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Abstract

The paper deals with the elastic characterisation of microcracked solids: we analyse dispersions of cracks with arbitrary
non-random orientational distributions. Particular cases of angular distributions are given by cracks all oriented in a given
direction or cracks uniformly random oriented in the space. A unified theory covers all the orientational distributions
between the random and the parallel ones. The micromechanical averaging inside the composite material is carried out
by means of explicit results which allows us to obtain closed-form expressions for the macroscopic or equivalent elastic
moduli of the overall material. The analysis has been performed in two-dimensional (2D) elasticity (plane stress and plane
strain) with slit like cracks and in three-dimensional (3D) elasticity with planar circular cracks. The elastic behaviour of the
microcracked solid depends upon the density of cracks and upon their orientational distribution. In particular, this study
allows us to state that in two-dimensions the elastic behaviour of such a microcracked material is completely defined by
one order parameter, which depends on the given angular distribution while the elastic characterisation in three-dimen-
sions depends on two order parameters. The particular cases of isotropic orientations of cracks (both in 2D and in 3D)
have been generalised to higher values of the cracks density by means of the method of the iterated homogenisation, which
leads to some differential equations. Their solutions show that the equivalent elastic moduli depend exponentially on the
cracks density.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study the behaviour of an elastic medium containing cracks in the framework of microm-
echanics. The presence of cracks in a homogeneous elastic matrix will influence the mechanical properties of
the medium. Thus, by modeling the crack distribution inside a material we may study the effects of the cracks
on the mechanical properties, such as the elastic moduli (the stiffness tensor or the compliance tensor).
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Nomenclature

X, y, z orthonormal coordinates
ay, a,, a. semi-axes of the ellipsoidal void

e aspect ratio of the ellipsoids

a half-length of slit-cracks in 2D elasticity and radius of circular cracks in 3D elasticity
T, T; stress tensor and its entries

E, E; strain tensor and its entries

E', L}jkh stiffness tensor and its entries

T stress tensor in Voigt notation

E strain tensor in Voigt notation

L! stiffness tensor in Voigt notation

E.v  Young modulus and Poisson’s ratio of the isotropic matrix
k, n bulk modulus and shear modulus of the isotropic matrix
E; internal strain tensor in Voigt notation

Eg external strain tensor in Voigt notation

S, sixn Eshelby’s tensor in Voigt notation and its entries

, Cien averaged Wu’s tensor and its entries

, ijkn limiting value of the Wu’s tensor and relative entries
eq» Ly effective stiffness tensor and its entries

identity tensor

rotation matrix

rotation matrix in Voigt notation

0, ¥, ¢ rotation angles

f0) density probability for the angle 0

4(0) Dirac delta function

P order parameter for 2D elasticity

S, T order parameters for 3D elasticity

P,(cosf) Legendre polynomials of order n

n, I, k, m and p Hill parameters for transversely isotropic media

LBl e Ne)

=)

N number of cracks

AN increment of the number of cracks

c volume fraction

A area in 2D elasticity

14 volume in 3D elasticity

o cracks density (both in 2D and in 3D elasticity)

keq» Heq effective bulk modulus and shear modulus

E.q, veq effective Young modulus and Poisson’s ratio

For many practical applications one may then attempt to invert measurements of such properties for deriv-
ing crack parameters such as dimensions and orientations. Clearly, then, advancements in the modeling of the
mechanical properties resulting from a distribution of cracks will aid the accuracy of inversion techniques.

The characterisation of cracked materials belongs to the vast field of homogenisation in composite mate-
rials [1,2]. For example, dealing with elastic characterisation of dispersions [3], many works have been devel-
oped: the most famous and studied elastic mixture theory regards a composite material formed by spherical
inclusions embedded in a solid matrix. An exact result exists for such a material composed by a very dilute
concentration of spherical inclusions (with bulk modulus %, and shear modulus p,) dispersed in a solid matrix
(with moduli k& and ;). This result is attributed to different authors [4]. Moreover, many other works have
been devoted to the analysis of the effects of ellipsoidal inclusions in a given matrix [5]. To adapt the dilute
formulas to the case of any finite volume fraction a great number of proposals have been made and they
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appear in technical literature. The most useful approaches are the iterated homogenisation [6] and the differ-
ential effective medium theory [7,8].

In the present work, in the conceptual framework of the homogenisation, in order to model the flat shape of
a crack, we adopt an ellipsoidal void with an axis with infinitesimal length. Treating the crack as a vacuous
oblate ellipsoid of eccentricity approaching zero is very convenient. The idea is that one can derive the needed
formulas for a microcracked solid, passing (with a due care) to the limits in the general formulas, concerning
ellipsoidal inclusions. This approach is not new in principle and it has been used in various homogenisation
theories for microcracked media [9-11]. In such relevant works the orientational distribution of cracks is given
by one of the two most adopted distributions: cracks aligned with a given direction or cracks uniformly
oriented in the space. In some other recent works [12,13] it has been verified analytically and experimentally
that irregularities on the angular distribution of cracks in a given medium can produce pronounced effects on
the effective properties. In such works, in order to mimic the microstructure of plasma-sprayed coatings, the
authors consider families of penny shaped cracks having an orientational scatter about some preferential
orientations. To do this, they introduce a given probability density function for the statistical distribution
of the angles defining the orientation of each crack. Such a density function shows a scatter parameter
characterising the state of order or disorder of the angular distribution of the cracks. So doing, they are able
to take into account different orientational distributions between the extreme cases of the fully random and of
the ideally parallel cracks. The aim of the present paper is to analyse a microcracked solid with a completely
arbitrary angular distribution of cracks. So, a particular attention is devoted to the analysis of the effects of the
orientational distribution of the cracks inside the damaged material. The limiting cases of the present theory
are represented by all the cracks aligned with a given direction (order) and all the cracks randomly oriented
(disorder). We take into account all the intermediate configurations between order and disorder with the aim
to characterise a material with cracks partially aligned. Two different cases have been taken into consideration:
the two-dimensional distribution of slit-cracks and the three-dimensional distribution of circular cracks. In
Fig. 1 one can find some orientational distributions between the upon-described limiting cases, in 2D elasticity.
The angular distribution of cracks is statistically well described by an order parameter P. Similarly, in Fig. 2
several orientational distributions of circular cracks in 3D elasticity have been shown. In such a case, two
order parameters S and 7T define the orientational distribution of cracks. The mathematical details will be
discussed later on.

We want to draw some comparisons between our approach and previous ones on this topic: for example
in Refs. [12,13] different angular distributions of cracks have been considered but it is done by means of an a
priori given parameterised probability density. In our approach the probability density is completely arbi-
trary and we analytically verify that only some expected values (the so called order parameters) contribute
to modify the effective properties of the medium (under the sole hypothesis of low cracks density). For
example, for the case of circular (penny shaped) cracks in Ref. [12,13] the authors adopt only one scatter
parameter in the density function but here we verify that two order parameters are necessary to describe
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Fig. 1. Structure of a microcracked solid with slit-cracks in 2D elasticity. One can find some orientational distributions ranging from order
to disorder. The order parameter P is indicated.
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Fig. 2. Structure of a microcracked solid with circular cracks in 3D elasticity. One can find some orientational distributions ranging from
order to disorder. The order parameters S and 7 are indicated.

an arbitrary distribution. Therefore, the peculiar character of the present work is given by the complete arbi-
trariness of the orientational distribution of cracks. This point is of vital importance to describe natural and
artificial heterogeneous materials with complex microstructure. Moreover, we address also the analysis of a
population of arbitrarily scattered parallel slit cracks, which is not, for the author’s knowledge, present in
the literature yet.

However, the results obtained may have several applications. For example an interesting topic is the study
of microcracked rocks in geology: cracking originates in rocks from a number of geological processes, of
which thermal gradients and tectonic stress are particularly important. Experiments on thermally-induced
cracking and stress-induced cracking suggest that the former process produces a fairly isotropic distribution
of predominantly intergranular cracks, while the latter produces a strongly anisotropic distribution of intra-
granular and transgranular cracks, with the majority of cracks oriented parallel to the direction of the maxi-
mum principal stress [14,15]. Therefore, the study of arbitrary distributions of cracks is very important from
the geological point of view.

Another example is given by the application of these theories to biological materials: not isotropic fracture
mechanisms have long been proposed for mineralized biological tissues like bone and dentin [16]. Moreover,
not homogeneous distribution of cracks should be studied because site-specific accumulation of microcracks is
considered a key factor that decreases the resistance of whole bones to fracture.

To conclude, this paper describes a theoretical-computational procedure that helps us to solve the following
generic practical problem: often, in many applications of material science and in applied engineering it is
important to accurately estimate the mechanical properties of a medium which is microcracked with an arbi-
trarily given angular distribution of cracks. The methodology, here introduced, allows us to evaluate the stiff-
ness properties of the microcracked medium in terms of the orientational distribution of cracks inside the
medium itself. As above said, such a result is obtained through the definition of some order parameters that
reveal a broad and general applicability to many problems of great engineering significance.

2. Two-dimensional theory of pseudo-oriented cracks

This section deals with the analysis of distributions of two-dimensional cracks (slit-cracks) in isotropic sol-
ids. A single crack is modelled by means of a limiting process carried out on an ellipsoidal void: we consider an
ellipsoid with semi-axes a,, a, and a. (a, > a, > a. > 0) aligned, respectively, along the axes x, y and z of a
given reference frame. When one of the principal axes of the ellipsoidal void, say a,, becomes infinite and
the minor axis a, becomes infinitely small, the ellipsoid becomes a slit-like crack.
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The homogeneous solid matrix, before the damaging due to the cracks appearing, is characterised by the
relation Ty = L}jklE,d where T is the stress tensor (3 x 3 sized), E is the strain tensor (3 x 3 sized) and L' is
the constant stiffness tensor.

We start with some definitions used to simplify the problem. Instead of describing the strain with the com-
plete symmetric tensor we adopt a vector, which contains the six independent elements in a given order (Voigt
notation); the same approach is used for the stress (T means transposed):

~

E:[Ell Ey Exz Epn Ex El3]T; T=[Tu Tn Tz Tin Txn T13]T (1)

Adopting this notation scheme the stiffness four-index tensor for the isotropic solid is represented by a simpler
matrix with six rows and six columns:

Th+4p k—2u k=24 0 0 0]

k—%u k—|—%u k—%,u 0 0 0
Il k—%,u k—%,u k—|—%u 0 0 0 2)

1o 0 0 2u 0 0

0 0 0 0 2u 0

) 0 0 0 0 2u]

so that the stress-strain relation becomes T = L'E in the matrix and T = 0 inside each void miming a crack.
We remember that instead of using the bulk modulus k and the shear modulus y we may adopt the Young
modulus £ and the Poisson ratio v, defined as follows:

_ %kp b 3k—2u B E _ E
{E_,u-i-3k’ _2(,11—&—3/()}{:}{”_2(1—#\))’ k_3(1—2v)} (3)

These relations will be often used throughout all the paper. At this point, to begin the strain computation we
take into consideration a single ellipsoidal inclusion (void) embedded in an isotropic matrix; to perform the
computation we take into consideration a voids with a, infinite and @, and a. finite and different from zero.
In other words the void is an elliptic cylinder aligned with the x-axis; in a second phase we will carry out the
limit of a. — 0 obtaining the flat inhomogeneity. We suppose that the matrix is placed in an equilibrated state
of infinitesimal constant elastic strain by external loads and then the void is embedded into the matrix reaching
a corresponding state of strain, which is well described by the Eshelby theory [17,18]. In particular it is impor-
tant to notice that the internal strain is constant (all the entries are constant) if the external or bulk strain is
constant. The Eshelby theory allows us to write down a relationship between the internal and original strain
when they are constant (or uniform) in the space. Accordingly with the Eshelby theory [19,20] the relationship
between the original external strain and the induced internal strain (for voids) is given by

E, ={1-S}'E, (4)

where I is the identity matrix with size 6 X 6, Ei is the internal strain, ﬁo is the original external strain and S is
the Eshelby tensor, which depends on the aspect ratio ¢ = a./a, and on the Poisson ratio v of the matrix. Here,
we remember that S, for elliptic cylinders, is given by [19]:

r 0 0 0 0 0 0 T
ev 1 [eerZe 9“*2")} 1 [ 2 9(1*2"):| 0 0
(I+e)(1-v)  2(1-v) [(1+¢)’ (I+e) 2(1-v) | (14¢)? (I+e)
v 1 1 (=2 1 142 (1-2v) 0 0
§: (I+e)(1-v)  2(1-v) [(14+e)®  (l+e) 2(1-v) [(1+e)> ' (I+e) (5)
0 0 0 ﬁ 0 0
1 14+¢2
0 0 0 0 iyl +1-2] 0
1
| 0 0 0 0 0 Tred
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In the following developments we have to perform the limit of a. — 0, which corresponds to e — 0. It is impor-
tant to notice that the tensor {I — S} is singular when e — 0; this fact well describes the singular behaviour
of the strain in flat cracks and takes place a crucial role in the further developments. With the aim of analysing
the behaviour of a mixture of pseudo-oriented cracks, we need to evaluate the average value of the internal
strain inside the elliptic cylinder over all its possible orientations or rotations in agreement with the given ori-
entational distribution. To perform this averaging over the rotations we name the original reference frame
with the letter B and we consider another generic reference frame that is named with the letter F. The relation
between these bases B and F is described by means of a generic rotation matrix R(6):

1 0 0
R(0)= [0 cosf —sinf (6)
0 sinf cos6

The angle that defines the pseudo-orientational distribution is 0: it describes a simple rotation along the x-axis.
Therefore the following relations hold on between the different frames: E? = RE/R" for the internal strain and
EB REF R" for the bulk strain (here the subscript T means transposed). These expressions have been written
w1th standard notation for the strain (3 x 3 sized matrix). They may be converted in our notation defining a
matrix M(H) 6 X 6 sized, which acts as a rotation matrix on our strain vectors: so, we may write EB ME r
inside the ellipsoid and EB MEF outside it. The entries of the matrix M are completely defined by the com-
parison between the relatlons E? = RE/ R" and EB MEF and by considering the notation adopted for the
strain:

1 0 0 0 0 0
0 cos(0)* 1 — cos(0) 0 —2cos(0) sin(0) 0
/M(H) _ 0 1—-cos(0) cos(0) 0 2 cos(0) sin(6) .0 o
0 0 0 cos(6) 0 — sin(6)
0 cos(0)sin(0) —cos(0)sin(0) 0 —1+2cos(0)’ 0
K 0 0 sin(0) 0 cos(0) |
(1 0 0 0 0 0
0 cos(6)’ 1 — cos(0) 0 2cos(0) sin(6) 0
M\(H)’l _ 0 1—cos(6) cos(0) 0 —2cos(0) sin(0) | 0 @)
0 0 0 cos(0) 0 sin(0)
0 —cos(0)sin(0) cos(0)sin(0) 0 —1+2cos(0)? 0
L0 0 0 —sin(6) 0 cos(6) |

Eq. (4) is written on the frame B and therefore it actually reads EB {I- S} E ; this latter may be refor-
mulated on the generic frame F, by using Egs. (7) and (8), simply obtaining:

Ef = {M(0) "1 - S]"'M(0)}E} 9)

As above said, at the end of this procedure we are interested in the limit of ¢ — 0 and therefore we may con-
sider only terms in 1/e in the previous Eq. (9); all the other terms will be neglected for very small values of e.
Therefore, we obtain the following result considering only the terms with 1/e:
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i 1 0 0 0 0 0 7
2v(1=v)(1=cos(0)®)  2(1=v)*(1=cos(0)®)  2v(1=v)(1—cos(0)*) 0 2(1—v) sin(6) cos(6) 0
e(1-2v) e(1-2v) e(1-2v) e
2v(1—v) cos(0)? 2v(1—v) cos(0)? 2(1—v)? cos(0)?
— _ P e(1-2v) e(1-2v) e(1-2v) 0 0 0
M(G) [I - S} M(G) = 1—cos(0)’
0 0 0 Lcos(0)” 0 0
2v(1—v)sin(0)cos(0)  (1—v)sin(0) cos(0) (1—v) sin(0) cos(0) 0 1—y 0
e(1-2v) e(1-2v) e(1-2v) e
0 0 0 0 0 cos(0)?
(10)

So, Egs. (9) and (10) furnish the relationship between the external strain and the internal one for a slit-crack
with very small eccentricity e after a rotation of an angle 6 in the z—y plane. We want to analyse the averaged
effects of the orientational distribution of cracks and therefore we need to average Eq. (9) over all the possible
orientation of a crack in the solid. Thus, the angle 6 assumes, by hypotheses, the role of a random variable
symmetrically distributed over the range (—n/2,7/2). The symmetry of the probability density assures that
the average value of sin(6)cos(8) (appearing in Eq. (10)) is exactly zero and the result depends only on the aver-
age value of cos*(0). So, we may define the following order parameter, which completely describes the state of
order/disorder of the distribution of cracks:

P = (1 —cos(6)*) (11)

It is easy to observe that P assumes special values for particular angular distributions of cracks: if P = 0 all the
cracks are parallel to the y-axis (horizontal order), if P =1 all the cracks are parallel to the z-axis (vertical
order) and if P = 1/2 the angle of rotation is uniformly distributed in the range (—n/2,7/2) leading to a state
of complete disorder (2D isotropic medium). The other values cover all the orientational distribution between
the random and the parallel ones (see Fig. 1 for some examples). Finally, the averaged value of Eq. (9) is given
by:

i 1 O 0 O O 0 -
T
e(1-2v e(1=2v o(1—2v
~ 2(1=)(1=P)  2(1—=v)(1=P)  2(1—v)*(1-P) 0 0 0|~ o
(EFy = | =29 e(1-2v) o(1-2v) Bf = CBF 1)
0 0 0 L 0 0
0 0 0 0 1? 0
0 0 0 0 0 L=

L e -

or (E) = 612“0 omitting the reference frame used in this context. In literature, the tensor C is the so-called
averaged Wu’s tensor [2]. As before, in the previous Eq. (12), only the terms with 1/e are maintained. Now
we may analyse the actual distribution of cracks: we consider a region of the plan z—y having area 4 and
N slit-cracks here uniformly dispersed with the angular distribution characterised by the order parameter
P. Therefore, the volume fraction of the inclusions is given byc = na.a,N/A where a. and a, are linked by
the relation e = a./a,. We may compute the average value of the elastic strain over the whole cracked material
by means of the relation:

(E) = (1 = ¢)Eqg + ¢(E;) = [(1 — )] + ¢C]E, (13)

where we have considered the average strain outside the inclusions approximately identical to the bulk strain
E, (hypothesis of low cracks density). In this approximation of non-interacting cracks, each crack is subjected
to the same external load, unperturbed by the neighbours. This is a typical approximated scheme largely used
in the field of the homogenisation techniques because it provides simple but significant results, which are valid
only for low values of the volume fraction of the dispersed phases (in our case it means low cracks density).

In other words, we may say that we have adopted the dilute scheme, which is pertinent to the situations
where one can consider that the cracks are not interacting with each other [4,8]. We understand that it is a
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limitation of applicability of all the results but it is an interesting way that we can follow in order to obtain
results in closed form. Moreover, to generalise some of the results to higher values of the cracks density we
have adopted, in the following sections, the iterated homogenisation scheme and the differential effective med-
fum theory. However, we define L., as the equivalent stiffness tensor of the whole mixture (which is aniso-
tropic) by means of the relation (T) = feq(ﬁ>; to evaluate Eeq we compute the average value (T) of the
stress inside the random material. We also define V as the total volume of the mixture, V as the total volume
of the embedded cracks and V4 as the volume of the remaining space among the inclusions (so that
V ="V.U V). The average value of T= L( )E over the volume of the whole material is evaluated as follows
(L(FA)=L'ifFe Vyand L(7) = 0 if 7 € V,):

D Y PSS P _
<T>fV/VL(r)E(r)dr ;L /VU E(r)dr
Y E(r)dwriLl/ ()dr——Ll/ E(7)dr = L'(E) — cL'(E,)
V Vo 4 Ve Ve
=L'(E) — cL'CE, (14)

Drawing a comparison between Egs. (13) and (14) we may find a complete expression, which allows us to esti-
mate the equivalent stiffness tensor Leg:

Lo = L'{I—cC[(1 — )T +cC]™"} (15)

As above said, the volume fraction ¢ is given by ¢ = na.a,N/A or, remembering that e = a./a, and defining
a=a, as the half-length of the slit-microcrack, by ¢ = na’eN/A. A characteristic quantity describing 2D
microcracked solids is the following:

o=—N (16)

From some approximated estimations we may deduce that a reasonable limit, for obtaining good results in
this case of non-interacting slit-cracks, is given by « < 0.1. It means, for example, that for a region with area
1 m? and cracks with half-length of 1 cm we may consider N < 300 approximately. So, we may write ¢ = oe; it
means that the limit for exactly flat cracks is obtained with ¢ — 0 or equivalently for ¢ — 0. As one can see in
Eq. (15), we are interested in the limit of the quantity cC when e — 0: for following purposes we define
lim, ocC = G. Taking into consideration the definition of the tensor C given in Eq. (12) we immediately ob-
tain the requested result:

[ 0 0 0 0 0 0 7
2v(1—v)Pu 2(17\')2Po< 2v(1—v)Pu
(<1—2v) (1—2v) (1—2v) 0 0 0
=R =R W(1—v)(1=P)a 2v(1-v)(1=P)o  2(1—v)*(1-P)«
limeC=G=| 0 T i 00 0 (17)
0 0 0 0 P 0 0
0 0 0 0 (1—-va 0
L 0 0 0 0 0 (1 =P)a
Furthermore, the exact limiting value for the stiffness tensor derives from Eqgs. (15) and (17):
Leq_Ll{l— [ +G] } (18)

where L! is given by Eq. (2) and G is given by Eq. (17). It is evident by the microgeometry of the system that
three unequal axes, at right angles to each other, characterise the solid: one is the x-axis that is the direction
of alignment of the slit-cracks, the others are the axes y and z which have different elastic behaviour because of
the pseudo-random orientation of the cracks. The axes y and z are equivalent from the mechanical point of
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view only if P =1/2 and we obtain an overall transversely isotropic material. However, the three different
behaviours along the three axes lead to an orthorhombic anisotropy for the whole system:

(L Lz Lan 0 0 0 7
L Lyn Lniz 0 0 0
= Lyt Lopss Lz 0O 0 0

0 0 0 Lis1n 0 0
0 0 0 0 Loy O
0 0 0 0 0 L3z

A solid with orthorhombic anisotropy is described by a stiffness tensor with nine independent parameters as
one can see in Eq. (19). A long but straightforward application of Eq. (18) allows us to obtain the following
closed form expressions for the stiffness tensor entries:

E=10; v=0.38 E=10; v=0.38

Fig. 3. The entries of the stiffness tensor for a 2D microcracked solid are represented. Results given by Egs. (20)—(22) have been shown,
respectively in (a)—(c). The nine elastic moduli have been represented versus the order parameter P using five values of the cracks density
o: 1.5, 2.25, 3.37, 5.06 and 7.6.
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Ly = —2PU=PI) (10421 —v)at I =
[402P(1=P)(1=v)*+2(1=v)*at1-2v](1+v)
Lo = apap) ((11:‘3)2&?1( i:;):il (1) )
fass = [4“2P(1*Pm*(i’)izﬁ[;(ﬁt;]wl72v](1+v)E
L1i2 = G gt o T3
L3 = [4o<2P(1—P)(l7v)2+2‘.(17v)21+172v](1+v)E o
Ly = [49(21)(17P)(11[5;1‘;((11:?;]“172@(HV)E
Lo = m E
Loy = WE ”

L33 E

_ 1
= =PI

Egs. (20)—(22) represent the complete characterisation of a solid with a given distribution of slit-cracks under
the hypothesis of low cracks density. In the following section we analyse some generalisations to higher values
of the cracks density. It is interesting to observe that the following property holds on for these results: to
change the order parameter P with 1 — P corresponds to invert the axis y with the axis z. It means that we
may change the index 2’ with the index ‘3’ and P with 1 — P obtaining the same results. This is perfectly
coherent with the physical meaning of the order parameter P: two different materials with P and 1 — P have
the same distribution of cracks but they are rotated of 90° in the plane y—z. Results given by Egs. (20)—(22)
have been shown in Fig. 3. The nine elastic moduli have been represented versus the order parameter P using
five values of the quantity o: 1.5, 2.25, 3.37, 5.06 and 7.6.

3. 2D isotropic distribution of cracks: iterative homogenisation and differential schemes

When the slit-cracks are uniformly oriented in the y—z plane the overall microcracked material is trans-
versely isotropic and the order parameter assumes the value P = 1/2; then, the corresponding stiffness tensor
given by Eq. (19) reduces to the following:

o I 0 0 07
k+m k—m 0 0 0
k—m k 0 0 0
moKtm (23)
0 0 2 0 0
0 0 0 2m O

lo 0o 0 0 0 2

S O O ~ ~ 3

where the five Hill parameters (typically used for transverse isotropy [3]) are given by Egs. (20)—(22) with
P=1/2:

I =t £

k = s E (24)
M = ST

P =gk

Typically, in 2D elasticity a transversely isotropic medium may be used under the conditions of plane stress or
plane strain. In this section we analyse the consequences of Egs. (23) and (24) in such cases. We begin with the
hypothesis of plane stress (on the plane y—z) and we observe that, in these conditions, a transversely isotropic
material, defined by Eq. (23), corresponds to an isotropic one with these Young modulus and Poisson ratio:
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— dm(PP—nk)

Eeq T P—nk—nm
(25)

Voo = 12— nk-+nm

€q 1>—nk—nm

These relations have been derived as follows: we take into consideration a transversely isotropic medium de-
scribed by Eq. (23) and an isotropic medium described by E.q and veq. By imposing the plane stress conditions
in both materials and drawing a comparison of the obtained results we may find exactly Eq. (25). However, by
using Eq. (25) with the Hill moduli defined in Eq. (24) we obtain the equivalent elastic moduli in the plane
stress case and their first order expansions in the parameter o:

Eeq = m %’E[l — OC(I — Vz)]
= =yl — (1 —?)]

v
Veqa = Tra(1—7)

(26)

We remember that Eq. (26) holds true only for low values of the cracks density N/A4 that compares in the
parameter « defined in Eq. (16). The first order expansions written in Eq. (26) are very useful to apply the iter-
ated homogenisation method [6] that allows us to generalise the relations to higher values of the cracks den-
sity. The principles of this technique are here summarised: let’s suppose that the effective moduli of a
microcracked medium are known to be E.q and veq. Now, if a small additional number of cracks AN is created
in the matrix, the change in the elastic moduli is approximated to be that which arise if the same infinitesimal
number of cracks were added to a uniform, homogeneous matrix with moduli E.q and veq. This leads, when
applied to Eq. (26), to the following difference equations, where the definition of the parameter o has been
used:

Eeq(N +AN) = Eq(N)[1 = % AN (1 = vey(N)")|

(27)
Vea(N + AN) = vig (V) [ 1 = % AN(1 = vy (N)?)]

When the number of additional cracks AN assumes the role of an infinitesimal quantity the iterated homog-
enisation method converges to the differential effective medium theory [7,8] and the difference equations given
in Eq. (27) became a pair of differential equations:

dEeq __ na® 2
{ v =~ (1= )Eeq

. \ (28)
W)y

They can be solved in closed form obtaining the final results for isotropic 3D elasticity in plane stress
conditions:

Eeq = 2 - 202

v +(vlfx )e (29)

Veq = V24 (1—v2)e2x

A similar analysis can be conducted for the plane strain case. Now, the transversely isotropic material, defined
by Eq. (23), corresponds to an isotropic one with Young modulus and Poisson ratio given by
Eo=203k—m
{ a —Fi3 o) (30)
veq =%
Moreover, by using Eq. (30) with the Hill moduli defined in Eq. (24) we obtain the equivalent elastic moduli
under the plane strain condition and their first order expansions in the parameter o:

_ Mvta(l-v)] ~ _ A (=) (142y)
Eeq = E[1+1<17V)]2(1+v) - E[l O (31)
Veq = m = y[l — ol —v)]

As before the knowledge of the first order expansions is useful to apply the iterated homogenisation method,
which leads, at the end of the procedure, to the following differential equations:
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dE.q  ma® (1 —veg)(1 + 2veq)E
= e
dv A I+ veq (32)
dveg _ —n—az(l — Veq)V
dN 4 e
lutions can be analytically obtained:
2v+ (1 —v)e
e P+
y (33)
Yea = v+ (1 —v)e*

They represent the elastic moduli of an isotropic microcracked material under plane strain conditions. It
is interesting to observe that our solutions (given by Eq. (29) for plane stress and by Eq. (33) for plane strain)
depend exponentially on the cracks density. This fact explains the strong and speed damaging of a medium
with an increasing number of cracks in a given region. In Fig. 4 these results have been shown versus the
cracks density a: here a comparison with the 3D case, described in the following section, has been drawn.

1

C : : : : : | Line: 2D plane stress
o) 1\ S E=1 L 4| Points: 2D plane strain
! ! ! v=0.35 | | Circles: 3D

R e e S B R
R 0 S0 S S U S S AU S IS
1 1 1 1 1 1 1 1
ool VN ]
| | | | | | | | |
I i R R R S S
1 1 1 1 1 1 1 1 1
L s Btk el SREEEEEE TEEF BRI E,
) SRNREL KU N S
1 1 1 1 1 1 1 1
oabo &N ]
| ' | : | | | | |
R U F U F N R R
| | . \ | | : ' |
0 )]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
o
b 0.354 T T T T T T T T T
1 1 L 1 i
' ' E=1 ' lgir}e: 2]3 ]glalne stress
0.3 N -t | Points: 2D plane strain
E E v=0.35 E Circles: 3D
O S E S e e e e
1 1 1 1 1 1 1 1 1
. | | | | | | | |
02 - AN\ - m oo
W RN
U & N A e St e St EEEh S
1 1 1 1 1 1 1 1
| | : | | | | | |
R R S FE T  EEEREEERCER B AR
| I | I | | | | |
ok UL ]
1 1 1 1 1 1 1 1
1 1 1 U 1 1 1
| | | : | | : ' |
0 1 1 1 1 falala VaalaVaaYa
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
o

Fig. 4. The equivalent elastic moduli for an isotropic cracked solid are shown versus the cracks density o. A comparison among three cases
is given: 2D plane stress (Eq. (29)), 2D plane strain (Eq. (33)) and 3D (Eq. (52)).
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4. Three-dimensional distributions of circular cracks

In this section we are dealing with 3D distributions of circular planar cracks in isotropic solids (/V cracks
dispersed in a region with volume V). As before the main feature of this analysis is given by the pseudo-ran-
dom orientation of the cracks inside the solid (see Fig. 2 for details). We consider a given orthonormal refer-
ence frame and we take as preferential direction of alignment the z-axis. Each crack embedded in the matrix is
not completely random oriented. The overall medium has a positional disorder but a partial orientational
order and it exhibits a uniaxial behaviour. The orientation of a crack is described by the following statistical
rule: the principal axis (the normal direction) of each crack forms with the z-axis an angle 6, which follows a
given probability density, f{0) defined in [0 x] (see Fig. 2). The orientation of each crack is statistically inde-
pendent from the orientation of the other ones. If f{0) = 6(0) (where 0 is the Dirac delta function) we have all
the cracks with 6 = 0 and therefore they are all oriented with the z-axis. If f{6) = (1/2)sin0 all the cracks are
uniformly random oriented in the space over all the possible orientations. Any other statistical distributions
f(0) define a transversely isotropic (uniaxial) material. In this section we develop a complete analysis of the
effects of the state of order/disorder. This analysis allows us to evaluate the overall elastic properties of the
microcracked material. From the point of view of the state of order we verified the following property: the
elastic moduli of the material depend on the state of order through two parameters that are defined as
S = (Px(cos0))y and T = (P4(cos0))y. They correspond to the average values of the Legendre polynomial of
order two and four, computed by means of the density probability f{#). To begin, we take into consideration
the Eshelby tensor of an ellipsoid of rotation (a, = a,) with the principal axis aligned along the z-axis of the
reference frame; we define the aspect ratio e as e = a./a, = a./a, where ay, a, and a. are the semi-axes aligned,
respectively, along the axes x, y and z of the given reference frame. The general structure of such a tensor is
given by [19]:

(s Stz sns 0 0 0 7
S22 St S1133 0 0 0
S_ S3311 S3311 3333 0 0 0 (34
0 0 0  siun—sun2 0 0
0 0 0 0 sz 0
L 0 0 0 0 0 51313

Here the symmetries are evident and correctly describe the ellipsoid of rotation which has two equivalent axes
and a third one with different behaviour. In Table 1 one can find the complete expressions of all the entries of
the tensor defined in Eq. (34). The depolarisation factor L may be computed in closed form as follows and the
result depends on the shape of the ellipsoid; it is prolate (of ovary or elongated form) if ¢ > 1 and oblate (of
planetary or flattened form) if e <1 [19,21]:

Table 1
List of the complete expressions of all the entries of the Eshelby tensor defined in Eq. (34)
Sti11 1 —3¢® + 13L — 4e*L + 8Lve* — 8Lv
8 (e —1)(—1+v)
le? + L —4e’L + 8Lve — 8Ly
S1122 -3 3
8 (e —=1)(=1+v)
s 12¢’L — & + L + 2Lve* — 2Ly
1 2 (@ —1)(=1+v)

; lfL +e? — 2e*L — 2ve® + 2v + 4Lve* — 4Ly
o3 2 (@ —1)(-1+v)

s _ 20 — 1 —4’L + L — ve? + v + 2Lve* — 2Lv
3333 @ —1)(=1+)

g _162L+2L71+Lve27Lv7ve2+v

1313 2 @ —1)(—1+v)




1996 S. Giordano, L. Colombo | Engineering Fracture Mechanics 74 (2007) 1983-2003

[26F+ln "1} ife>1

e /jLOO dé _ ey ver—1 (35)
5 2 12
200 (EH1)(E+e) W { —2ev1 — e? — 2arctg Jﬁ} if e<1

With the aim of modelling a circular crack we will use the limit of e — 0 (strongly oblate ellipsoid). As de-
scribed in previous sections, the relationship between the original external strain and the induced internal
strain (for voids) is given by E;, = {I— S}flEo [19,20]. We are interested in strongly oblate ellipsoidal voids
and therefore we take into consideration only the terms with 1/e computing the requested inverse matrix (we
have used Eq. (34) and the expressions listed in Table 1):

0 0 0 0 0 0 7
0 0 0 0 0 0
T = i =
=8 =1 0 0o 0 0 0 (36)
0 0 0 0 2= 0
0 0 0o 0 0 A=

The limit of ¢ — 0 will be performed in successive phases. We now need to evaluate the average value of the
internal strain inside the ellipsoid over all its possible orientations or rotations in the space (in agreement
with the given orientational distribution). To perform this averaging over the rotations we name the original
reference frame with the letter B and we consider another generic reference frame that is named with the
letter F.

The relation between these bases B and F is described by means of a generic rotation matrix R(y, 0, ¢)
where i, 0 and ¢ are the Euler angles; we may consider this matrix as the product of three elementary rota-
tions along the axes z, x and z, respectively:

cosyy —siny O 1 0 0 cosgp —sing 0
R(Y,0,0)= | sinyy cosyy O|-|0 cosf —sin@|-|sing cosep O (37)
0 0 1 0 sinf cosf 0 0 1

The angle that defines the pseudo-orientational distribution is 6. Therefore the following relations hold on be-
tween the different frames: E¥ = RE/R” for the internal strain and Ef = REJR" for the bulk strain (here the
subscript 7 means transposed). These expressions have been written with standard notation for the strain
(3 x 3 sized matrix). They may be converted in our notation defining a matrix M(y, 0, ¢), 6 X 6 sized, which
acts as_a rotation matrix on our strain vectors: so, we may write EB MEF inside the ellipsoid and
Eg = ME I outside it. The entries of the matrix M are completely defined by the comparison between the rela-
tions E} = REF R" and EB MEF and by considering the notation adopted for the strain. The relation be-
tween bulk stram and 1nternal strain is written on the frame B and therefore it actually reads
={I- S} B. this latter may be reformulated on the generic frame F simply obtaining:

Ef = {ﬁ(w, 0,0) " {1— S} "M(¥,0,0)}E] (38)

The first average value of the strain inside the inclusion may be computed by means of the integration over all
the possible rotations of the angles ¢ and i (they are uniformly distributed over the entire range [0,2x]). Then,
we may perform the second averaging over the angle 6 described by an arbitrary probability density f{6) de-
fined on the range [0, n]:

=R 1 2np2n e B . ) ~ ~
<E,.>W:@/O/O [ (MU(.0.0) 1= 8) VI(Y.0.0)}/(0) d0doaVE, = CE, (39)



S. Giordano, L. Colombo | Engineering Fracture Mechanics 74 (2007) 1983-2003 1997

A tedious but straightforward integration leads to the following general structure for the averaging tensor C:

[ciin cuz cnss 0 0 0 7
Cli2 Ciir s 0 0 0
C o | can cam 0 0 0 (@0)
0 0 0 cimn—cun O 0
o 0 0 0 s 0
0 0 0 0 0 i

In Table 2 one can find the expressions of all the entries of the tensor Cdefined in Eq. (40). We wish to point
out that the expressions given in Table 2 are extremely convenient to perform the micromechanical averaging
because it removes the problem of the integral evaluation and allows us to obtain results in closed form. In
Ref. [21] one can find a complete description of the angular averaging procedure for anisotropic distribution
of inclusions. We have defined two order parameters S and T as follows:

S = (Py(cos 0)), = <; cos?(0) —;>0 = /On (; cos?(0) — ;)f(@)d@ (41)
T = (P4(cos 0)), = <§ cos*(0) — %5 cos?(0) + §> = /n (% cos*(0) — 1745 cos?(0) + %)f(@) do  (42)
o o

The two order parameters S and 7 defined in Eqs. (41) and (42) are subjected to the following constraints:
—1/2<S<1and —-3/7<T<1. A point in the S-T plane, as indicated in Fig. 5, represents the degree of ori-
entational order. Three particular cases of state of order can be taken into consideration: if S =7 =1 we are
in the state of order (cracks with normal unit vectors aligned along the z-axis), if S = 7'= 0 we are in the state
of disorder (cracks randomly oriented) and, finally, if S = —1/2 and T = 3/8 all crack normal unit vectors are
lying randomly in planes perpendicular to the z-axis [21]. Now, we may observe that Eq. (15), obtained for the
two-dimensional case, continues to be valid in the present three-dimensional study. Here the volume fraction ¢

Table 2

List of the complete expressions of all the entries of the tensor C defined in Eq. (40)

i 4 (=1 +v)(70S — 100Sv + 255v* +9Tv — 187> — 70 4+ 91v — 7»?)

105 en(=2+4v)(—1+2v)

) 4 v(=1+v)(58v—20S — T +2Tv—Tv+21)

nz 735 en(—2+v)(—1 +2v)

. 4 v(=1+v)(=255 + 158y +4T — 8Tv — Tv 4 21)

133 35 en(—2+v)(—=1+2v)

. 4 v(=1+4v)(—455 +20Sy — 4T + 87v + Tv + 21)

3 35 en(=2+v)(—1+2v)

. 4 (=1 +4v)(1408 — 2008y + 508v? — 24Tv 4 48TV + 70 — 91v + 71?)
3333 105 en(—2+v)(—1+2v)

. 4 (=24Tv+ 108y + 14y — 355 — 70)(—1 4 v)

1313 105 en(—2+v)

| S - / Order

31 ol 3’ 7
-1/2]
Disorder Planar distribution (77 L 2)

Fig. 5. The degree of orientational order is represented by a point in the S—7 plane (3D case). Three particular cases of state of order can
be observed: if S = T'= 1 we are in the state of order, if S = 7= 0 we are in the state of disordered and if § = —1/2 and T = 3/8 all cracks
have normal vector lying randomly in planes perpendicular to the z-axis.
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is given by ¢ = 4na’a.N /(3V) or, remembermg that e = a./a, = a./a, and defining a = a, = a, as the radius of
the circular mlcrocrack by ¢ =4na’eN/(3V). A characteristic quantity describing 3D microcracked solids is
the following:
3
a
=—N 43
=2 (43)
So, we may write ¢ = 4noe/3; it means that the limit for exactly flat cracks is obtained with e — 0 or with
¢ — 0. As one can see in Eq. (15) we are interested in the limit of the quantity e ' when e — 0. As before,
we thus define 11m ¢C = G. Taking into consideration the definition of the tensor C given in Eq. (40) and

Table 2, we 1mmedlately obtain the requested result:

(8111 &z &uss 0 0 0 7
guxn &un  &n3 0 0 0
limeC — G — | 8311 8xnu 8 0 0 0 m
0 0 0 0 gun—8un O 0
0 0 0 0 &1313 0
L 0 0 0 0 (N SESEN

In Table 3 the g, entries are listed and each of them is expressed as the sum of three contributes: the first one
depending on the order parameter S, the second one depending on the order parameter 7" and the third one
not depending on S and T represents the results for random oriented cracks (S = 7' = 0). In other words the
first two terms represent the perturbation to the third one when the orientational distribution is different from
the uniform one. So, results in Table 3 are the main achievement of this section, concerning with the charac-
terisation of a 3D microcracked material. R

Finally, it is a very long but straightforward task to verify that the general form of L. (deduced from
Eq. (18)) is given by the following expression, in perfect agreement with transversely isotropic composites:

Tk4+m k—m [ 0 0 0]
k—m k4+m I 0 0 0

s l I n 0 0 0 )
“ 0 0 0 2m 0 0
0 0 0 0 2 0
) 0 0 0 0 2p]

The complete expressions of the corresponding Hill parameters are very complicated and therefore they are
not very useful to better understand the physics of the microcracking process. It is instead interesting to eval-
uate these parameters up to the first order in the cracks density o:

Table 3
List of the complete expressions of all the entries of the tensor G defined in Eq. (44) in terms of the order parameters S and T
gnn 16(1 —v)(20v — 14 — 5v?)aS  16v(1 — v)aT  16(1 —v)(10 — 13v + v?)a
63(2—v)(1 —2v) C35(2—) 452 —v)(1 —2v)
16v(1 —v)(v==4)aS 16v(1 —v)aT 16v(1 —v)(3 —v)a
8122 202 —w(1—2v) 1052 —v) 152 —w(l —2v)
16v(1 —v)(3v=5)aS  64v(l —v)aT 16v(1 —v)(3 —v)a
S 212 w1 —2v) 1052 —v) ' 152 — )1 —2v)
16v(1 —v)(9 —4v)aS  64v(l —v)al  16v(1 —v)(3 —v)a
gxn 22— w)(1—2v) 1052 —v) ' 152 —v)(1—2v
1

v )
32(1 — v)(14 = 20v+ 5v2)aS  128v(1 — v)aT  16(1 — v)(10 — 13v + 1)
83333 632 —v)(1—2v) T 1052 — ) 452 = v)(1 = 2v)
16(1 —v)(7—2v)aS  128v(1 —v)aT  32(1 —v)(5 — v)a
81313 B32—v T 1052—v) T 4502-v)
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(1-v)E 16 (1= v)(7v =32y +23v — 10)aE 64 (1 —v)(v> +3v = T)aSE 128 v(l —v)aTE

n:(1—2v)(1+v) 45 (1 =22 =v)(1+V) 63 (1—20)2—v)(1+v) 105 2—v)(1+v) O(e)
[ = VE 16 v(1 —v)(16v =19 —v*)aE 16 v(1 —v)(Sv = 13)aSE 64 v(1 —v)aTE + o)
(T—20)(1+v) 4 (1-2002—w(1+v) 63 (1-20)2—w(1+v) 105 2-v)(1+v)
(= E +E(17v)(3v378v2+2v75)aE 16 (1 —v)(7+10v — 6*)aSE 32 v(1 — v)aTE +0(2)
2T=2)(1+v) 45 (1222 -ty 63 (I-22-w+v) ' 1052-n{1+v)
E 16 (1 —=v)(v—=>5)aE 16 (1 —v)(7—2v)aSE 16 v(1 —v)aTE )
Ty E((Zf)v()(lJr)v) +@( (ZE(V)(1+)\)) +E(z(fv)(i+v)+0(°‘)
E 16(1—v)(v=5)0E 8 (1-v)2v—T)aSE 64 v(l —v)aTE )
P Tl aowity e @owity 15—ty o®)
(46)

In each of these expressions the terms have been ordered with the following rule: the first term represents
the Hill modulus for an isotropic solid without cracks, the second term represents the perturbation due to

g
Fanll S
)

4

Fig. 6. Several results for the Hill parameters are reported in various states of order/disorder (3D case). Each plot corresponds to the
indicated couple of order parameters S and 7. In all cases we have considered the same solid (£ =1, v =0.35) and we have shown the
elastic moduli versus the cracks density.
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Fig. 6 (continued)

isotropic cracking (S = 7'=0) of the material and the last two terms represent two additional perturbations
introduced to take into account the particular angular distribution described by S and 7. Approximated
expressions given in Eq. (46) hold on only for a very small cracks density and thus for very small values of
the parameter o. Of course, the exact procedure can be numerically implemented by means of Eq. (18) and
the expressions listed in Table 3. We have developed a software code that implements such a procedure fur-
nishing the five elastic moduli of the overall microcracked material. In Fig. 6 one can find several simulations
describing different states of order of the material. For each orientational distribution (fixed S and 7) we have
plotted the five Hill parameters versus the parameter «. We have used an isotropic medium with £ =1 and
v = 0.35 and a cracks density ranging from o = 0 to o = 5. This procedure allows us to understand more accu-
rately the effects of a given angular distribution of cracks on the macroscopic behaviour of the medium under
consideration.

Finally, it is interesting to write down results obtained with the complete procedure for some special cases,
which may be useful in practical applications: if S = 7'=1 we are dealing with a distribution of cracks aligned
with the normal vectors along the z-axis; in this case the basic Eq. (18) and the expressions listed in Table 3
lead exactly to the following:
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3(1-v)

n= [3(1—zv)+16(1—v)zm](1+v)E
l _ 3y
B(1=2v)+16(1—v)?a] (1+v)
o 16(1-v)%0+3
k= 2[3(172v)+16(17v)2o¢](1+v)E (47)
_ 1
m= 2(l+v)E
_ 3(2-v)
P = spamynteti—naie B

Moreover, if S= —1/2 and T=3/8 we are dealing with a distribution of cracks randomly oriented but
having the normal vectors perpendicular to the z-axis; as before, the basic Eq. (18) and the expressions listed
in Table 3 lead exactly to the following:

(1=v)[8(1+v)a+3] E

= B2 +80—)a(147)

!'= st £

k = 2[3(1—2»’)+83(1—v)1](l+v)E (48)
m= 2[3(27L')+4(31(i;)v()4—v)rx](1+v)E

P = e B

Finally, with an isotropic dispersion of cracks with S = 7'= 0 we obtain an overall isotropic behaviour of the
microcracked medium described by the following bulk modulus and shear modulus:

k 16 1-+?
g = ——— k|l =g
el R o
R P N B @
S BRI E= k) R

We may observe that the overall Hill parameters for an isotropic medium are given by: k = keq + (1/3)tteqs
[ =keq — (2/3)tteqs 1 = (1/2)keq + (2/3) pieq and p = m = peq. In Eq. (49) we have also indicated the first order
expansions because they will be used in the next section where some generalisations of these results will be
described in order to consider higher values for the cracks density.

5. 3D isotropic distribution of cracks: generalisations

When the distribution of circular cracks is isotropic in a given spatial region, Eq. (49) furnishes the bulk
modulus and the shear modulus of the overall system under the hypothesis of low density of cracks. These
relations may be converted to similar ones describing the equivalent Young modulus and the effective Poisson
ratio of the microcracked solid; to this aim we use Eq. (3) and we obtain the following results:

o E ~ _ 16 (]073\r)(]7v2)
Eeq = 1800300 = E{l s
- 50
- v ~y[1 — 164,600 (50)
S S P s T s M 15 2—v

16(1—v2)a+90—45v

In order to generalise the previous results to higher values of the cracks density we may adopt the differential
scheme, exactly in the same way already used in the 2D case; so, a similar procedure allows us to obtain the
following differential equations for the effective moduli of the material:

dEeq 16 a® (10 = 3veq)(1 — ng)

dN 451 2 — Vg “
dveq _ 16 a* (3 - qu)(l - vezq)

AN T 15V 2-vg

(51)
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This differential problem may be solved obtaining implicit solutions:

Vea\2/3/ 1 —v /4 1+v 3y \ VA 16,
(J) — e ¢
v 1 — veq 1+ veq 3 — veq
gty (3w )
Eeq_E(V) 3= Veq

Here, constants £ and v are elastic moduli of the matrix medium and constants E.q and v.q are those of the
microcracked solid. The parameter o is defined in Eq. (43). In this system (Eq. (52)), once the first irrational
equation is (numerically) solved with respect to veq, the Young modulus of the structure is directly given by the
second expression. It may be interesting to observe that, as in the 2D case, the cracks density intervenes only
by means of an exponential term, confirming the strong effects of the microcracking process over the mechan-
ical properties of the solid. Results for the 3D case described in Eq. (52) have been represented in Fig. 4, to-
gether with the 2D case. It must be noticed that the parameter o for the 2D case and the 3D case has a different
definition (see Eqs. (16) and (43)).

(52)

6. Conclusions

In this work we have analysed the effects of the orientational order/disorder of cracks in a homogeneous
solid and we have described an explicit procedure that permits to obtain the mechanical behaviour of the
microcracked medium. As additional result of this analysis we have found the correct definition of some order
parameters in such a way to predict the macroscopic elastic properties as function of the state of microscopic
order. In particular we have found that one order parameter is sufficient to describe the orientational distri-
bution of slit-cracks in two-dimensional elasticity. On the other hand, the degree of ordering for circular
cracks in three-dimensional elasticity is taken into account by means of two order parameters. These quanti-
ties are important to macroscopically characterise a given microcracked solid when the cracks density is fixed
inside the materials. As results of great engineering significance we have found several relationships that fur-
nish the stiffness tensor of the microcracked materials in terms of the microcracking features (in the case of low
cracks density). Under the particular hypothesis of isotropic distribution of cracks we have obtained more
accurate results that are correct for higher value of the cracks density. To do this we have used the iterative
homogenisation method and the differential schemes.
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