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Abstract

The paper deals with the development of a theory for describing two-dimensional (2D) random lattice networks of

resistors with a particular topology. We consider a 2D anisotropic random lattice where each node of the network is

connected to a reference node (substrate) through a given random resistor. This topology is of great interest both for

theoretical and practical applications. Moreover, the theory is able to take into account the similar, but more interesting

problem with a capacitive coupling with the substrate. The analytical results allow us to obtain the average behaviour of

such networks, i.e. the electrical characterisation of the corresponding physical systems. This effective medium theory is

developed starting from the properties of the lattice Green’s function of the network and from an ad hoc mean field

procedure. An accurate analytical study of the related lattice Green’s functions has been conducted obtaining closed-form

results expressed in terms of elliptic integrals. All the theoretical results have been verified by means of numerical Monte-

Carlo simulations obtaining a remarkably good agreement between numerical and theoretical values, both in resistive and

capacitive systems.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Disordered resistors networks have been, for many years, very useful tools to model transport phenomena
in heterogeneous or composite physical systems. The first studies, from a general point of view, were
developed by Kirkpatrick in the context of the isotropic transport and the percolation in random lattice [1,2].
In these works, the theoretical description of conduction was provided by a so-called effective medium theory.
This theory, originally formulated to describe the conductivity of binary mixture [3,4], has been extended and
adapted to treat disordered networks. Moreover, some attempts to generalise the theory to anisotropic
random networks were made to clarify some general aspects of conduction in anisotropic materials [5]. During
the evolution of such theories many approaches have been used to obtain statistical information about the
behaviour of heterogeneous systems. In Ref. [6] exact fields calculations lead to exact effective properties in
some particular cases; moreover, alternative theoretical circuit theory approaches have been adopted to obtain
e front matter r 2006 Elsevier B.V. All rights reserved.
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Fig. 1. 2D version of the general topology network used in this work. One can observe the anisotropy of the network and the definition of

the characteristic node–node and node–substrate resistance.
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the electrical properties of statistical mixtures [7]. More recently, the theories for linear random networks have
been generalised to the case of non-linear random networks obtaining the equivalent non-linear behaviour of
such heterogeneous systems [8,9]. Furthermore, an extremely refined series expansion has been developed for
the macroscopic conductivity of a 3D random resistor network in terms of the contrast between the two kinds
of conductors that appear in the network [10]. It was done by means of the Green function for the simple cubic
lattice and by considering all the graphs contributing to each term of the series. This work has been generalised
[11] to the case of the non-linear behaviour of a simple cubic, two-component, random resistor network. In the
linear case the expansion has been worked out up to seventh order [10] and in the non-linear case it has been
carried up to the third order [11].

In all these cases the most considered topology is the simple 2D or 3D grid of resistors, which mimics the
heterogeneity in 2D or 3D composite materials. In this work, we devote our attention to a generalised
topology where each node of the 2D grid is connected to another external node (called substrate in the
following) by means of a given resistor (or impedance in the most general case). In Fig. 1 one can find an
example of such a network. The random character of the network may regard the resistors in the grid or the
resistors towards the substrate or in the more complex case both of them. Moreover, the statistical distribution
of the resistor values in the grid may follow different probability laws in the different directions of the grid.
This possibility allows us to describe anisotropy of the system. The method applied to develop the general
theory is based on two main steps: firstly an analysis of the homogeneous networks with substrate based on
the lattice Green’s functions is performed. This approach [12,13] permits to obtain exact results about the
electrical behaviour of infinite regular lattice networks. The second step consists in applying an ad hoc
averaging procedure based on the effective medium theory. This approach is a generalisation of the standard
one in order to take into account the electrical interaction with the substrate. The application of the two steps
allows us to find a strong conceptual connection between the lattice Green’s function of the network and the
problem of obtaining the average behaviour of random grids. In other words, we may say that the lattice
Green’s functions introduced in this work are very useful tools to develop effective medium theories for
general topology networks. An accurate analytical study of the related lattice Green’s functions has been
conducted obtaining many closed form results expressed in terms of elliptic integrals. All the theoretical results
have been verified by means of numerical Monte-Carlo simulations obtaining a remarkably good agreement
between numerical and theoretical values.
2. Lattice resistance functions

To approach the problem of the general disordered resistance networks it is important to know, as
preliminary information, the resistive behaviour of homogeneous infinite lattice networks. We start by
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analysing the following general lattice topology: we take into consideration an anisotropic 2D homogeneous
grid. It means that we define different values for the conductances aligned along the different lattice directions.
Homogeneous grid means that all the conductances in a given direction have the same value. In particular the
value of all the conductances in direction h (h ¼ 1, 2) will be indicated with Gh. Moreover, each node of the
grid is connected with a substrate node (another external node not belonging to the grid) through a
conductance G0. The homogeneous network with substrate is represented in Fig. 1. We represent the position
of a given node with integer coordinates x̄ 2 Z2 and we consider the associated electrical potential, indicated
as V ðx̄Þ8x̄ 2 Z2. To characterise such a network, we take into consideration two arbitrary nodes i and j

(represented by the lattice positions x̄i and x̄j) and the common node 0 of the substrate. We suppose that two
given currents Ii and Ij flow in terminal connected to the nodes x̄i and x̄j , in order to define a two-port network
(see Fig. 2 for details). The current Kirchhoff law applied to the generic node x̄ reads:

X2
k¼1

Gk½2V ðx̄Þ � V ðx̄þ ēkÞ � V ðx̄� ēkÞ� þ G0V ðx̄Þ ¼ I idðx̄; x̄iÞ þ I jdðx̄; x̄jÞ, (1)

where dðx̄; ȳÞ is the Kronecker’s delta function (dðx̄; ȳÞ ¼ 1 if x̄ ¼ ȳ and dðx̄; ȳÞ ¼ 0 if x̄aȳ). We define the
following Fourier transform (k̄ 2 <2):

I½V ðx̄Þ� ¼ f ðk̄Þ ¼
X
x̄2Z2

V ðx̄Þe�ik̄�x̄. (2)

By using, in straightforward way, the following transformation rules:

I½V ðx̄þ ēhÞ� ¼ f ðk̄Þeikh ; I½V ðx̄� ēhÞ� ¼ f ðk̄Þe�ikh ; I½dðx̄; x̄sÞ� ¼ e�ik̄�x̄
s

(3)

we obtain the explicit solution of Eq. (1) in the transformed domain:

f ðk̄Þ ¼
I ie
�ik̄�x̄i

þ I je
�ik̄�x̄j

S2
h¼1Gh 2� eikh � e�ikh

� �
þ G0

. (4)

The general expression for the inverse transform is given by

V ðx̄Þ ¼ I�1½f ðk̄Þ� ¼
1

4p2

Z þp
�p

Z þp
�p

f ðk̄Þeik̄�x̄ dk̄. (5)

Therefore, substituting Eq. (4) into Eq. (5) we obtain, the following integral expression for the electrical
potential in an arbitrary node of the lattice network:

V ðx̄Þ ¼
1

4p2

Z þp
�p

Z þp
�p

I ie
�ik̄�x̄i

þ I je
�ik̄�x̄jP2

h¼1Gh 2� eikh � e�ikh

� �
þ G0

eik̄�x̄ dk̄. (6)

This expression may be applied to the nodes of interest, by defining the potentials of the nodes x̄i and x̄j,
where the current generators have been connected. The potentials in these points are linearly related to the two
current Ii and Ij by means of the impedance matrix ~Z [14]:

Vi ¼ V ðx̄iÞ

V j ¼ V ðx̄jÞ

(
)

V i ¼ ~ZiiI i þ ~ZijI j ;

Vj ¼ ~ZjiI i þ ~ZjjI j :

(
(7)
Fig. 2. Scheme of the lattice network where two arbitrary nodes and the substrate node are considered and connected to the current

generators described in the main text.
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By drawing a comparison between Eqs. (6) and (7) we may find out the explicit expressions for the
impedance matrix elements:

~Zii ¼ ~Zjj ¼
1
4p2
Rþp
�p

Rþp
�p

1P2

h¼1
Gh 2�eikh�e�ikh½ �þG0

dk̄;

~Zij ¼
1
4p2
Rþp
�p

Rþp
�p

eik̄�ðx̄
i�x̄j ÞP2

h¼1
Gh 2�eikh�e�ikh½ �þG0

dk̄;

~Zji ¼
1
4p2
Rþp
�p

Rþp
�p

eik̄�ðx̄
j�x̄i ÞP2

h¼1
Gh 2�eikh�e�ikh½ �þG0

dk̄:

8>>>>>><
>>>>>>:

(8)

One can observe that the first formula in Eq. (8) represents the value of the resistance between a generic
node of the lattice and the node corresponding to the substrate. Furthermore, it can be noticed that the value
of this resistance is invariant to any permutations of the values G1 and G2.

It may be interesting to calculate the resistance between the nodes x̄i and x̄j if the node 0 of the substrate
remains disconnected. In agreement with the conventions indicated in Fig. 3, we may calculate this resistance
in the following way:

Zij ¼
V i � V j

I i

¼
~ZiiI i þ ~ZijI j � ð ~ZjiI i þ ~ZjjI jÞ

I i

¼
~ZiiI i � ~ZijI i � ~ZjiI i þ ~ZjjI i

I i

¼ 2 ~Zii � ~Zij � ~Zji. (9)

By considering the relations given in Eq. (8), the node–node resistance (between x̄i and x̄j) can be written as
follows:

Zij ¼
1

4p2

Z þp
�p

Z þp
�p

2� eik̄�ðx̄
i�x̄jÞ � e�ik̄�ðx̄

i�x̄jÞ

P2
h¼1

Gh 2� eikh � e�ikh

� �
þ G0

dk̄. (10)

For various applications that will be explained in the following sections we suppose that the nodes x̄i and x̄j

are two adjacent nodes along the direction s of the 2D lattice (s ¼ 1, 2). In this hypothesis we take into
account, as main parameters of the lattice network, the node–substrate resistance and the node–node
resistance between to adjacent nodes in direction s (see Fig. 1):

RnsðG0;G1;G2Þ ¼
1
p2
Rþp
0

Rþp
0

dk1 dk2

2G1½1�cos k1�þ2G2½1�cos k2�þG0
;

Rs
nnðG0;G1;G2Þ ¼

1
p2
Rþp
0

Rþp
0

2½1�cos ks�dk1 dk2

2G1½1�cos k1�þ2G2½1�cos k2�þG0
; s ¼ 1; 2:

8<
: (11)

3. Evaluation of the resistive lattice functions in terms of elliptic integrals

We start with the evaluation of the first integral Rns in Eq. (11) performing firstly the integration over the
variable k1. This integral can be evaluated with the elementary formula (see Ref. [15]):Z þp

0

dx

aþ b cos x
¼

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞðaþ bÞ

p ; a4jbj. (12)
Fig. 3. Particular configuration of the network introduced to define the node–node resistance. Here the substrate node is an unconnected

terminal.
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Therefore, we obtain the following preliminary result:

RnsðG0;G1;G2Þ ¼
1

p

Z þp
0

dk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2G2ð1� cos k2Þ þ G0�½2G2ð1� cos k2Þ þ G0 þ 4G1�

p (13)

Now, the remaining integration may be approached by means of the following substitution, which defines a
new variable y ¼ 1� cos k2 ) dk2 ¼ dy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð2� yÞ

p
. This operation leads to the following expression:

RnsðG0;G1;G2Þ ¼
1

2pG2

Z 2

0

dyffiffiffiffiffiffiffiffiffiffiffi
2� y
p ffiffiffi

y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ G0

2G2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ G0þ4G1

2G2

q . (14)

The last integral is of the form
R

Rð
ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
Þdx; where P(x) is a fourth-degree polynomial; therefore, it can be

reduced to elliptic integrals (see Appendix A), as follows (see Ref. [15, p. 242]):Z a

u

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� xÞðx� bÞðx� cÞðx� dÞ

p ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� cÞðb� dÞ
p F ðm; rÞ,

a4uXb4c4d; m ¼ arcsen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� dÞða� uÞ

ða� bÞðu� dÞ

s
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞðc� dÞ

ða� cÞðb� dÞ

s
. ð15Þ

In order to apply the general solution given in Eq. (15) we define the following parameters drawing a
comparison with Eq. (14): a ¼ 2; u ¼ b ¼ 0; c ¼ �G0=ð2G2Þ; d ¼ �ðG0 þ 4G1Þ=ð2G2Þ:Consequently, we
obtain the following values for the auxiliary parameters m and r: m ¼ p=2; r ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4G1 þ G0Þð4G2 þ G0Þ

p
. Summing up, using the relation K(k) ¼ F(p/2, k), we obtain the final

result for the node–substrate resistance in 2D anisotropic networks with substrate:

RnsðG0;G1;G2Þ ¼
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0 þ 4G1ÞðG0 þ 4G2Þ

p K 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

ðG0 þ 4G1ÞðG0 þ 4G2Þ

s !
. (16)

From now on, we take into consideration the second integral describing Rnn; we refer to the node–node
resistance along the first spatial direction and we will obtain the other one by means of cyclic permutation of
the indices. As before, a first integration in the second integral of Eq. (11) can be performed by using the
property given in Eq. (12), obtaining:

R1
nnðG0;G1;G2Þ ¼

1

p

Z þp
0

2ð1� cos k1Þdk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2G1ð1� cos k1Þ þ G0�½2G1ð1� cos k1Þ þ G0 þ 4G2�

p . (17)

At this point we can proceed by evaluating the integration over k1 by means of the following substitution:
y ¼ 1� cos k1 ) dk1 ¼ dy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð2� yÞ

p
. The integral is transformed in the following one:

R1
nn ¼

1

pG1

Z 2

0

ffiffiffi
y
p

dyffiffiffiffiffiffiffiffiffiffiffi
2� y
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yþ G0

2G1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ G0þ4G2

2G1

q . (18)

Once again, this is an integration that can be reduced to elliptic integrals; we may use the following general
rule (see [15, p. 265]):

Z u

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� bÞ

ða� xÞðx� cÞðx� dÞ

s
dx ¼

2ðb� cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðb� dÞ

p P l;
a� b

a� c
; r

� �
� F ðl; rÞ

� �
,

aXu4b4c4d; l ¼ arcsen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðu� bÞ

ða� bÞðu� cÞ

s
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞðc� dÞ

ða� cÞðb� dÞ

s
. ð19Þ

In order to apply Eq. (19) we define the following parameters (see terms in Eq. (18) for comparison):
a ¼ u ¼ 2; b ¼ 0; c ¼ �G0=ð2G1Þ; d ¼ �ðG0 þ 4G2Þ=ð2G1Þ. The corresponding values for l and r are
given by l ¼ p=2; r ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4G1 þ G0Þð4G2 þ G0Þ

p
. Thus a first result is given by the following
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expression:

R1
nnðG0;G1;G2Þ ¼

2G0

pG1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0 þ 4G1ÞðG0 þ 4G2Þ

p P
p
2
;

4G1

4G1 þ G0
; r

� �
� KðrÞ

� �
. (20)

In this result a complete elliptic integral of the third kind appears; it can be simplified by means of the
following relationship that holds on when r2ono1 (this condition is known as circular case, see Ref. [16, p.599]):

P
p
2
; n; r

	 

� KðrÞ ¼

1

2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

ð1� nÞðn� r2Þ

r
1�

2

p
KðrÞEð�;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ � ½KðrÞ � EðrÞ�F ð�;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ

h i� �
(21)

where � ¼ arcsenð
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ ¼ arctgð
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� r2
p

Þ is the argument of the incomplete elliptic integrals
E and F. In our case we apply Eq. (21) with n ¼ 4G1/(4G1+G0). Summing up, we arrive at the following final
results:

RnsðG0;G1;G2Þ ¼
r

2p
ffiffiffiffiffiffiffiffi
G1G2

p KðrÞ;

R1
nnðG0;G1;G2Þ ¼

1
G1

1� 2
p ½KðrÞEð�;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ � ½KðrÞ � EðrÞ�F ð�;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ�

n o
;

R2
nnðG0;G1;G2Þ ¼

1
G2

1� 2
p ½KðrÞEðZ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ � ½KðrÞ � EðrÞ�F ðZ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ�

n o
;

8>>>>><
>>>>>:
� ¼ arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2 þ G0

4G1

r
; Z ¼ arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G1 þ G0

4G2

r
; r ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

ð4G1 þ G0Þð4G2 þ G0Þ

s
. ð22Þ

The first expression in Eq. (22) is derived from Eq. (16), the second one follows from Eqs. (20) and (21) and
the third formula is obtained from the second one by permuting G1 with G2.

Finally, we analyse the particular case of Eq. (22) concerning isotropic networks. The general expressions
given in Eq. (22) may be strongly simplified when we are dealing with an isotropic network characterised by
G1 ¼ G2 ¼ G. Under this hypothesis, we observe the following simplifications of the involved quantities:

G1 ¼ G2 ¼ G) � ¼ Z ¼ arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G þ G0

4G

r
; r ¼

4G

4G þ G0
) � ¼ Z ¼ arctg

ffiffiffi
1

r

r
. (23)

When the argument and the modulus of incomplete elliptic integrals are related as indicated in Eq. (23)
some useful expressions [16] help us to handle the problem:

2F arctg

ffiffiffi
1

r

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

 !
¼ Kð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ; 2E arctg

ffiffiffi
1

r

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

 !
¼ Eð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ þ 1� r. (24)

In order to simplify the notations we define the complementary modulus as follows: r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

. Eq. (24)
allow us to simplify the expression of the node–node resistance:

Rnn ¼ R1
nn ¼ R2

nn ¼
1

G
1�

2

p
KðrÞE arctg

ffiffiffi
1

r

r
; r0

 !
� ½KðrÞ � EðrÞ�F arctg

ffiffiffi
1

r

r
; r0

 !" #( )

¼
1

G
1�

2

p
KðrÞ

Eðr0Þ þ 1� r

2
� ½KðrÞ � EðrÞ�

Kðr0Þ

2

� �� �
¼

1

2G
1�

2

p
ð1� rÞKðrÞ

� �
, ð25Þ

where the Legendre relation EðrÞKðr0Þ þ KðrÞEðr0Þ � KðrÞKðr0Þ ¼ p=2 for complete elliptic integrals has been
used. So, final formulas for the node–substrate and node–node resistance for isotropic networks follow:

RnsðG0;G;GÞ ¼ 2
pð4GþG0Þ

K 4G
4GþG0

	 

RnnðG0;G;GÞ ¼ 1

2G
1� 2G0

pð4GþG0Þ
K 4G

4GþG0

	 
n o
8><
>: (26)

Expression for Rns immediately follows from Eq. (22) when the value of the modulus r is taken from
Eq. (23). The relationship for Rnn is the explicit version of that obtained in Eq. (25).
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It is interesting to note that, in isotropic networks, Rns and Rnn are related by the simple relationship
Rnn ¼ (2G)�1(1�G0Rns).
4. Theory for random networks

We shall refer ourselves to 2D lattice networks with substrate and we define an anisotropic distribution of
conductance values by introducing different probability densities rk(G) for the conductances aligned along the
different lattice directions k (k ¼ 1, 2). Moreover, the conductances of the substrate are distributed following a
given probability density r0(G). All the conductance values (each direction and substrate) are independently
distributed according to the probability densities upon described. In the effective medium theory the average
effects of the random conductances, in such a disordered network, will be represented by an anisotropic
effective network in which all the conductances in k direction (k ¼ 1, 2) have the same value Ḡk and all the
conductances in the substrate have the same value Ḡ0. These effective conductances will be self-consistently
determined by the requirement that the fluctuating local potential in the random network should average to
zero. This is the main idea, which allows us to build up the effective medium theory. Furthermore, for
following purposes, we suppose to be able to evaluate the functions Rk

nn ¼ Rk
nnðḠ0; Ḡ1; Ḡ2Þ8k ¼ 1; 2 and Rns ¼

RnsðḠ0; Ḡ1; Ḡ2Þ (Eq. (22) or Eq. (26) for isotropic networks) that play a crucial role in determining the effective
network equivalent to a random one. From now on, we suppose to know the effective network corresponding
to a given random one, in order to understand the conceptual connection among them. In the effective
network we change a single conductance Ḡk, oriented along the direction k (k ¼ 1, 2) or belonging to the
substrate (k ¼ 0), back to its true value Gk. This procedure can be applied indifferently to a resistor in the
lattice or a resistor in the substrate. In Fig. 4 one can find the graphical representation of such a substitution,
where the Thevenin equivalent circuit of the remaining part of the effective network is indicated. Here, Gk is a
particular instance for the conductance value and Ḡk is the corresponding effective value. Moreover, Veq and
Geq are the parameters of the Thevenin equivalent circuit. The electrical potentials in the circuits described in
Fig. 4 can be evaluated as follows:

V̄ ¼ V eq

Geq

Geq þ Ḡk

; V ¼ Veq

Geq

Geq þ Gk

. (27)

So, the potential fluctuations due to the random character of the network are given by

DV ¼ V � V̄ ¼ Veq

Geq

Geq þ Gk

� V̄ ¼ V̄
Geq þ Ḡk

Geq

Geq

Geq þ Gk

� V̄ ¼ V̄
Ḡk � Gk

Geq þ Gk

. (28)

Now, we may observe a relationship between the Thevenin conductance Geq and the values Rnn and Rns. In
fact, Geq is the conductance between the nodes A and B of Fig. 4, where we have eliminated the conductance
Ḡk. Thus, in agreement with Fig. 5, we may write down the relations:

k ¼ 1; 2) Rk
nn ¼

1
GeqþḠk

) Geq ¼
1

Rk
nn

� Ḡk;

k ¼ 0) Rns ¼
1

GeqþḠ0
) Geq ¼

1
Rns
� Ḡ0:

8<
: (29)
Fig. 4. Thevenin equivalent circuit between two adjacent arbitrary nodes of the lattice before and after the substitution of the effective

conductance Ḡk with a particular random instance Gk.
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Fig. 5. Scheme that defines the relation between the Thevenin conductance Geq introduced in Fig. 4 and the characteristic resistance values

Rk
nn ¼ Rk

nnðḠ0; Ḡ1; Ḡ2Þ8k and Rns ¼ RnsðḠ0; Ḡ1; Ḡ2Þ.
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By substituting Eq. (29) into Eq. (28) we immediately obtain:

k ¼ 1; 2) DV ¼ V̄
Ḡk � Gk

1=Rk
nn � Ḡk þ Gk

; k ¼ 0) DV ¼ V̄
Ḡ0 � G0

1=Rns � Ḡ0 þ Gk

. (30)

By imposing that the fluctuations of the potential average to zero, we have the homogenising integral equations:Rþ1
0 rkðGÞ

Ḡk�G

1=Rk
nnðḠ0;Ḡ1;Ḡ2Þ�ḠkþG

dG ¼ 08k ¼ 1; 2;Rþ1
0

r0ðGÞ
Ḡ0�G

1=RnsðḠ0;Ḡ1;Ḡ2Þ�Ḡ0þG
dG ¼ 0:

8><
>: (31)

These relations represent a system of three equations with three unknowns Ḡ0; Ḡ1; Ḡ2 that can be found when all
the probability densities involved are given. The expressions for the resistance Rnn and Rns in terms of the effective
conductances Ḡ0; Ḡ1; Ḡ2 are given in Eq. (22) (or Eqs. (26) for isotropic networks). The analysis of some random
systems with the help of Eq. (31) will be described in the following sections, drawing a comparison between
theoretical results and Monte-Carlo simulations.

Some comments follow about the role of the previous results in the context of the literature on the
characterization of random networks. The model developed is a self-consistent effective medium theory based
on a mean field procedure and therefore it has the advantage to furnish explicit homogenising schemes for
several situations where the effects of a substrate on a 2D random system must be taken into account.
A different analysis could be performed when one is interested in obtaining the effective conductances as a
power series in the contrast between the constituents. In such a case the results can be obtained by means of
the introduction of graphs, which allow the calculation of all the contribution of a given order [10]. One can
verify (by repeating the calculation performed in Ref. [10] for 2D system) that our results are in perfect
agreement with this approach at least up to the third order.

5. Simulations for resistive networks

We devote our attention to some paradigmatic cases of 2D networks with substrate that are interesting for
practical applications. The first case deals with a 2D isotropic grid where the conductances of the lattices are
randomly placed and the conductances towards the substrate are all fixed at a given value. Each conductance of
the grid is placed into the network assuming the value G1 with probability 1/2 and the value G2 with probability
1/2. All the substrate conductances are fixed to the value G0. The combination of Eqs. (31) and (26) leads, after
some simple manipulations, to the following equation for the unknown effective conductance Ḡ of the grid:

K
4Ḡ

4Ḡ þ G0

� �
¼

p
2

ðG1G2 � Ḡ
2
Þð4Ḡ þ G0Þ

G0ðḠ � G1ÞðḠ � G2Þ
. (32)

Of course, in Eq. (31) we have taken into account only the first relation describing the effective conductances
in the grid. This result is interesting because the parameter G0 modulates the kind of mean value Ḡ between G1

and G2. The extreme cases are the following. If G0 is zero the value Ḡ corresponds to the geometric mean between
G1 and G2, Ḡ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

p
, and if G0 tends to infinity the value Ḡ corresponds to the arithmetic mean between G1

and G2, Ḡ ¼ ðG1 þ G2Þ=2. In other words, Eq. (32) defines a family of mean values that depend on the value of
G0. Simulations with G1 ¼ 1 and G2 ¼ 4 have been performed. A comparison between results obtained from Eq.
(32) and Monte-Carlo simulations is shown in Fig. 6 where theoretical values of Rns and numerical ones are
shown versus values of G0 between 1 and 100. A remarkably good fitting is evident.
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Fig. 6. Theoretical (continuous line) and Monte-Carlo results (triangles) for a grid where the conductances of the lattices are randomly

placed and the conductances of the substrate are all fixed at a given value G0. Each conductance of the grid is placed into the network

assuming the value 1 with probability 1/2 and the value 4 with probability 1/2. The node–substrate resistance Rns of the network is

represented versus the values of G0.
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Furthermore, it may be interesting to note that, by using properties (A.5) and (A.6) of the appendix,
Eq. (32) may be written in terms of the arithmetic– geometric mean M(a, b) as follows:

M 1; 1þ 8
Ḡ

G0

� �
¼
ðḠ � G1ÞðḠ � G2Þ

G1G2 � Ḡ
2

. (33)

This equation reveals a strong conceptual connection between averaging processes in random networks and
the arithmetic– geometric mean procedure.

The second case of 2D resistive lattices deals with a grid with fixed conductances in both directions and
random conductances in the substrate. Each conductance of the substrate is placed into the network assuming
the value G1 with probability 1/2 and the value G2 with probability 1/2. All the lattice conductances are fixed
to the value G (in both directions). As before, the combination of Eqs. (31) and (26) leads, after some simple
manipulations, to the following equation for the unknown effective conductance Ḡ0 of the grid:

K
4G

4G þ Ḡ0

� �
¼

p
2

Ḡ0 �
G1þG2

2

 �
ð4G þ Ḡ0Þ

ðḠ0 � G1ÞðḠ0 � G2Þ
. (34)

In Eq. (31) we have taken into account only the second relation describing the effective conductances in the
substrate. This result is similar to that given in Eq. (32) because the parameter G modulates the kind of mean
value Ḡ0 between G1 and G2 also in this case; the limiting cases are the following: if G is zero the value Ḡ0

corresponds to the harmonic mean between G1 and G2, Ḡ0 ¼ 2G1G2=ðG1 þ G2Þ, and if G tends to infinity the
value Ḡ0 corresponds to the arithmetic mean between G1 and G2, Ḡ0 ¼ ðG1 þ G2Þ=2. Finally, simulations with
G1 ¼ 1 and G2 ¼ 4 have been performed. A comparison between results obtained from Eq. (34) and Monte-
Carlo simulations is shown in Fig. 7 where theoretical values of Rns and numerical ones are shown versus
values of G between 1 and 100. Once again, the theory is in very good agreement with numerical results. As
before, we note that Eq. (34) may be written in terms of the arithmetic– geometric mean as follows:

M 1; 1þ 8
G

Ḡ0

� �
¼
ðḠ0 � G1ÞðḠ0 � G2Þ

Ḡ0 Ḡ0 �
G1þG2

2

 � . (35)

These cases can be considered as paradigmatic random systems that have immediate applications to the
analysis of heterogeneous films deposited on substrates with an electrical coupling. Such cases have been
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Fig. 7. Theoretical (continuous line) and Monte-Carlo results (triangles) for a grid where the conductances G of the lattices are fixed and

the conductances of the substrate are randomly assigned. Each conductance toward the substrate is placed into the network assuming the

value 1 with probability 1/2 and the value 4 with probability 1/2. All the grid conductances are fixed to the value G. The node–substrate

resistance Rns of the network is represented versus the values of G.
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analysed under the hypothesis of ohmic coupling between the deposited film and the substrate. Some
generalisations will be described in the following section.
6. Capacitive substrate

For practical applications it could be interesting to consider a capacitive coupling between the random grid
and the random substrate. This aspect is important to model heterogeneous films randomly deposited on
substrate when capacitive effects between the film and the substrate medium appear and are not negligible.
Here, we devote our attention on a generalisation of the previous results, which may be applied to the present
case of capacitive substrate. Firstly, we consider a random resistor grid with a constant capacitive coupling
with the substrate. We suppose that each conductance of the lattice is placed into the network assuming the
value G1 with probability 1/2 and the value G2 with probability 1/2. All the vertical components are assumed
to be capacitors of fixed value C. Therefore each vertical component has a frequency-dependant admittance
equals to ioC. We suppose that Eq. (32) continues to be correct when conductances are substituted with
complex valued admittances. So, we search for the equivalent admittance Ȳ of the grid with the following
equation:

K
4Ȳ

4Ȳ þ ioC

� �
¼

p
2

ðG1G2 � Ȳ
2
Þð4Ȳ þ ioCÞ

ioCðȲ � G1ÞðȲ � G2Þ
. (36)

This relation is more complicated than the counterpart, given in Eq. (32), because of the presence of the
elliptic integral calculated with a complex modulus: its numerical computation has been carried out by using
the complex arithmetic–geometric mean procedure as described in the appendix. In fact, it is known that the
convergence of the arithmetic–geometric procedure is assured also with complex variables [17]. Moreover, we
observe that the resulting Ȳ is a complex valued function of the frequency. When Eq. (36) is solved for the
equivalent admittance Ȳ we may calculate the average node–substrate impedance by means of the following
(see Eq. (26)):

Zns ¼
2

pð4Ȳ þ ioCÞ
K

4Ȳ

4Ȳ þ ioC

� �
. (37)
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Fig. 8. Real (a) and imaginary (b) part of the node–substrate impedance Zns versus the values of o: comparison between theoretical

(continuous line) and Monte-Carlo results (triangles). The plots refer to a grid where the conductances of the lattices are randomly placed

and the capacitors towards the substrate are all fixed at a given value C ¼ 1. Each conductance of the grid is placed into the network

assuming the value 1 with probability 1/2 and the value 4 with probability 1/2.
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In Fig. 8 one can find a comparison between the real and imaginary parts of the node–substrate impedance
computed with the above stated theoretical considerations and with Monte-Carlo simulations; a remarkably
good agreement has been found out. In this simulation we have used the values G1 ¼ 1, G2 ¼ 4, C ¼ 1 and we
have studied the system in the frequency range 0ooo15.

Now, we consider a second example, dual of the previous one, where all the conductances of the grid are
fixed to the same value G and the capacitive coupling with the substrate is randomly generated. In particular,
all the vertical components have been assumed as capacitors with value C1 with probability 1/2 and value C2

with probability 1/2. The equation that allows us to compute the equivalent vertical admittance Ȳ 0 is a
generalisation of Eq. (34):

K
4G

4G þ Ȳ 0

� �
¼

p
2

Ȳ 0 � io C1þC2

2

 �
ð4G þ Ȳ 0Þ

ðȲ 0 � ioC1ÞðȲ 0 � ioC2Þ
. (38)

Once again, Ȳ 0 is a complex valued function of the frequency that may be obtained by correctly compute
elliptic integral with complex modulus. When a value for Ȳ 0 is found the corresponding node–substrate
impedance is given by (see Eq. (26)):

Zns ¼
2

pð4G þ Ȳ 0Þ
K

4G

4G þ Ȳ 0

� �
. (39)

Numerical experiments have been performed for such kind of networks: in Fig. 9 one can find a comparison
between the real and imaginary parts of the node–substrate impedance computed with Eqs. (38) and (39) and
with Monte-Carlo simulations; once again, a remarkably good agreement has been obtained. In such
simulation we have used the values C1 ¼ 1, C2 ¼ 4, G ¼ 1 and we have studied the system in the frequency
range 0ooo16.

Finally, a further random structure of the network has been taken into consideration: each conductance of
the lattice is placed in the system assuming the value 0 with probability p and value G with probability 1�p.
This percolative structure has been connected to the substrate with a capacitive constant coupling: it means
that each vertical component is a capacitor with fixed value C (admittance ioC). Thus, the network should
exhibit percolation (with percolation threshold at pc ¼ 1/2) for very low values of the frequency and this effect
should disappear for high values of the frequency. In fact, in very low frequency condition, the admittances
towards the substrate are negligible and the substrate is not influent. In other words we are studying a
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Fig. 9. Real (a) and imaginary (b) part of the node–substrate impedance Zns versus the values of o: comparison between theoretical

(continuous line) and Monte-Carlo results (triangles). The plots refer to a grid where the conductances of the lattices are all fixed at a given

value G ¼ 1 and the capacitors towards the substrate are randomly placed. Each capacitor is placed into the network assuming the value 1

with probability 1/2 and the value 4 with probability 1/2.
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percolative system controlled by the frequency. The theoretical description of the behaviour of this system is
based on Eqs. (31) and (26), which lead, after some straightforward calculations, to the following
homogenising result:

K
4Ȳ

4Ȳ þ ioC

� �
¼

p
2

½ð1� 2pÞG � Ȳ �ð4Ȳ þ ioCÞ

ioCðȲ � GÞ
. (40)

Here, Ȳ is the complex valued, frequency dependant, equivalent admittance for the lattice network. When
o-0 it is easy to observe that the solution for Ȳ is real and is given by: Ȳ ¼ ð1� 2pÞG if 0opo1/2 and Ȳ ¼ 0
if 1/2opo1. This is the classical percolation behaviour which is exhibited for a system without substrate,
where the percolation threshold assume the value pc ¼ 1/2. When o40 the effective admittance Ȳ become a
complex valued function which takes into account the effects of the capacitive substrate. As before, the
knowledge of Ȳ allows us to evaluate the average node–substrate impedance, as follows:

Zns ¼
2

pð4Ȳ þ ioCÞ
K

4Ȳ

4Ȳ þ ioC

� �
. (41)

The analytical description given by Eqs. (40) and (41) has been tested with Monte-Carlo simulations
obtaining the results shown in Figs. 10 and 11. We have considered the values G ¼ 1, C ¼ 1 and we have
studied the system’s behaviour versus the stoichiometric parameter p and the frequency o. In Fig. 10 real and
imaginary parts of Ȳ in logarithmic scale (solution of Eq. (40)) are shown in terms of p and for different values
of the frequency: the comparison between theory and simulations is very good. Finally, in Fig. 11 real and
imaginary parts of Zns (Eq. (41)) are shown in terms of p and for different values of o: once again, the
comparison between theory and simulations is remarkably good. We may observe that the imaginary part of
the effective admittance Ȳ assume its maximum value, at a given frequency, in correspondence to the
percolation threshold pc ¼ 1/2.

7. Conclusions

We have developed an effective medium theory for a general disordered lattice network of resistors. The
theoretical predictions have been verified by means of a series of Monte-Carlo analyses with remarkably good
agreement. The general approach takes into account a new topology of networks that describe the effects of a
substrate coupled to the resistors lattice. This is an important point in many applications such as films of
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Fig. 11. Real (a) and imaginary (b) parts of the node substrate impedance Zns (in logarithmic scale) for the frequency controlled

percolative network. The graphs are shown in terms of the probability p for different values of the frequency. A comparison between

theoretical (continuous line) and Monte-Carlo results (symbols) has been drawn.

Fig. 10. Real (a) and imaginary (b) parts of the equivalent admittance Ȳ (in logarithmic scale) for the frequency controlled percolative

network. The graphs are shown in terms of the probability p for different values of the frequency. A comparison between theoretical

(continuous line) and Monte-Carlo results (symbols) has been drawn. In the case of extremely low frequency the breakdown of the real

part appearing for p ¼ 1/2 represents the percolation phenomenon.
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heterogeneous material deposited on substrates with electrical interaction. An interesting field of application
of the present theory concerns with the effects of the capacitive coupling with the substrates. Several examples
of lattices have been described in the text. Moreover, as additional results we have reported many exact
relations describing the electrical behaviour of homogeneous but anisotropic infinite lattice systems. These
results are based on the Green’s lattice function expressed in terms of elliptic integrals and may be useful for
different applications.

Appendix. Definition of the complete and incomplete elliptic integrals

Every integral of the form
R

Rðx;
ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
Þdx; where P(x) is a third- or fourth-degree polynomial can be

reduced to a linear combination of integrals leading to elementary functions and the following three integrals
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(see Refs. [15,16]):

F ðj; kÞ ¼
R j
0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sen2 a
p ¼

R senj
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þð1�k2x2Þ

p

Eðj; kÞ ¼
R j
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sen2 a

p
da ¼

R senj
0

ffiffiffiffiffiffiffiffiffiffiffi
1�k2x2

p ffiffiffiffiffiffiffiffi
1�x2
p dx

Pðj; n; kÞ ¼
R j
0

da

ð1�n sen2 aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sen2 a
p ¼

R senj
0

dx

ð1�nx2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þð1�k2x2Þ

p

8>>>>><
>>>>>:

(A.1)

which are called, respectively, incomplete elliptic integrals of the first, second and third kind in the
trigonometric form and in the Legendre form. The number k is called the modulus of these integrals, the
number

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
¼ k0 is called the complementary modulus and the number n is the parameter of the integral

of the third kind. Elliptic integrals from 0 to p/2 are called complete elliptic integrals:

KðkÞ ¼ F
p
2
; k

	 

; EðkÞ ¼ E

p
2
; k

	 

. (A.2)

For the properties of the complete elliptic integral of the third kind see Ref. [16]. Moreover, in the main text,
we have made use of the complete elliptic integral of the first kind K(k) with complex modulus k; it is defined
by

KðkÞ ¼
p
2

F
1

2
;
1

2
; 1; k2

� �
¼

p
2

1þ
1

2

� �2

k2
þ

1 � 3

2 � 4

� �2

k4
þ � � � þ

ð2nÞ!

22nðn!Þ2

� �2

k2n
þ � � �

( )
. (A.3)

The hypergeometric function F converges absolutely in the disk jkjo1 and it is continued analytically. The
numerical computation of K(k) with complex modulus has been performed by means of the arithmetic–geo-
metric mean procedure M(a, b) with complex variables, defined by the following iterations:

a0 ¼ a;

aN ¼
1
2
ðaN�1 þ bN�1Þ;

(
b0 ¼ b;

bN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aN�1bN�1

p
:

(
(A.4)

When N approaches infinity aN and bN converge to the mean M(a, b). For the square root evaluation, the
branch where the argument of bN is between �p/2 and p/2, must always be chosen in the course of the
calculation. The complete elliptic integral of the first kind (with complex modulus) is related to the
arithmetic–geometric mean by the following [17]:

KðkÞ ¼
p

2Mð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Þ
¼

p
2Mð1; k0Þ

. (A.5)

Some other properties of M(a, b) may be useful (i.e. for obtaining the alternative Eqs. (33) and (35)):

Mða; aÞ ¼ a; Mða; bÞ ¼M
aþ b

2
;
ffiffiffiffiffi
ab
p

� �
; Mðla; lbÞ ¼ lMða; bÞ. (A.6)
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