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Abstract. In this paper we analyse the electrical effects of the presence of cracks in solid conductors. We have studied such
problematic from different points of view. Firstly, we have analytically evaluated the behaviour of the electrical field near
a crack in an isotropic solid where a uniform current density is flowing, drawing a comparison with the behaviour of the
well known stress and strain tensor fields in the analogue elastic problem. This computation has been made with a slit-crack
(two-dimensional field analysis) and with a circular crack (three-dimensional field analysis). So, in order to quantify the spatial
fluctuations of the local electric field around the crack we have numerically found the density of states for the field showing that
it exhibit sharp peaks and abrupt changes in the slope at certain critical points which are analogous to van Hove singularities in
the density of states for phonons and electrons in solids. Finally, we have performed a theoretical analysis of the conductivity
of a microcracked solid. The distribution of cracks in the solid follows a given orientational distribution, which modify the
conduction properties of the overall material. In particular, we have shown that the conductivity depends exponentially on the
cracks density and on the size of each crack embedded in the medium.
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1. Introduction

Fracture mechanics is one of the most heavily developed branches of engineering science and applied
mathematics [1–3]. There are two lines of research in order to study the behaviour of cracks in materials.
The first one concerns with continuum fracture mechanics. In this case the general strategy is to solve the
displacement fields in the medium subjected to both the boundary conditions and the externally applied
stress. The second line of research is the attempt to understand the crack behaviour at atomic level by
using molecular dynamics simulations [4]. Results concerning the stress behaviour near a crack, well
described by the stress intensity factors, are in perfect agreement between these approaches [5,6]. In
this work we study the electrical behaviour of a crack in a given conductor by means of the continuum
theory standpoint. We will show that many results well known in the field of the mechanical behaviour
of cracks hold also for the electric behaviour. For example, the stress intensity factor that describe the
singular behaviour of the stress field near the crack tips can be translated in the electric case obtaining
an electric field intensity factor. We considered two different shape of crack: a slit-crack represented
in Fig. 1 and a circular crack represented in Fig. 2. For these two kinds of crack, the standard stress
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Fig. 1. Geometrical representation of a slit-crack lying on the planex − y and aligned along thex-axis. The half-length of the
crack isb.
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Fig. 2. Geometrical representation of a circular crack lying on the planex − y. The radius of the crack isa.

intensity factors are given by the following relations [1,7,8]. With the geometry defined in Fig. 1, the
distance for the tip of the slit-crack is given byη = y− b whereb is the semi aperture of the crack. When
a tensional stressσzz,∞ is applied along thez-axis to the structure (mode I), the singular behaviour of
the stress field near the tip crack is described by the following stress intensity factor:

KI = lim
η → 0
z → 0

√
2πησzz (η, z) =

√
bπσzz,∞ (1)

Similarly for a circular crack (see Fig. 2) the distance from the border of the crack is given by
η =

√
x2 + y2 − a wherea is the radius of the crack. The stress intensity factor is given by:

KI = lim
η → 0
z → 0

√
2πησzz (η, z) =

2
√
a√
π

σzz,∞ (2)

In the first section of this work we analyse the perturbation to the electric potential due to the presence
of a crack in a conducting medium in which a given uniform current density is flowing. We derived
exact expressions giving the electric potential around the crack, which are valid in the entire space. In
particular, we will show that the electric field at the tips is singular with a behaviour very similar to that
explained by Eqs (1) or (2).
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From the electric point of view a crack is a region of a plane where the electric current cannot flow.
In the present work, in order to model the flat shape of a crack, we adopt an ellipsoidal void (zero
conductivity) with an axis with infinitesimal length. Treating the crack as a vacuous oblate ellipsoid of
eccentricity approaching zero is very convenient. The idea is that one can derive the needed formulas for a
microcracked solid, passing (with a due care) to the limits in the general formulas, concerning ellipsoidal
inclusions [9,10]. This approach is not new in principle and it has been used in various homogenisation
theories for microcracked media from both electric and mechanic point of views [11–13]. In this work,
this approach is firstly applied to analyse the electric quantities in a region where a single crack is present.
Moreover, in order to study the local electric field fluctuations around a given crack we have analyzed
the density of states for the electric field [14,15]. We have numerically found the presence of some
singularities in the distribution function of the intensity of the electric field in the region around the
crack. Van Hove in a famous work [16] showed that for a crystal, the frequency distribution function
of elastic vibrations has analytic singularities. These singularities are very similar to that here obtained
for the electric field and are very useful in characterizing field fluctuations in materials with defects and
inclusions.

Finally, we have theoretically analysed the effects of the presence of a given distribution of cracks
on the conductivity of a solid. In earlier literature many works have been devoted to the study of this
topic [17,18]. In such relevant works the orientational distribution of cracks is given by one of the two
most adopted distributions: cracks aligned with a given direction or cracks uniformly oriented in the
space. The aim of the present study is that of analysing a microcracked solid with an arbitrary angular
distribution of cracks. So, a particular attention is devoted to the analysis of the effects of the orientational
distribution of the cracks inside the damaged material on the overall conductivity. The limiting cases
of the present theory are represented by all the particles aligned with a given direction (order) and all
the particles randomly oriented (disorder) [19]. We take into account all the intermediate configurations
between order and disorder with the aim to characterise a material with cracks partially aligned. Two
different cases have been taken into consideration: the two-dimensional distribution of slit-cracks and the
three-dimensional distribution of circular cracks. In Fig. 3 one can find some orientational distributions
between the upon-described limiting cases, in 2D electrostatics. The angular distribution of cracks is
statistically well described by an order parameterP . Similarly, in Fig. 4 it has been shown different
orientational distributions of circular cracks in 3D electrostatics. In such a case, another order parameter
S defines the orientational distribution of cracks. The mathematical details will be discussed later on.

2. Single crack in a conductor: Electrical behaviour

In this section we analyse the behaviour of the electrical potential and electrical field around a crack
in a conducting medium exposed to uniform electric field. The uniform density current induced in the
medium is perturbed by the presence of the crack, which cannot conduct electric current. We analyse
the electrical potential and the electric field behaviour in two case: a slit crack (see. Fig. 1) and a circular
crack (see Fig. 1). The theory, in both cases, is based on the following preliminary result, which describes
the behaviour of an ellipsoidal particle (σ2) embedded in a homogeneous medium (σ1) [20]. Let the
axes of the ellipsoid beax, ay andaz (aligned with axesx, y, z of the reference frame) and let a uniform
electrical fieldE0 = (E0x, E0y, E0z) applied to the structure. If the ellipsoid is absent a uniform current
densityJ̄0 = σ1E0 is induced in the region. When the ellipsoid is present the current lines are modified
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Fig. 3. Structure of a microcracked solid conductor with slit-cracks in 2D electrostatics. One can find some orientational
distributions ranging from order to disorder. The order parameterP is indicated.
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Fig. 4. Structure of a microcracked solid conductor with circular cracks in 3D electrostatics. One can find some orientational
distributions ranging from order to disorder. The order parameterS is indicated.

as described in the following. However, according to Stratton [20] the electric field inside the ellipsoid
is uniform and it can be computed as follows. We define the function:

R (s) =
√

(s + a2
x)
(
s + a2

y

)
(s + a2

z) (3)

and the depolarisation factors along each axes (k ranges over the symbolsx, y andz):

Lk =
axayaz

2

+∞∫
0

ds(
s + a2

k

)
R (s)

(4)

We may observe thatLx + Ly + Lz = 1. Therefore, the electrical field inside the ellipsoid is given,
in components, by [20] (k ranges over the symbolsx, y andz):

Ei,k =
σ1E0k

σ1 + Lk (σ2 − σ1)
(5)
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Of course, also the internal current density is uniform and it is given byJi,k = σ2Ei,k. Moreover,
the perturbation of the electric potential outside the ellipsoid can be evaluated by means of the exact
result [20]:

ϕ (x, y, z) = −E0xx

1 + σ2−σ1
σ1

axayaz

2

ξ∫
0

ds
(s+a2x)R(s)

1 + σ2−σ1
σ1

axayaz

2

+∞∫
0

ds
(s+a2x)R(s)

− E0yy

1 + σ2−σ1
σ1

axayaz

2

ξ∫
0

ds

(s+a2y)R(s)

1 + σ2−σ1
σ1

axayaz

2

+∞∫
0

ds

(s+a2y)R(s)

+

(6)

−E0zz

1 + σ2−σ1
σ1

axayaz

2

ξ∫
0

ds
(s+a2z)R(s)

1 + σ2−σ1
σ1

axayaz

2

+∞∫
0

ds
(s+a2z)R(s)

where the variableξ is defined by means of the following family of confocal ellipsoids:

x2

a2
x + ξ

+
y2

a2
y + ξ

+
z2

a2
z + ξ

= 1 (7)

The external electrical potential given in Eq. (6) generates straightforwardly an external electric field
and the corresponding density current. Results given in Eqs (5) and (6) are the electrostatics counterpart
of the well known Eshelby theorems about the elastic behaviour of an ellipsoid embedded in a isotropic
medium [21,22]. However, the electric version of these results can be applied for determining the field
behaviour for a slit-crack and a circular crack in the following way.

2.1. Slit crack theory

We begin considering a slit crack as described in Fig. 1. So, in the previous equations we perform
the limit of ax diverging to infinity in order to simulate an elliptic cylinder aligned with thex-axis. We
definee as the aspect ratioaz/ay and we defineb = ay. The limit ofaz approaching to zero (i.e.e → 0),
which mimics the flat shape of the crack, will be made in a second phase. Therefore, Eq. (6) with the
conditionax → ∞, can be written in the following simplified form:

ϕ (x, y, z) = −E0xx− E0yy
1 −B (ξ)
1 −B (∞)

− E0zz
1 −A (ξ)
1 −A (∞)

(8)

where the functionsA(ξ) andB(ξ) can be deduced from Eq. (6) and they have been defined as follows:

e =
az
ay

, b = ay ⇒




A (ξ) = ayaz

2

ξ∫
0

ds√
(s+a2z)3(s+a2y)

= e
2

ξ/b2∫
0

dη√
(η+e2)3(η+1)

B (ξ) = ayaz

2

ξ∫
0

ds√
(s+a2z)(s+a2y)

3
= e

2

ξ/b2∫
0

dη√
(η+e2)(η+1)3

(9)

The integrals appearing in the previous relationships can be computed in closed form by means of
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standard substitutions [23], obtaining the results:


A (ξ) = e
e2−1



√

1+ ξ

b2√
e2+ ξ

b2

− 1
e


⇒ A (∞) = 1

e+1

B (ξ) = e
1−e2



√
e2+ ξ

b2√
1+ ξ

b2

− e


⇒ B (∞) = e

e+1

(10)

We want to find a compact and explicit expression furnishing the electrical potential in the entire space.
Therefore, we try to eliminate the variableξ in relative expressions. From Eq. (7), performing the limit
of ax → ∞, we obtain the following relation that allows us to find an explicit expression for the variable
ξ:

x2

a2
x + ξ

+
y2

a2
y + ξ

+
z2

a2
z + ξ

= 1 ⇒ y2

1 + ξ
/
b2

+
z2

e2 + ξ
/
b2

= b2 (11)

By lettingα = 1 + ξ
/
b2 andβ = e2 + ξ

/
b2 we may write down the following system:{

y2

α + z2

β = b2

α− β = 1 − e2
(12)

As one can see in Eq. (10), we are interested in the following ratio, which can be derived from Eq. (12)
by means of straightforward computations:

α

β
=

1 + ξ
/
b2

e2 + ξ
/
b2

=
z2 − y2 + b2

(
1 − e2

)
+
√

[z2 − y2 + b2 (1 − e2)]2 + 4z2y2

2z2
(13)

Now, we may calculate the two relevant ratios appearing in Eq. (8) and their limiting values withe
approaching zero:


1−B(ξ)
1−B(∞) = 1

1−e
[
1 − e

√
β/α

]
e→0−→ 1

1−A(ξ)
1−A(∞) = 1

e−1

[
e−√α/β

]
e→0−→

√
α
β

∣∣∣
e=0

(14)

Summing up, the relation for the electric potential, in the space outside the crack, can be written in the
following simplified version:

ϕ (x, y, z) = −E0xx− E0yy − E0zz

√
α

β

∣∣∣∣
e=0

(15)

or, applying Eq. (13), in the final form:

ϕ (x, y, z) = −E0xx− E0yy − E0z
z

|z|
1√
2

√
z2 − y2 + b2 +

√
[z2 − y2 + b2]2 + 4z2y2 (16)

This expression furnishes the total electric potential in a region where a slit-crack obstructs the flow
of a uniform current density. It is interesting to note that such a potential is a continuous function of the
variablesx, y andz in the entire space except for the region of the plane representing the crack.
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Fig. 5. Plot of the componentEz of the electric field around a slit-crack versus the geometrical variablesy andz. One can
observe the singular behaviour of the field near the crack tips. We have used the quantitiesb = 0.5 m andE0z = 1 V/m.

In order to define a sort of field intensity factor, we consider a simpler case withE0x = E0y = 0. So,
we may calculate the electric field along thez-axis, which is the main direction of propagation of the
current density. Forz > 0 we obtain:

Ez (y, z) = −∂ϕ (y, z)
∂z

= E0z
1

2
√

2 |y|


1 +

z2 + y2 + b2√
[z2 − y2 + b2]2 + 4z2y2


 ·

(17)

·
√√

[z2 − y2 + b2]2 + 4z2y2 − z2 + y2 − b2

In Fig. 5 one can find the two-dimensional plot of the component of the electric fieldEz (y, z) versus
the variablesy andz obtained for a slit-crack withb = 0.5 andE0z = 1. The two infinite peaks at the
crack tips are evident. Moreover, by using Eq. (17), we may evaluate the intensity of the electric field on
the planez = 0 containing the crack:

lim
z→0

Ez (y, z) =

{ |y|E0z√
y2−b2 if y2 − b2 > 0

0 if y2 − b2 < 0
(18)

It is evident that the electric field is zero inside the crack and it assumes singular behaviour in
correspondence to the crack tips. Moreover the field become uniform when the distance from the crack
is great. By lettingη = y − b (the distance from the crack) we may exactly define the electric field
intensity factor as follows:

K = lim
η → 0
z → 0

√
2πηEz (η, z) =

√
bπE0z (19)



8 S. Giordano / Electrical behaviour of a single crack in a conductor and exponential laws

2.2. Circular crack theory

Similar arguments can be applied to circular cracks (see Fig. 2 for the geometry). In this case the basic
Eqs (6) and (7) should be applied under the conditionax = ay = a, wherea is the radius of the crack.
Moreover, we may define the aspect ratioe = az/ax = az/ay and we will perform the limite → 0 in
successive phases. The electric potential given by Eq. (6) may be written in a simplified form:

ϕ (x, y, z) = − (E0xx + E0yy)
1 −B (ξ)
1 −B (∞)

− E0zz
1 −A (ξ)
1 −A (∞)

(20)

where the functionsA(ξ) andB(ξ) can be deduced from Eq. (6) and they have been defined as follows:

e =
az
ax

=
az
ay

, a = ax = ay ⇒




A (ξ) = a2xaz

2

ξ∫
0

ds

(s+a2x)
√

(s+a2z)3
= e

2

ξ/a2∫
0

dη

(η+1)
√

(η+e2)3

B (ξ) = a2xaz

2

ξ∫
0

ds

(s+a2x)2
√
s+a2z

= e
2

ξ/a2∫
0

dη

(η+1)2
√
η+e2

(21)

With the help of straightforward integration techniques [23] we have found the following complete
solutions of the integrals appearing in Eq. (21):



A (ξ) = e

(1−e2)3/2




√
1−e2
e −

√
1−e2√
e2+ ξ

a2

+ arctan e√
1−e2 − arctan

√
e2+ ξ

a2√
1−e2




A (∞) = e

(1−e2)3/2

{√
1−e2
e + arctan e√

1−e2 − π
2

}

B (ξ) = e

2(1−e2)3/2




√
1−e2

√
e2+ ξ

a2

1+ ξ

a2

− e
√

1 − e2 − arctan e√
1−e2 + arctan

√
e2+ ξ

a2√
1−e2




B (∞) = e

2(1−e2)3/2

{
π
2 − e

√
1 − e2 − arctan e√

1−e2
}

(22)

Such expressions are useful to evaluate the limiting value (fore approaching zero) of the ratios
appearing in Eq. (20):


1−B(ξ)
1−B(∞)

e→0−→ 1
1−A(ξ)
1−A(∞)

e→0−→ 2
π

[√
a2

ξ + arctan
√

ξ
a2

]
(23)

As before, we want to eliminate the variableξ in such a way to obtain the electric potential in orthogonal
coordinates. For the circular crack Eq. (7) reduces to:

x2

a2
x + ξ

+
y2

a2
y + ξ

+
z2

a2
z + ξ

= 1 ⇒ x2 + y2

1 + ξ
/
a2

+
z2

e2 + ξ
/
a2

= a2 (24)

In the limit of e → 0 we obtain from Eq. (24):

a2

ξ

∣∣∣∣
e=0

=

√
(x2 + y2 + z2 − a2)2 + 4a2z2 − x2 − y2 − z2 + a2

2z2
(25)
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Fig. 6. Plot of the componentEz of the electric field around a circular crack versus the geometrical variablesr andz. One can
observe the singular behaviour of the field near the crack border. We have used the quantitiesa = 0.5 m andE0z = 1 V/m.

So, substituting Eq. (25) in Eq. (23) and Eq. (23) in Eq. (20) we obtain the final solution for the
electrical potential around a circular crack:

ϕ (x, y, z) = −E0xx− E0yy − E0zz
2
π

[
q + arctan

1
q

]
(26)

where q =
1√
2 |z|

√√
(x2 + y2 + z2 − a2)2 + 4a2z2 − x2 − y2 − z2 + a2 (27)

In order to define a sort of field intensity factor, we consider a simpler case withE0x = E0y = 0. So,
we may calculate the electric field along thez-axis, which is the main direction of propagation of the
current density:

Ez (r, z) = −∂ϕ (r, z)
∂z

= E0z
2
π

[
q + arctan

1
q

+ z
∂q

∂z

q2

1 + q2

]
, r =

√
x2 + y2 (28)

Here, to simplify the results, we have defined the variabler because of the cylindrical symmetry of the
problem. In Fig. 6 one can find the two-dimensional plot of the component of the electric fieldEz (r, z)
versus the variablesr andz obtained for a circular crack witha = 0.5 andE0z = 1. The infinite peak at
the crack borderr = a is evident. Finally, we may evaluate the intensity of the electric field on the plane
z = 0 containing the crack:

lim
z→0

Ez (r, z) =

{
2E0z
π

[
a√

r2−a2 + arctan
√
r2−a2
a

]
if r > a

0 if r < a
(29)
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For the circular crack (see Fig. 2) the distance from the border of the crack is given byη = r − a
wherea is the radius of the crack. Thus, the stress intensity factor is given by:

K = lim
η → 0
z → 0

√
2πηEz (η, z) =

2
√
a√
π

E0z (30)

2.3. Comparison with elastic results

It is interesting to observe that the singular behaviour of the electric filed near the border of the cracks,
described by Eq. (19) for slit-cracks and by Eq. (30) for circular cracks, is absolutely similar to that
obtained for the stress filed in elasticity as shown in Eqs (1) and (2).

3. Electric field density of state

In a pioneering paper [16] on the density of states, it is shown that for a crystal, under the assumption of
harmonicity for the interatomic forces the frequency distribution function of elastic vibrations has analytic
singularities. In this case, the nature of the singularities depends only on the number of dimensions of
the crystal. In this section we study numerically the spatial fluctuations of the local electric field induced
by a constant applied electric field in media containing cracks. It is found that the density of states for the
electric field exhibits sharp peaks in the slope at certain critical points, which are analogous to van Hove
singularities in the density of states for phonons in solids. It has been shown in earlier literature [14,
15] that the critical points are very prominent in dispersions with a regular, “crystal-like,” structure.
However, they disappear as the disorder increases. In our study we take into account a single crack in a
solid conductor and we numerically evaluate the density of state for the electric field in a given region
containing the crack.

3.1. Slit crack density of state

Firstly, we consider a slit-crack as shown in Fig. 1 and an applied electric field parallel to thez-axis.
The resulting electric field is a two-dimensional field (on the planey−z) described by Eq. (17) forz > 0
and by a similar expression forz < 0. So, we know the detailed mathematical behavior of the field on
the plane under consideration. We defineΣ as a region of the plane containing the crack (the segment
−b < y < b, z = 0) having areaA. The density of state for the electric field is defined by means of the
following integral over the regionΣ:

g (E) =
1
A

∫∫
Σ

δ
(
E − ∣∣Ē (r̄)

∣∣) dS (31)

whereδ is the Dirac delta function. We may say that the functiong(E) is defined in such a way that
g(E)dE is the total number of states in the range betweenE andE + dE , divided by the total areaA of
the region. The analytic evaluation ofg(E) has been made, for example, in Ref. [15] for a cylindrical
inclusion. For a slit-crack, the complicated field distribution, given by Eq. (17), do not permit an
analytical evaluation of the integral appearing in Eq. (31). So, we have made a numerical investigation to
obtaing(E). We have used an applied electric fieldE0z = 1 V/m and a slit-crack with the semi aperture
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Fig. 7. Density of statesg(E) (see Eq. (31)) describing the distribution of the electric field in a planar regionΣ (−1.5 < y < 1.5
and−1.5 < z < 1.5) containing a slit-crack withb = 1 m. The greatest peak corresponds to the value of the applied electric
field E0z = 1 V/m and other two peaks corresponding to van Hove singularities of the distribution of field.

b = 1 m. The regionΣ has been assumed with a rectangular shape characterized by−1.5 < y < 1.5
and−1.5 < z < 1.5. The resulting density for the electric field is shown in Fig. 7. One can observe
the greatest peak corresponding to the value of the applied electric field (1 V/m) and other two peaks
corresponding to van Hove singularities of the distribution of field.

3.2. Circular crack density of state

The same procedure has been applied to the case of a circular crack. We have considered a circular
crack with radiusa = 1 m exposed to an electric fieldE0z = 1 V/m. In this case we have taken as region
Σ a rectangular part of the planer − z: 0 < r < 1.5 and−1 < z < 1. The resulting density of states
is plotted in Fig. 8. Once again, one can observe the main peak corresponding to the bulk electric field
E0z = 1 V/m and two other peaks which represent the van Hove singularities in the distribution of the
field. This means that, both for slit-cracks and for circular cracks, there are two particular values of the
field, which appear much more frequently than all the other values in the electric field map.

Analysis of g(E) and its van Hove singular points represents an interesting approach to quantify
field fluctuations in complex media. The distribution of the local field is of fundamental and practical
importance in understanding many crucial material properties such as breakdown phenomenon and the
nonlinear behavior of composites. It is noteworthy that the density-of-states analysis of field fluctuations
laid out in this paper for cracks can be applied to other field phenomena including strain fields in elastic
media and velocity fields for flow through porous media.
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Fig. 8. Density of statesg(E) (see Eq. (31)) describing the distribution of the electric field in a planar regionΣ (0 < r < 1.5
and−1 < z < 1) containing a circular crack witha = 1 m. The greatest peak corresponds to the value of the applied electric
field E0z = 1 V/m and other two peaks corresponding to van Hove singularities of the distribution of field.

4. Exponential laws for conductivity in micro-cracked conductors

The presence of cracks in a homogeneous conductor will influence the electrical properties of the
medium. In this section we perform an analysis of the effects of the orientational distribution of cracks
on the conductivity of an isotropic solid.

4.1. Population of slit cracks

Firstly, we consider a given distribution of slit-cracks as described in Fig. 3. Here, one can find the
structure of the microcracked material with various degrees of order. The orientational distribution ranges
from a situation where the cracks are parallel to a given direction to another one where they are random
uniformly oriented in the space. We consider a given numberN of randomly oriented cracks embedded
in a homogeneous region (σ1) of the planex− z with areaA. To begin we consider a single crack lying
on thex− y plane and parallel to thex-axis (see Fig. 1). On the basis of the considerations reported in
the first section of this paper, the following relations give the electrical field inside the ellipsoidal crack
(see Eq. (5) withσ2 = 0):

Ei,k =
E0k

1 − Lk
(32)

As before, for an elliptic cylinder aligned with thex-axis we assume the following hypotheses: we
definee as the aspect ratioaz/ay andb = ay. The limit of az approaching to zero (i.e.e → 0), which
mimics the flat shape of the crack, will be made in successive phases. The depolarising factors are given
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by:

Lx = 0, Ly =
e

e + 1
, Lz =

1
e + 1

(33)

We treat the problem as a two-dimensional one in thez − y plane. It means that the applied external
field belongs to thez − y plane. So, Eq. (32) combined with Eq. (33) furnishes the explicit relations for
the internal electric field:

Ei,y = (e + 1)E0y, Ei,z =
(
e + 1
e

)
E0z (34)

Now, let’s suppose that the crack section (ellipse in the planez − y) is rotated around thex-axis of an
angleθ (rotation in thez − y plane). The tilting angleθ is measured starting from the positive semi axis
x. By means of a straightforward rotation matrix we can write down the electric field inside the tilted
ellipse, which mimics the shape of the crack:{

Ei,y = (e + 1)
(
cos2 θ + 1

e sin2 θ
)
E0y + cos θ sin θ e

2−1
e E0z

Ei,z = (e + 1)
(

1
e cos2 θ + sin2 θ

)
E0z + cos θ sin θ e

2−1
e E0y

(35)

So, Eq. (35) furnishes the relationship between the external field and the internal one for a slit-crack
with aspect ratioe after a rotation of an angleθ in thez − y plane. We want to analyse the averaged
effects of the orientational distribution of cracks and therefore we need to average Eq. (35) over all the
possible orientation of a crack in the solid. Thus, the angleθ assumes, by hypotheses, the role of a
random variable symmetrically distributed over the range(−π/2, π/2). The symmetry of the probability
density assures that the average value ofsin (θ) cos (θ) (appearing in Eq. (35)) is exactly zero and the
result depends only on the average value ofcos2 (θ). So, we may define the following order parameter,
which completely describes the state of order/disorder of the distribution of cracks:

P =
〈
1 − cos (θ)2

〉
(36)

It is easy to observe thatP assumes special values for particular angular distributions of cracks: if
P = 0 all the cracks are parallel to they-axes (horizontal order), ifP = 1 all the cracks are parallel
to thez-axes (vertical order) and ifP = 1/2 the angle of rotation is uniformly distributed in the range
(−π/2, π/2) leading to a state of complete disorder (2D isotropic medium). The other values cover all
the orientational distribution between the random and the parallel ones (see Fig. 3 for some examples).
Finally, the averaged value of Eq. (9) is given by:{〈Ei,y〉 = (e + 1)

(
1 − P + P

e

)
E0y

〈Ei,z〉 = (e + 1)
(

1−P
e + P

)
E0z

(37)

Now we may analyse the actual distribution of cracks: as above said, we consider a region of the plan
z − y having areaA andN slit-cracks here dispersed with the angular distribution characterised by the
order parameterP . Let c be the volume fraction of the embedded elliptic cylinders miming the cracks.
It is given byc = πazayN/A whereaz anday are linked by the relatione = az/ay. The average value
of the electrical field over the mixture is approximately given by:〈

E
〉

= (1 − c)E0 + c
〈
Ēi
〉

(38)
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where we have considered the average electric field outside the inclusions approximately identical to
the bulk fieldE0 (hypothesis of low cracks density). Then, we define [σ] as the equivalent conductivity
tensor of the whole mixture by means of the relation

〈
J̄
〉

= [σ]
〈
Ē
〉

[23]; to evaluate [σ] we may
compute the average value of the current density vector inside the random material. We also defineV as
the total volume of the mixture,Ve as the total volume of the embedded ellipsoids andVo as the volume
of the remaining space among the cracks (so thatV = Ve∪Vo). The average value of̄J (r̄) = σ (r̄) Ē (r̄)
is evaluated as follows:

〈
J
〉

=
1
V

∫
V

σ (r̄) Ē (r̄)dr̄ =
1
V

σ1

∫
Vo

Ē (r̄)dr̄ =
1
V

σ1

∫
Vo

Ē (r̄)dr̄ +
1
V

σ1

∫
Ve

Ē (r̄)dr̄

(39)
− 1
V

σ1

∫
Ve

Ē (r̄)dr̄ = ε1

[〈
Ē
〉− c

〈
Ēi
〉]

Note that
〈
J̄
〉

and
〈
Ē
〉

are not parallel vectors because of the presence of the average value of the
internal electric field given by Eq. (37). Drawing a comparison between Eqs (37), (38) and (39) we may
find complete expressions, which allows us to estimate the equivalent conductivity tensor [σ]:


σ⊥ = σy = σ1

1−c
1−c+c(e+1)(1−P+ P

e )
σ// = σz = σ1

1−c
1−c+c(e+1)( 1−P

e
+P)

(40)

As above said, the volume fractionc is given byc = πazayN/A or, remembering thate = az/ay and
b = ay, by c = πb2eN/A. Finally the limit for exactly flat cracks is obtained withe → 0:


σ⊥ = σy = σ1

1

1+ πNb2

A
P
∼= σ1

[
1 − πNb2

A P
]

σ// = σz = σ1
1

1+ πNb2

A
(1−P )

∼= σ1

[
1 − πNb2

A (1 − P )
] (41)

We remember that Eq. (41) holds true only for low values of the cracks density. In fact, the sole
approximation introduced in this procedure is contained in Eq. (31), which holds on only for low
values of the cracks density. The first order expansions written in Eq. (41) are very useful to apply the
iterated homogenisation method [24] that allows us to generalise the relations to higher values of the
cracks density. The principles of this technique are here summarised: let’s suppose that the effective
conductivities of a microcracked medium are known to beσ⊥ and σ//. Now, if a small additional
number of cracks∆N is created in the matrix, the change in the elastic moduli is approximated to
be that which arise if the same infinitesimal number of cracks were added to a uniform, homogeneous
matrix with conductivitiesσ⊥ andσ//. This leads, when applied to Eq. (41), to the following difference
equations:


σ⊥ (N + ∆N) = σ⊥ (N)

[
1 − πb2∆N

A P
]

σ// (N + ∆N) = σ// (N)
[
1 − πb2∆N

A (1 − P )
] (42)

When the number of additional cracks∆N assumes the role of an infinitesimal quantity the iterated
homogenisation method converges to the differential effective medium theory [9,10] and the difference
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equations given in Eq. (42) became a pair of differential equations:{
dσ⊥
dN = −πb2

A Pσ⊥
dσ//

dN = −πb2

A (1 − P ) σ//
(43)

They can be simply solved obtaining the final results for the characteristic conductivities of the
micro-cracked solid:


σ⊥ = σ1 exp

(
−πb2N

A P
)

σ// = σ1 exp
(
−πb2N

A (1 − P )
) (44)

So, we have obtained two exponential laws for the principal conductivities of a microcracked solid
where slit-cracks have been dispersed following a statistical orientation described by the order parameter
P . Such conductivities depend exponentially both on the crack size (half-lengthb) and the cracks density
(ratioN /A).

4.2. Population of circular cracks

In the second part of this section we are dealing with three-dimensional distributions of circular planar
cracks in isotropic solids (N cracks dispersed in a region with volumeV ). As, before the main feature
of this analysis is given by the pseudo random orientation of the cracks inside the solid (see Fig. 4
for details). We consider a given orthonormal reference frame and we take as preferential direction of
alignment thez-axis. Each crack embedded in the matrix is not completely random oriented. The overall
medium has a positional disorder but a partial orientational order and it exhibits a uniaxial behaviour.
The orientation of a crack is described by the following statistical rule: the principal axis (the normal
direction) of each crack forms with thez-axis an angleθ, which follows a given probability density,f(θ)
defined in [0π] (see Fig. 2). The orientation of each crack is statistically independent from the orientation
of the other ones. Iff(θ) = δ(θ) (whereδ is the Dirac delta function) we have all the cracks withθ = 0
and therefore they are all oriented with thez-axis. If f(θ) = (1/2)sinθ all the cracks are uniformly
random oriented in the space over all the possible directions. Any other statistical distributionsf (θ)
defines a transversely isotropic (uniaxial) material. In this section we develop a complete analysis of the
effects of the state of order/disorder. This analysis allows us to evaluate the overall electric properties of
the microcracked material.

Ei =

(
E0 · nx

)
nx

1 − Lx
+

(
E0 · ny

)
ny

1 − Ly
+

(
E0 · nz

)
nz

1 − Lz
(45)

This result simply derives from the sum of the three contributions to the electrical field along each
axes. This expression may be written in explicit form (component by component), as follows:

Ei,q =
x,y,z∑
k

E0,k

x,y,z∑
j

nj,knj,q
1 − Lj

(46)

wherenj,k is thek-th component of the unit vectornj (j = x, y, z). From now on, we are interested in
the behaviour of an ellipsoid of revolution and therefore we use the simplified notationLx = Ly = L
andLz = 1− 2L. It means thatL is the depolarisation factor along the unit vectorsnx andny and 1-2L
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is the depolarising vector along the axisnz. We may use spherical coordinatesψ,ϕ andθ to write down
explicit expressions for the unit vectors:


nx = (cosψ cosϕ− sinψ sinϕ cos θ,− cosψ sinϕ− sinψ cosϕ cos θ, sinψ sin θ)
ny = (sinψ cosϕ + cosψ sinϕ cos θ,− sinψ sinϕ + cosψ cosϕ cos θ,− cosψ sin θ)
nz = (sinϕ sin θ, sin θ cosϕ, cos θ)

(47)

For the following derivations, we are interested in the average value of the electrical field inside the
ellipsoid over the possible orientations of the ellipsoid itself and then we have to compute the average
value of the quantitynj,knj,q. The two anglesψ and ϕ are statistically independent from each other and
distributed following a uniform probability density in the range [0 2π]. Performing the integration over
the unit sphere, by means of spherical coordinates, we obtain, after some straightforward computations,
the first step of the averaging procedure:


〈nx,xnx,x〉ψ,ϕ = 〈nx,ynx,y〉ψ,ϕ = 〈ny,xny,x〉ψ,ϕ = 〈ny,yny,y〉ψ,ϕ = 1

4

(
1 + cos2 θ

)
〈nx,znx,z〉ψ,ϕ = 〈ny,zny,z〉ψ,ϕ = 〈nz,xnz,x〉ψ,ϕ = 〈nz,ynz,y〉ψ,ϕ = 1

4

(
1 − cos2 θ

)
〈nz,znz,z〉ψ,ϕ = cos2 θ

(48)

Here, the symbol〈〉ψ,ϕ represents the average value over the anglesψ and ϕ. The terms that not
appear in the previous Eq. (48) are all zero. The angleθ is statistically independent from the others
and distributed following an arbitrary probability densityf (θ), which defines the degree of ordering of
the medium, ranging from perfect order (f (θ) = δ (θ)), to complete disorder (f (θ) = (1/2)sinθ). The
statistical distribution of the angleθ is well described by the following order parameterS, which takes
into account the average value of the second Legendre polynomial:

S = 〈P2 (cos θ)〉θ =
〈

3
2

cos2 (θ) − 1
2

〉
θ

=

π∫
0

(
3
2

cos2 (θ) − 1
2

)
f (θ)dθ (49)

whereθ is the angle that the particle (its unit vectornz) makes with the preferential direction given by
the axisz of the main reference frame (the symbol〈〉θ represents the average value over the angleθ).
By means of the definition of such order parameter we may perform the final averaging over the tilting
angleθ:


〈nx,xnx,x〉ψ,ϕ,θ = 〈nx,ynx,y〉ψ,ϕ,θ = 〈ny,xny,x〉ψ,ϕ,θ = 〈ny,yny,y〉ψ,ϕ,θ = 2

3 (S + 2)
〈nx,znx,z〉ψ,ϕ,θ = 〈ny,zny,z〉ψ,ϕ,θ = 〈nz,xnz,x〉ψ,ϕ,θ = 〈nz,ynz,y〉ψ,ϕ,θ = 2

3 (1 − S)
〈nz,znz,z〉ψ,ϕ,θ = 2S+1

3

(50)

Here, the symbol〈〉ψ,ϕ,θ represents the average value over the anglesψ,ϕ andθ; for sake of simplicity,
from now on the indication of the angles on which the averaging is performed will be omitted. Therefore,
the average value of the electrical field (inside the randomly oriented inclusion), given by Eq. (46), may
be written as:

〈
Ei,x

〉
=

E0,x

3

[
S + 2
1 − L

+
1 − S

2L

]
,
〈
Ei,y

〉
=

E0,y

3

[
S + 2
1 − L

+
1 − S

2L

]
,

(51)〈
Ei,z

〉
=

E0,z

3

[
2 (1 − S)

1 − L
+

2S + 1
2L

]
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In Fig. 4 one can find the structure of the microcracked material with various degrees of order: we
consider a given number of randomly oriented cracks embedded in a homogeneous matrix (σ 1). As
before, letcbe the volume fraction of the embedded ellipsoids. Equations (38) and (39) hold true also in
this three-dimensional case:〈

E
〉

= (1 − c)E0 + c
〈
Ēi
〉

(52)

〈
J
〉

= ε1

[〈
Ē
〉− c

〈
Ēi
〉]

(53)

Drawing a comparison between Eqs (51), (52) and (53) we may find complete expressions,which allows
us to estimate the equivalent conductivity tensor [σ], defined by means of the relation

〈
J̄
〉

= [σ]
〈
Ē
〉
:

[σ] =


σ⊥ 0 0

0 σ⊥ 0
0 0 σ//


 (54)

where the longitudinal and transversal conductivities are given by:


σ⊥ = σ1
1−c

1−c+ c
3 [ S+2

1−L
+ 1−S

2L ]
σ// = σ1

1−c
1−c+ c

3

[
2(1−S)
1−L

+ 2S+1
2L

] (55)

The depolarisation factorL may be computed in closed form and the result depends on the shape of
the ellipsoid; if it is oblate (e = az/ax = az/ay < 1) [16,23]:

L =
e

4
(√

1 − e2
)3

[
π − 2e

√
1 − e2 − 2arctan

e√
1 − e2

]
∼= πe

4
(e << 1) (56)

With the aim of modelling a circular crack we will use the limit ofe → 0 (strongly oblate ellipsoid).
Here the volume fractionc is given byc = 4πa2

xazN/(3V ) or, remembering thate = az/ax = az/ay
anda = ax = ay, by c = 4πa3eN/ (3V ). The limit for exactly flat cracks is obtained withe → 0. By
substituting Eq. (56) in Eq. (55) and performing such a limit we obtain:


σ⊥ = σ1

1

1+ 8
9

a3N
V

(1−S)
∼= σ1

[
1 − 8

9
a3N
V (1 − S)

]
σ// = σ1

1

1+ 8
9

a3N
V

(2S+1)
∼= σ1

[
1 − 8

9
a3N
V (2S + 1)

] (57)

So, we have obtained final expressions for the principal conductivities of a conductor where circular
cracks are distributed following a statistical orientation given by the order parameterS. They are correct
only under the assumption of low density of cracks. In Eq. (57) we have also shown the first order
expansions that are valid for very low cracks density. They are useful to apply a differential procedure
similar to that described in the case of slit-cracks. This procedure leads to a couple of differential
equations that can be solved in closed form obtaining the final results for the principal conductivities,
which should be valid with any value of the density of cracks:


σ⊥ = σ1 exp

(
−8a3N

9V (1 − S)
)

σ// = σ1 exp
(
−8a3N

9V (2S + 1)
) (58)
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It is interesting to observe that our solutions (given by Eq. (44) for slit cracks and by Eq. (58) for
circular cracks) depend exponentially on the cracks density (N /A in two-dimensional cases orN /V in
three-dimensional ones). This fact explains the very speed reduction of the conductivity of a medium
with an increasing number of cracks in a given region.

5. Conclusions

We have analytically evaluated the effects of cracks in solid conductors. Firstly we have found the exact
expressions for the electric potentials and fields in a region where a crack is present. A uniform density
current flowing in the conductor strongly modifies its uniformity in the region near the crack, generating
singular behaviour of the electric field around the crack tips. The analysis has been carried out both for
slit-cracks in two-dimensional electrostatics and for circular cracks in three-dimensional electrostatics.
Such a study has conducted to the definition of the field intensity factor, which is analogue to the well-
known stress intensity factor in continuum elasticity and fracture mechanics. So, the fluctuations of the
field around a crack has been analysed by means of the so-called density of states of the field. We have
numerically found that such a distribution exhibits sharp peaks very similar to the van Hove singularities
of the density of states for phonons in solid. Finally, we have estimated the effective conductivities
of microcracked solid conductors in terms of the orientational distribution of cracks in the materials.
In particular we have shown that the statistical orientational distribution of cracks can me taken into
account by means of suitable order parameters. The results for the microcracked conductors are given
by exponential laws that well describe the strong reduction of the conductivity of a medium with an
increasing number of cracks in a given region.
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