant strain inside the embedded inclusion and the
constant bulk strain (in the matrix before the sphere embedding),
obtained by Eshelby, allows the characterization of the dilute mix-
ture of spheres in terms of equivalent bulk and shear moduli k£ and

yu
4/“’1 + 3kl

k=kl +
4, + 3k,

(ky = ky)e +0(c?)

Sp(dpy +3k) (o = )
w19k +8y) + 64y (ky +241)

This is the exact result for a material composed of a very dilute
concentration of spherical inclusions (medium 2 with moduli &,
and u, and volume fraction ¢ dispersed in a solid matrix (medium
1 with moduli k; w; and volume fraction 1-c. The result is attrib-
uted to numerous authors [1]. A similar result holds on for the
two-dimensional case (circles in the plane) [12]:

W=+ c+0(?  (5)

+k
B2y — ke + O(c?)

k=k, +
1tk

2y (g + ky) (o = 1)
(kg + pp) + po(ky + )

It should be noted that the bulk modulus &, in Eq. (6), is not the
same as the customarily used three-dimensional bulk modulus;
however, for the problem of generalized plane stress where a thin
plate of uniform thickness is deformed in its own plane, they are
related by the formula: k,p=9u3pksp/ (4u3p+3ksp). Moreover,
we remember that the shear modulus has the same definition in
two or three dimensions: w,p=u3p. Throughout this paper we

w= g+ c+0(c?) (6)
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omit the indication 2D or 3D, adopting the convention that k
represents k,p in all two-dimensional relationships. For more ex-
planations one can see, for example, Ref. [9].

The higher orders terms, in the ¢ expansions given in Egs. (5)
and (6), describe the interaction between particles, and so are
negligible in the dilute limit and not necessary for our purposes.

In the sequel, these results will be used to derive some exact
properties of two-phase random mixtures, that is, materials for
which the components are isotropic, linear, and mixed together as
an ensemble of particles having random shapes and positions. We
consider the case of a random mixture (either two-dimensional or
three-dimensional) composed by two media with concentrations
c1=1-c and ¢, =c, respectively. We assume by hypothesis that the
only structural information on the mixture is the volume fraction
of the second medium, since either medium is composed of par-
ticles completely randomized in size, position, and shape. In this
problem we may not distinguish between the matrix and the in-
clusions. For example, in a polycrystalline media, each crystal
may be treated as an inclusion embedded in the remaining crystals
and, hence, all crystals have the same significance. So, there is
complete symmetry in treating each crystal as an inclusion. There-
fore, the concept of a matrix with embedded inclusions is no
longer relevant. Nevertheless, it is possible to use Egs. (5) and (6),
in order to find some properties of a random mixture. For such a
mixture we may use relations of this kind for the average moduli:
k=F(ky,ky, py,po,c) and w=G(ky,ky, 1, (y,c). Functions F and
G completely define the overall behavior of the random two-phase
mixture and they are, for the moment, unknown in structure. This
statement is actually a definition of random mixture: a mixture
composed by parts so randomized, as stated above, that the only
significant structural information is merely the volume fraction ¢
of the second medium 1-c for the first medium). This definition is
heuristically useful to calculate average parameters, as it is shown
in the sequel. We search for some mathematical properties of
functions F and G, which may be used in the following deriva-
tions to find out their complete analytical structure. Let us exam-
ine the situation for very low values of ¢; we may think that a low
value of ¢ is reached when the structure contains only a single
very small element of the second medium embedded in the matrix
of the first medium. In this limiting case, Egs. (5) and (6), ob-
tained for diluted suspensions of spheres, hold on even for random
mixture: i.e., the very small concentration behavior of functions F'
and G must be the same of that exhibited by Egs. (5) and (6).
More precisely, we think of a single embedded sphere with infini-
tesimal volume (or radius): this very small sphere represents a
single point defect in the solid matrix and then it describes a
random mixture with a single very small element of the second
medium. Therefore, we may write down the derivatives of the
functions F' and G with respect to the volume fraction ¢, calcu-
lated for ¢=0. In the three-dimensional case we have:

JF 4+ 3k
I v )
dc =0 4,LL1 + 3k2
G _ Sp(dpy +3kp) (o = ) )
dc | emo 19y +8py) + 65 (ky +2u)
Similarly, for the two-dimensional case:
or +k
= =B k)
I ezg M1tk
9G _ 2 (e + k) (o = 1) )
dc | ezo (ks + po) + polky + )

Equations (7) and (8), holding true for two-phase random mix-
tures, play an essential role in the further development of the
theory. By using these expressions, we may solve the complete
problem of a random mixture composed by N different homoge-
neous components randomly mixed together to yield an overall
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isotropic medium. In the sequel, to apply Egs. (7) and (8), the
significance given to the matrix (medium 1) must be removed.

Elastic Multiphase Random Mixtures

This section deals with random mixtures composed of N homo-
geneous media, having volume fractions ¢y, ¢y, ...,cy (Z¢;=1, i
.,N) and moduli (ky,u;), (ka,p2),...,(ky,py), respec-
tively. Our aim is to find the expressions of the mixture moduli in
terms of the above quantities. We consider these assumptions on
the statistical composition of the random heterogeneous material:
we subdivide the whole medium in many smaller pieces having
completely random shape and position; each of these parts is ho-
mogeneous and has moduli (kj, /.Lj) with probability c;. The values
of the moduli in a given little piece are statistically independent of
the values assigned in the other pieces. This means, by using the
law of large numbers, that the stoichiometric coefficient of the jth
components is c;. In other words, the density probability of the
values of the elastic moduli in a given piece of material has the
form Wk, =2 c;8(k—k;)8u—pu,), where the k;’s, the w;’s,
and the ¢;’s are the above defined quantities and S(x) is the Dirac
delta function: this means that the probability for (k, u) to assume
values in the set (k,k+dk) U(u,u+du) is exactly W(k, w)dkd .
These values are statistically independent for different parts of the
whole material. This is the definition of the N-phase elastic ran-
dom medium used to obtain the following results. Note that all the
constituents have the same significance to define the whole het-
erogeneous material. It is only the volume fractions that are of
concern.

Now, we are ready to consider a generic mixture with N differ-
ent media. Each medium, in the generic mixture, has moduli k;
and u; and volume concentration ¢; (i=1,...,N); k and w are the
equivalent moduli of the mixture. If we add to the mixture a little
volume dc with moduli k; and p;, we create a new heterogeneous
material formed by the original mixture (moduli k and ) and a
volume with moduli k; and u;; this new mixture can be analyzed
considering it as a two-component one; therefore, its moduli, re-

ferred to as k; and [, are given by:

dc _
ki=F k,k,,,u,,uj,m = F(k.k;, . ;. dc)

dc
M G(k’k]’ll“/’#j’l de ) Gk kj, . pjpdc) ©)

This procedure is not new in principle, since it has been used, e.g.,
by Bruggemann [13] for little volumes of the medium added to
the original mixture. Anyway, let us suppose that the procedure of
adding a volume dc is made for each medium (j=1,2...,N), giv-
ing a probability c; to the case of moduli (k;,u;). The average
moduli are clearly the very same k and w of the original mixture,
hence one may state that:

N
k=2, kej= E Flko ks o o)
j=1

IF (k,kj, e, p;.¢)
o

(o

N
D> [F(k, Kjo bt 17,0) + dc]cj
c=0

N
2 Glk,kj, . pjpdc)c;

N
J Gk, k )
E[G(k, bt 0) + LR dc]c,» (10)

c=0

By usmg the relations F(k,k;, u,u;,0)=k, G(k,k;,m,p;,0)=pu,
and =V =1Cj= 1, we obtain, after some straightforward calculations:
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For three-dimensional random mixture we use Eq. (7) and we
obtain:

du+ 3k
El/«

ki—k
4+3k( Jej=

% Suu+30y-m )

= wOk+8p) + 6k +241) €=

Similarly, for two-dimensional random mixtures, by using Eq. (8)
we have:

N
E vk (k k)ej=0

2up+k) (-
P ST +,U«,(k+,U~) <

=0 (13)

These results may be rearranged as follows for the three-
dimensional case:

1 _ C/'
3k+4u = 3kj+4p
1 s *
=> < (14)
SuBk+4u) = 3k(2u;+3pm) +4u(2u+3u))
For the two-dimensional case, we obtain:
N
LI N
ktp T ki+p

N
=> (15)

2,u(k +p) o k(i + ,u) +2uu

Equations (14) and (15) completely describe the elastic behavior
of a random mixture and allow us a fast determination of the
overall bulk and shear moduli of the overall structure. So, such
expressions represent the explicit relation among the microscopic
properties of the material and the macroscopic ones, which can be
measured on a large region of medium. These are the main results
of this work and, as we show in the following, they collect and
unify many elastic relations that can be found in literature. More-
over, we may observe that each component intervenes in the same
way, to define the whole structure of the formulas, exhibiting the
complete symmetry among the constituents of the random me-
dium. Finally, we may observe that Egs. (14) and (15) are the
elastic counterpart of the electrical relationships given by Egs. (1)
and (2). A particular case is given by the two-phase random me-
dium: in such case we write down explicit expressions for three-
and two-dimensional structures. By using Eq. (14), after some
manipulations, we obtain, for three-dimensional two-phase mix-
tures, the equivalent shear modulus by means of the following
fourth degree algebraic equation:
R2ut+ ap’ + Bu* + yu+ 8=0
a=12ck, + 48, + 36k, — 32, —

12ck; — 80cuy + 80c g + 24k,
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B=2Tkiky — 48 o — 48c ok + 72c ik + 48w cky — T2 uscky
- 36,lle1 + 24M2k1 + 36M2k2 - 24/1/1](2

¥ = 18uokiky = 27 ik iky = 24y poky = 36y poky — 120 pack
+ 12M1M2Ck2 - 45C[L2klk2 + 45C}L1k1k2

0=— 18 pok ky (16)

Once the value of u is computed, this relation directly gives the
value of the equivalent bulk modulus &:

_ 4#[(1 - C)kl + Ckz] + 3klk2
T 3(1=ky+ 3¢k, +4u

In two-dimensional two-phase structures, Eq. (15) yields the fol-
lowing third degree algebraic equation for the equivalent shear
modulus u:

(17)

ap’ + Bu* + yu+ 6=0
a=2cpuy,—2cpmy —cky — ki +cky —2u,
B=— poky = 2poky + 3packsy + piky + cpoky = 3cpiky — kiky
+ 2 o — picky
Y= pokiky + pikiky + gy poky + 2c ok ky = 2cpikiky + 2y poky
= pipacks + pypack,

6=y pokiky (18)

Once again, the bulk modulus £ is directly given by the following
relationship:

_ MLl =)k + cko] + kik,
T+ (1= 0)ky + ck

(19)

In following sections we describe some comparison and agree-
ment with various expressions, which appear in literature.

4 Equal Shear Modulus

When all constituents of an elastic composite have the same
shear modulus w, Hill [14,15] has shown that the effective modu-
lus k, in three-dimensional structures, is given by the exact for-

mula:
[ 1
3k+4u \3k(x)+4u

where (f(x)) represents the average value of the function f(x) over
the entire mixture volume. This result is true for any microstruc-
ture and may be also formulated for two-dimensional mixtures:

1 3 1
k+p \k(X)+pu

This two-dimensional version of the theorem may be verified by
means of the invariant properties of the stress in plane elasticity,
which have been described by Cherkaev-Lurie-Milton [16] and
Milton [17].

Both these exact results, being independent on the microstruc-
ture, in particular, should be correct in the case of random mix-
tures. In effect, they are in complete agreement with the first ex-
pression in Egs. (14) (three-dimensional problem) or Eq. (15)
(two-dimensional problem). When we deal with two-phase mix-
tures the above relations became identical to Egs. (17) and (19),
where u assumes the meaning of the common shear modulus.

(20)

(21)

5 Results Based on Duality for Planar Elasticity

The duality theory for incompressible planar elastic media dis-
cussed here is due to Berdichevski [18]. We consider an isotropic
planar random elastic medium. It is incompressible at each point
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(infinite bulk modulus) and it is formed by a mixture between two
media with shear moduli p; and u, and infinite bulk modulus.
The duality theorem can be stated as follows. We may write the
effective shear modulus w as a function /(u;,u,) of the shear
moduli of the phases and it exactly satisfies the phase interchange
relation:

Iy, o) (s 1) = gy o (22)

In particular, if the composite is phase interchange invariant, i.e.,
h(pey, o) =h(pa, ), like a two-dimensional checkerboard or like
a two-phase two-dimensional equal fraction random mixture, then
Eq. (22) implies the following formula of Lurie and Cherkaev
[19]:

M=o (23)
By using the translation method [16,17] they generalized this re-
sult to two-dimensional structures composed of compressible me-
dia having the same bulk modulus and they found that the effec-
tive shear modulus w of the mixture is given by:

k

S V(k + ) (k+ o) oy o
where k, uq, and u, are the common planar bulk and two shear
moduli of the components. One can observe that Eq. (24), in the
limiting case of k— 0, reduces to Eq. (23) as expected.

Now, we can simply show that our Eq. (15) yields the same
results. To describe a phase interchange invariant structure we
consider a two-phase two-dimensional random mixture with ¢,
=c,=1/2 and we suppose k;=k,=k. In these conditions the sec-
ond relationship in Eq. (15) gives:

1 172 172
= +
2ulk+p) k(g + ) + 2 p - k(g + p) + 2,4
The positive solution of Eq. (25) is exactly given by Eq. (24). If
we let k— o, we simply obtain, after some straightforward calcu-
lations, Eq. (23). Therefore, we have shown that, also in this case,

our theory yields results in agreement with those available in lit-
erature.

(24)

(25)

6 Porous Random Materials

The proposed approach may be applied to the elastic character-
ization of porous materials when the voids (zero stiffness inclu-
sions) are randomly distributed and have random shape. From a
general point of view we expect the equivalent Young’s modulus
E and the Poisson’s ratio v to depend on properties of the solid
matrix £, and v;. Therefore, the final mixing rules should appear
as E=E; f(c,v) and v=g(c,v,). Here c is the voids volume frac-
tion (porosity) and the mathematical structure of the dimension-
less functions f and g depend on the microstructure of the pores.
For example, in Ref. [5] one can find the explicit solutions for
randomly oriented ellipsoidal voids embedded in an isotropic ma-
trix. Many theorems concerning this topic are well known and
largely discussed in the literature. It is important to recall that, in
two dimensions, the functions f and g satisfy two remarkable
properties [20]. First, the Young’s modulus is independent of v,
(Poisson’s ratio of the solid matrix), i.e., f(c,v;)=f(c). Second, if
the porosity ¢ increases up to the percolation threshold ¢, the
effective Poisson’s ratio converges to a fixed point independently
on the solid Poisson’s ratio, or g(c, v;) — vy as ¢ — ¢. Both results
have been proved analytically in Refs. [16,21]. In the sequel we
show that these two properties are exactly satisfied by the pro-
posed approach for two-dimensional random porous materials.

In three-dimensional porous materials this behavior is not
thought to hold rigorously. However, these results approximately
hold also in three dimensions. In Refs. [5,22] it has been shown
that although E cannot be independent on v; in three dimensions,
it is nearly so for materials with spheroidal voids over the range
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0<wv;<1/2. Moreover, in Ref. [5] it has been verified that the
differential effective medium theory leads to a convergent behav-
ior of the Poisson’s ratio for a high volume fraction of randomly
oriented generally shaped ellipsoidal voids, being the limiting
value of the Poisson’s ratio dependent only on the eccentricities of
the embedded ellipsoidal voids. In the following we show the
behavior of E and v for a random three-dimensional porous ma-
terial and we draw a comparison with experimental results.

We begin the analysis with two-dimensional random porous
structures; so, Egs. (18) and (19) are applied with a zero stiffness
phase (k,=0 and u,=0). Equation (18) has two possible solutions,
one equal to zero and another different from zero: since it is
reasonable to assume that the shear modulus be a non-negative,
continuous function of ¢, the true solution is given by the follow-
ing relationship:

k(1-3 1
kl(Ll1 1()+2C) ife=3
- C c
1 231 : (26)

0 if ¢ >
zfc3

Therefore, for two-dimensional structure, we observe a percola-
tion threshold given by c¢y=1/3. Similarly, Eq. (19) allows us to
find out the expression for the two-dimensional bulk modulus as
follows:

ki(1-3 1
lill l(2 )+C)k ifc$§
-2¢c)+c¢
k= M 1 1 27)
0 if c > —
if ¢ 3

In order to obtain the behavior of the porous planar random me-
dium in terms of the Young’s modulus and the Poisson’s ratio we
recall the relationships among the two-dimensional elastic con-
stants:

4k
E=—F.

k— E E
el K~ k= (28)
m+k

= = = 5
Yk n T 204 2(1-)

(we remember that the two-dimensional bulk modulus % is not the
same as the customarily used three-dimensional bulk modulus and
the relation between them is given in a previous section; this is
coherent with Eq. (28)). So, applying Eq. (28) to Egs. (26) and
(27), we may write the following very simple formulas describing
the equivalent elastic behavior of a planar random structure in
terms of the elastic properties of the solid matrix and the volume
fraction of the voids ¢ (porosity):

converges to the fixed point vy=1/3 when ¢ — cy=1/3. The value
co=1/3 corresponds to the two-dimensional percolation threshold.

Now, we may analyze the three-dimensional case: we have to
solve Egs. (16) and (17) considering k,=0 and w,=0. The fourth
degree algebraic equation for the equivalent shear modulus (Eq.
(16)) has a double solution equal to zero and two different solu-
tions of opposite sign. As before, assuming that the shear modulus
is a non-negative, continuous function of the porosity, the correct
solution is given by the following relationship:

1 3 1 .
ZMI(Z—SC)—Ek1(3—c)+ER ifc<
#:

0 if c>

(31

N[— N~

Here we have defined the quantity R as follows:

R=\16u3(2 = 5¢)> + 24k 1, (2 + ¢)(3 = 5¢) + 9K3(3 - ¢)?
(32)

The bulk modulus, defined by Eq. (17), may be developed obtain-
ing the final expression:

4,(1/1(2 - SC) - 3k1(3 - C) +R
ifcs=

1
ey (1 - -
i€ C)4“1(2—5@—3k1(3—5c)+R 2
1

k—
lfC

(33)

Finally, we are interested in the elastic behavior, described in
terms of the Young’s modulus and the Poisson’s ratio; to this aim
we take into account the relationships among the three-
dimensional elastic constants:

_ ke
T3k

3k -2u E L E
w3 T T 21w 3(1-2)
(34)

By using Eq. (34), we may transform Egs. (31) and (33) in the
following ones:

. 3E(1-¢)1=9¢c+ (2le=11)y;+Q <l
E(1-3¢) ife=s =20, 17-2lc+(5+9%)m+0 " 2
- B 1
E 1 (29) 0 ifc>—
0 if c> g 2
(35)
1
c+r(1-3c) ifc=< 3
| 1 0 Tl B0n=0 L
; —-2lc+(5+9¢c)v, +
- ife>— = 36
3 3 v 1 Lo (36)
These relations exactly exhibit the two general properties reported 5 ife 2
above for the functions f and g: the Young’s modulus is indepen-
dent on the solid Poisson’s ratio and the equivalent Poisson’s ratio  where we have defined the quantity Q:
0= V”u§(441c2 —270c¢ +25) = 14v,(9¢ = 5)(3c — 1) + (812 — 114c¢ + 49) (37)
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Fig. 1 Young’s modulus for a random porous material versus
the elastic moduli of the pure matrix and the porosity. Dashed
line corresponds to the two-dimensional case, Eq. (29), con-
tinuous lines correspond to the three-dimensional case, Eq.
(35). The two-dimensional result is independent on the matrix
Poisson’s ratio while the three-dimensional result is parameter-
ized by the matrix Poisson’s ratio (15 different values uniformly
spaced ranging from -1 to 1/2) but is practically independent
on it in the range from 0 to 1/2.

The Young’s modulus exhibits a behavior analytically depending
on the solid matrix Poisson’s ratio; however, in the range 0 <v,
<1/2 the values of the equivalent Young’s modulus are quite
independent of v;. Moreover, this approach shows a convergent
behavior of the equivalent Poisson’s ratio to the value v=1/5
when the porosity assumes the value cy=1/2, which represents
the three-dimensional percolation threshold. For instance, we ob-
serve that a similar convergence of the equivalent Poisson’s ratio
(to the value 1/5) has been obtained by means of differential
techniques for high concentration of spherical pores [5].

In Figs. 1 and 2 one can find the behavior of the Young’s modu-
lus and the Poisson’s ratio for a random porous material, both in
two- and three-dimensional cases.

Finally, we may draw a comparison with experimental data
obtained on sintered glass beads [23]. The bulk and shear moduli
of pure glass were k;=46.06 GPa and wu;=29.24 GPa. These val-
ues correspond to the Young’s modulus £,=72,39 GPa and to the
Poisson’s ratio »;=0.23. Bulk modulus was measured for porosity
ranging from 0 to 0.43 [22]. In Fig. 3 a comparison between
experimental data and values obtained by means of Eq. (33)
(three-dimensional case) is shown. We note that for sintered glass-
bead samples the model based on the completely random porous
microstructure predicts well the elastic behavior. In Refs. [5,22] it
is shown that for porous glass foam the better model is the differ-
ential one. Probably, this happens because of the different micro-
structure that characterizes sintered glass and glass foam: the
former contains a completely random structure of the pores due to
the sintering process; the latter is a sort of dispersion of spheroidal
voids, eventually overlapping. So, this is a good example of dif-
ferent microstructures captured by different theoretical approaches
for evaluating the corresponding elastic properties.

The ceramic materials give some other examples of porous ma-
terials that are well described by the present theory. In this field
one of the most common procedures is sintering. During sintering
a ceramic material is heated in a furnace or ovenlike device,
where it is exposed to high temperatures. The sintering process
has been used to produce ceramics with different porosity and the
corresponding elasticity modulus has been measured in many dif-
ferent cases [24-26]. We draw a comparison between four types
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Fig. 2 Poisson’s ratio for a random porous material versus
matrix Poisson’s ratio and porosity. Dashed lines correspond
to the two-dimensional case, Eq. (30), continuous lines corre-
spond to the three-dimensional case, Eq. (36). In both cases 15
different values of the matrix Poisson’s ratio are considered
ranging from -1 to 1/2. The intercepts of the lines at zero po-
rosity (c=0) correspond to the solid matrix Poisson’s ratio.
Note the convergence of the equivalent Poisson’s ratio for ¢
=1/3 to the value v=1/3 (2D) and for c=1/2 to the value v
=1/5 (3D).

of ceramic oxides and the theory here outlined. In Fig. 4(a) the
properties of holmium oxide, Ho,O3 (holmia, [24], diamonds in
figure), and that of ytterbium oxide, Yb,0j3 (ytterbia, [25], plus in
figure), are represented. Moreover, in Fig. 4(b) the properties of
yttrium oxide, Y,O5 (yttria, [24], triangles in figure), and that of
samarium oxide, Sm,O3 (samaria, [26], circles in figure), are re-
ported. The plots correspond to the values of the Young’s modulus
measured and calculated by means of the theory. A good agree-
ment is quite evident.

Fig. 3 Bulk modulus k in GPa of sintered glass (circles), mea-
sured (see Ref. [22]) for different values of the porosity ¢, com-
pared with data obtained by Eq. (33) (solid line). Bulk and shear
moduli of the pure glass were measured to be k;=46.06 GPa
and u,=29.24 GPa.
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Fig. 4 Young’s modulus of different ceramic oxides. In (a) the
properties of holmium oxide, Ho,0; (holmia, [23], diamonds),
and those of ytterbium oxide, Yb,0; (ytterbia, [24], plus), are
represented. Moreover, in (b) the properties of yttrium oxide,
Y,0; (yttria, [23], triangles), and those of samarium oxide,
Sm,0; (samaria, [25], circles), are reported.

Small Contrast of Properties

When the difference between the properties of a two-phase ma-
terial is small, some approximate relations may be useful to cap-
ture the effective behavior of heterogeneous materials. For ex-
ample, a power series expansion in terms of this difference can be
adopted to quantify the effective properties of a given composite
materials. One of the first attempts to analyze heterogeneous ma-
terials from this point of view has been made by Brown [27]. He
has verified a property for the electric conductivity of composite
materials, which is true for general two-phase isotropic micro-
structures. We define the dimensionless quantities:

0y, — 0] ag
n=—’ x=_
0 gy

(38)

Here o and o, are the conductivities of the two phases and o is
the effective conductivity of the whole material. The result of
Brown is given by the following expansion for the three-
dimensional case:
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(1=c¢
x=1+c7]—6( 3 6)7]2+O(7]3) (39)
and by the following one for the two-dimensional case:
c(l-c
x=1+c77——( 2 )712+0(7f) (40)

It has been verified [27] that the coefficients for the O(7’) and
higher order terms involve details of the microstructure and are
given in terms of various correlation functions over the phase
geometry. We make a comparison between these results and ours.
The effective conductivity in two-phase random three-
dimensional mixtures, as reported in Eq. (1), may be written in
terms of the dimensionless variables defined in Eq. (38):

l_l—c+ c
3x 1+2x 1+ 7+2x

(41)

The solution may be developed in series of the variable 7, obtain-
ing:

c(l-c (1 =¢? (1 =c)1 +4dc =2
x=1+cr;—(3c)7;2+ (9()7]3_6( )(2;'6 C)ﬂ4
2 2
+c(1—c)(181+8c—56)7]5+ )

Similarly, in two-phase random two-dimensional mixtures, as re-
ported in Eq. (2), we have:
1 1-c¢ c

2x  l+x

P (43)
l+7n+x

The series solution is the following:

1- 1- 1-o)(1+c-c?
6(26)7]2+C(4C)7]3_C( c)(8+c ),
c(1=¢)(1+3¢=3¢%)
+

16

The expansions given in Eqs. (42) and (44) have the first and
second order terms in perfect agreement with the results of Brown
given in Egs. (39) and (40). These terms are independent of the
micro-geometry of the mixture. The higher order terms depend on
the microstructure of the composite material, i.e., on the correla-
tion functions over the phase geometry. It is interesting to observe
that the ones appearing in Egs. (42) and (44) are typical for ran-
dom electric microstructure and thus they contain all the charac-
teristic features of this kind of heterogeneous medium (percolative
behavior, percolation threshold, and so on).

The same procedure can be carried out for the elastic moduli. A
simple way to derive the elastic counterpart of the Brown expan-
sion, at least up to second order in the modulus contrasts, is to
take Hashin’s bounds [1], which bound the effective properties
between an upper and lower limit, and expand them to second
order in the modulus differences. These bounds are known to be
exact to second order in the modulus differences, and in fact the
upper and lower bounds agree exactly to this order. We may define
the difference of the elastic moduli as Ak=k,-k; and Au=ur-p;.
This procedure leads to the following results in three-dimensional
elasticity:

x=14+cy-

T+ (44)

3c(l -c¢)

Ak + O(AKY)
3k1 + 4,(,L]

k=k +cAk-
6¢c(1—c)(ky +2uy)
Spy(3ky +4uy)

and to the following ones in two-dimensional elasticity:
c(l-c
k=k +cAk—- Q

ky+

m=uy+cAu— A+ 0(AL)  (45)

AL + O(AKY)
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c(1—c)(k; +2pu,)
2y (ky + )
As before, the third order coefficients and higher order terms in-
volve details of the microstructure. Now, we may draw a compari-
son between Egs. (45) and (46) and the random model described

in this paper. Therefore, from Eq. (14) we may write the following
equations for the two-phase three-dimensional case:

m= g+ cAu— A’ +O0(Ap’)  (46)

1 1-c¢ c
= +
3k+4pu 3k +4p 3k +3Ak+4u

1 1-c¢
Su(Bk+4u)  3k(2py +3pm) +4u2u+3u,)
. c
3kQuy +2Aum+3u) + 4pu2u+ 3, +3Au)
(47)

After a very long but straightforward calculation, the series solu-
tions in the differences Ak and Au have been computed as fol-
lows:

3c(1-c¢) 2, 12¢*(1 - ¢)
3k +4u (Bky +4py)
_ 24¢*(1 = ¢)[3ky (1= ¢) + 2, (2c + 3)]A
503k +4 )

k=k +cAk— AKPAp

RPAu+ -

A 6c(1—c)(ky+2pm) , , 12¢3(1-c) 5
= +cC —_— e —_—
T s 1y By + 4a1y) Sk +4p,)?
36¢%(1 -
CAUCIVEYWEI (48)

53k, +4u,)’

In two-dimensional mixture, the main equations are derived from
Eq. (15):

1 l1-c¢ c

= +
k+p ki+p ki +Ak+p

1 1-¢ c
= +
2ulk+p) k(g +p) +2mp k(ug + Ap+ ) +2(u; + Ap)p
(49)
As before the expansions are given by:
1- 2(1-
kmky v eak— U=, C)zAsz,u
ky+ (ky + 1)
2(1- o)k (1-c)+2
_C( o)k ( C)3 Ml]Asz/.Lz-}-"'
2y (ky + )
L—c)(k +2 (1 -
M=M1+CAM—C( C)( 1 ILLI) 2 C( C)zAkA,lLZ
2y (ky + ) 2(ky + py)
2 1-
—LC)SAsz,u2+"' (50)
2(ky + py)

In Egs. (48) and (50) the first and second order terms are the same
that one can obtain from the Hashin’s bounds (see Eq. (45) and
(46)). They are independent of the geometry of the mixture. Just
as in the electric case, the coefficients of higher order terms in-
volve details of the microstructure and are given in terms of vari-
ous correlation functions over the phase geometry [28]. The
present study has been conducted to obtain the explicit expres-
sions of the high terms, which are representative for the given
microstructure. The high order terms appearing in Egs. (48) and
(50) are typical for a completely random elastic microstructure
and therefore they contain all the peculiar characteristics of this
composite material.
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Conclusions

The present work describes the derivation of a theory, which
characterizes linear random mixtures from the elastic point of
view. The term “random mixture” represents a particular class of
microstructures, which often appears in heterogeneous materials.
It means that the whole medium is subdivided in many very small
pieces, and each of this part is homogeneous and has given elastic
moduli with a given probability (stoichiometric coefficient). The
values of the moduli in a given little piece are statistically inde-
pendent of the values assigned in the other pieces and each part of
the material has random shape and position inside the whole struc-
ture. The results are concerned with the relation between the mi-
croscopic properties of the mixture (elastic response of the com-
ponents and microstructure) and the macroscopic mechanical
behavior of the overall composite material. The proposed solu-
tions for the effective elastic moduli of the overall heterogeneous
medium are in complete agreement with various properties well
established in scientific literature. When all the phases composing
the mixture have the same shear modulus the exact solution ob-
tained by Hill leads to the same results obtained with our ap-
proach. In planar elasticity the duality theorem and the translation
theorem lead to conclusions in perfect agreement with our mixing
laws. The analysis of random porous materials reveals a good
agreement with experimental data based on sintered glass and
ceramics. Finally, the well-known expansions used when we are
dealing with a small contrast of the properties are in perfect agree-
ment with those obtained in the present work.
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