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Abstract  
      In this work we describe the main concepts and 
the theoretical methods (rather than their numerical 
implementation) underlying the atomic-scale modelling
of the mechanical properties (mainly, fracture-related 
features) in convalently bonded materials. Focus is 
given on the generation of interatomic potentials, 
which could result to be quantitatively reliable 
in    describing  the mechanical behaviour of complex 
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(i.e. nano-structured) systems. In particular, we establish a conceptual 
guideline for the development of atomic force models, as based on a direct link 
between continuum and discrete solid mechanics. Furthermore, we describe a 
procedure aimed at generating interatomic potentials, properly accounting for 
brittle bonding in group-IV materials. Finally, we review a recent application 
of atomistic simulations to the investigation of the failure strength in silicon 
carbide containing nanovoids. 
 This work is based on the research effort ongoing at the Department of 
Physics of the University of Cagliari. For more details and a full list                      
of published articles, please visit the Web site: http://www.dsf.unica.it/ 
colombo . 
 
1. Introduction  
 By tradition, continuum mechanics has been used to model the 
macroscopic mechanical behavior of solid bodies (like, e.g., elastic or plastic 
deformations, failure strength, fracture mechanics) while quantum mechanics 
has been used at the nanoscale, where electronic features dominate. More 
recently, however, it has been widely recognized that, although specific 
approaches exist to tackle a problem at a given observation scale, different 
methodologies must be concurrently integrated in order to properly modeling 
the interplay between phenomena occurring at different length scales. This 
idea leads to the multiscale modeling approach: a paradigm effectively 
coupling different methods so as to provide a unique theoretical device able 
to pass physical information across different scales [1]. Typically, the 
mechanical properties can be described by combining macroscopic 
continuum homogenization theories with atomistic simulations. These latter 
provide the nanoscale complex behavior of the system at the most 
fundamental level, i.e. at the level of the collective response of an interacting 
assembly of atoms [2].  
 Concurrency of different methods is a very promising perspective 
currently under extensive investigation, but it is important to stress that in 
any case the atomic scale represents the smallest length scale at which such 
a multiscale paradigm must operate. Therefore, a robust and reliable model 
of atomic interactions - properly accounting for nanostructure evolution - is 
mostly needed. Such a model can be developed at different levels of 
erudition, the most fundamental one being quantum mechanical. The best 
reliable and transferable quantum approach available at present is the first 
principle (ab initio) molecular dynamics method, based on the density 
functional theory and implemented by the renowned Car-Parrinello method 
[3]. Here the only input requested to proceed is the atomic number of the 
chemical species present in the simulated system. Unfortunately, the 
numerical implementation of the Car-Parrinello scheme is quite demanding 
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in terms of computational workload and, even with the ever-increasing 
power of modern digital computers and the devolpement of novel linear 
scaling algorithms, its practical applications are still limited to systems 
containing no more than few hundreds of particles. This is good enough for 
coping with a lot of fundamental materials problems, but it leaves many 
others relevant to their mechanical response simply out of reach. 
 Alternatively, one can develop interatomic force models based on 
empirical potentials. In this case, any ambition of ab initio description is lost, 
the overall reliability of the model being attributed to its physical soundness 
and proved only heuristically. On the other hand, this approach is very low 
demanding of computing power and, therefore, it favors the rush toward 
those large-scale simulations actually needed in the realm of solid mechanics 
and/or in the multiscale paradigm. As a consequence, in the last decade or so 
very many atomistic simulations based on empirical potential have been 
performed, addressing different nanomechanics problems (with a preference 
for fracture-related phenomena).  
 In general, atomistic simulations – whether well planned and performed 
– provide a body of knowledge consistent with solid mechanics. However, at 
variance with continuum theory, they do not need any initial guess for the 
constitutive stress-strain relation underlying the mechanical response: in fact, 
the actual behavior is obtained directly from the collective response of the 
interacting atoms. Under this respect, they can be considered as a first 
principles mechanical theory. In addition, these simulations can predict 
possible intriguing new features occurring at the very atomic scale. Here 
classical solid mechanics cannot be easily applied either because the 
continuum concept is no longer a valid one, and because elastic fields are 
often mathematically singular at this scale (we refer, for instance, to the 
stress field at the tip of a crack in a brittle material). In conclusion, atomistic 
simulation have established as an essential and important research tool in 
modern nanomechanics. 
 This review is addressed to discuss the basic concepts and the methods 
underlying atomistic simulations. Their formal structure and some detail 
about their numerical implementaion is given in Sec.2. We then discuss the 
fundamental requirements that must be satisfied by any “trustworthy 
interatomic potential” for applications in nanomechanics in Sec.3, where 
continuum theory will be used as a conceptual guideline. The following 
Sec.4 will thoroughly describe the actual procedure to generate a many-body, 
computationally efficient and quantitatively accurate interatomic potential. 
Finally, Sec.5 will outline some recent investigation on the failure strength of 
nanostructured brittle materials. 
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2. Atomistic simulations: The basic conceptual 
framework 
2.1. Atom dynamics 
 The total force iF

G
 acting on the i-th atom of an N-particle system is given by 

 

),,,( 21 Nii rrrUF G"GGGG
∇−=                                                                (2.1) 

 

where ),,( ,21 NrrrU G"GGG
 is the potential - depending only upon atomic positions 

– acting among the N particles and { } Niir "
G
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 are their potisitions. From eq.(2.1) 

the trajectories 
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can be computed, provided that the instantaneous positions are computable at 
each time t.  
 In order to put eq.(2.2) into a form suitable for digital computers, we need 
to introduce the discretization of the time evolution. This is obtained by 
defining a suitable time-step δt, representing the unit of time interval, and by 
further assuming that the force iF

G
 is constant over δt. Accordingly, the time 

evolution (t→t+δt) of the atomic positions and velocities is obtained by 
solving the equations of motion through finite-difference algorithms [4,5]. 
Typically, we set δt=10-15s. 
 For investigations addressed to solid mechanics the above procedure – 
which is generally named molecular dynamics (MD) – is typically 
implemented at zero-temperature. Under this assumption, it is more efficient to 
rather adopt the two-step dumped dynamics (DD) method. Once that the 
system is loaded,  the resulting equilibrium atomic positions are found through 
a two-step procedure: at first, the atomic positions and velocities are updated 
over the time interval (t→t+ δt)  using ordinary finite-difference algorithms; 
then,  the atomic velocity vectors iV

G
 are set to zero for those atoms fulfilling 

the following relation 
 

0≤⋅ ii rF GG
                                                                           (2.3) 

 

The key-idea of the DD method is that an atom is allowed to accelerate 
towards a minimum of configurational energy, while it is stopped when it 
attempts to escape from such a minimum-energy basin. The DD algorithm is 
iterated until the maximum atomic force is smaller than a suitable threshold, 
which is typically set to 10-4 eV/Å.  



Atomistic simulations of brittle fracture 79 

 Following the DD protocol, we can define an elementary (but good 
enough for mechanical investigations) iterative scheme, able to generate the 
evolution of the simulated sample under a system of forces, including possible 
external ones: given an initial configuration (i.e.: the loads on the body; the 
geometry and shape of the mechanical defects like, e.g., cracks, voids or 
inclusions; and the positions of the atoms forming the body), atomic forces are 
computed and atomic positions accordingly updated; the new configuration is 
used as input for the next force calculation, and so on. The procedure is 
iterated until the convergence threshold is eventually reached: the 
corresponding atomic configuration will represent the equilibrium one for the 
system under investigation and under the assigned loading condition. At this 
stage any mechanically-relevant quantity (like, e.g., strain and stress fields) can 
be calculated. 
 
2.2. Interatomic potentials 
 The most computationally intensive step is most likely the calculation of 
interatomic forces, i.e. the numerical solution of eq.(2.1). We need, therefore, 
to minimize the number of force calls at each loop of the DD method. For this 
reason, short-ranged potentials are especially well suited for applications to 
systems containing a large number of atoms. In most relevat cases, it is in fact 
possible to exclude from the interaction list of any atom i those particles j ≠ i 
found at distances larger than a suitably-defined potential cut-off  [6]. Being a 
key issue of atomistic simulations, we will provide some more detail about the 
interactomic potential.  
 A good interaction model ),,,( 21 NrrrU G"GG  should provide an accurate 
estimation of total energy and related quantities (e.g. its derivatives), as well as 
it should be physically sound, i.e. it must be firmly rooted into a rigorous 
description of fundamental interactions. Only the occurrence of such features 
does provide a predictive and transferable model for meaningful simulations 
[6].  
 The simplest possible approach to elaborate a theory for ),,,( 21 NrrrU G"GG  
consists in formally expanding the total potential into a series of two-body U(2), 
three-body U(3), ...  n-body U(n) terms 
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         (2.4) 

 
and by arresting the expansion at a given order, as guessed by the chemical 
nature of the underlying bond network or just by ease of implementation or 
numerical convenience. When atomistic simulations are applied to solid 
mechanics, special attention must be devoted to the criteria for truncating the 
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expantion given in eq.(2.3). The simplest possible choice, i.e. using just two-
body interaction potential, could in fact lead to results in contraddiction to 
continuum mechanics, or even to wrong concepts. This issue is extensively 
treated in Sec.3. 
 In addition to the above problem, we remark that each functional U(i) 
depends upon empirical parameters that need to be fitted once for all onto a 
suitable database of system properties [6]. The empirical character of 

),,,( 21 NrrrU G"GG  dramatically improves the overall numerical efficiency of the 
simulation, allowing for simulations up to millions of particles. Unfortunately, 
the very same empirical character also limits (sometimes even severely!) the  
transferability of the potential itself. In order to overcome this limitation, we 
could develop a potential theory at the more fundamental quantum level, 
which, however, falls beyond the scope of the present paper. We simply 
remark that the quantum mechanical description of atom-atom interactions, 
although superior as far as the accuracy and transferability are concerned, is 
characterized by a heavy computational workload which practically prevents 
the use of quantum simulations in the realm of solid mechanics. 
 
2.3. Atomic stress  
 While the displacement and strain fields of continuum mechanics have a 
natural counterpart in atomistic theory (they are simply computed as a 
difference from the initial and final atomic positions), the stress field deserves 
a more careful definition and handling. 
 The atomic-level expression (the so-called virial of the forces) for the 
stress tensor σαβ of a system under a generic deformation state described by the 
strain tensor εαβ (see below, eq.(3.5)) at T=0K is defined as [4]: 
 

σαβ =
1
Ω

∂U
∂εαβ                               

                                          (2.5) 

 
where hereafter α,β are the cartesian components, Ω is the system volume, and 
U is the internal energy as defined by the interatomic potential. By means of 
eqs.(2.4) and (2.5) we can get an expression for the stress-tensor in terms of a 
sum over on-site contributions Ui 
 

σαβ =
1

Nω
∂Ui

∂εαβi
∑

                             
                                      (2.6) 

 
provided that we attribute to any atom the same average volume ω=Ω/N. 
Although this assumption is widely used, it should be nevertheless noted that it 



Atomistic simulations of brittle fracture 81 

is in principle correct only for homogeneous systems. Actually, many 
interesting problems in modern nanomechanics refer to systems that do not 
fulfill such an assumption. Therefore, we need to better refine the volume 
concept. A possible solution is offered by a volume discretization 
procedure at the region of interest: we can divide the total available space 
into elementary volumes; then, each elementary volume is uniquely 
assigned to its next neighbor atom site. The atomic volume of any given 
lattice site is finally defined as the sum of the elementary volumes 
attributed to that atom site. It can be proved that such a discretization 
procedure is basically equivalent to the Voronoi tessellation, it is unique, 
and it unambiguously attributes to each atom a proper value of the volume. 
Furthermore, it is valid even in the case of convex, but not homogeneous 
systems [7]. 
 The most rigorous atomic-level stress formulation can be eventually cast 
in the form 
 

σαβ =
1
N

1
ω i

∂Ui

∂εαβi
∑ =

1
N

σαβ ,i
i

∑
                                                    

    (2.7) 

 
For any pair (i,j) of next neighboring atoms we further calculate the bond stress 
 

σ αβ (x,y,z) =
1
2

σαβ ,i + σαβ , j( )
                        

                                   (2.8) 

 
and we attribute it to the average atomic position of the selected atom pair.  We 
will refer to such a quantity as the local stress tensor. This atomic-level 
quantity can be directly compared to the macroscopic stress field calculated in 
the context of linear elastic fracture mechanics. 
 Finally, we remark that the state of deformation assigned as initial 
condition to the simulation cell is maintained by means of the constant-
traction method [8]. According to this method, mode-I loading can be 
reproduced by removing the periodic boundary conditions along, say, the z-
direction, while preserving the periodicity along x and y. The resulting free 
surfaces (normal to the z axis) are pulled - in addition to ordinary atomic force 
actions - by constant tractions aimed at mimicking the embedding into an 
infinite strained bulk at the selected state of loading. The value of the traction ti 
on each atom at the free (non-periodic) surface can be shown to be exactly 
equal to the opposite of the restoring force fi from the empty space across the 
free border [8]  
 
ti

α = σαβ
i ⋅ nβ( )

∆S∫ dS = − fi
α

         
(2.9) 



Pierluca Palla et al.  82

where n is the unit vector (locally and instantaneously) perpendicular to the 
free-surface element ∆S centered around the atom i. Note that for the 
numerical evaluation of the traction it is not necessary to explicitly calculate 
the stress tensor, therefore the definition (2.8) gets around the problem of 
defining a proper local atomic volume. 
 
3. Atomistic description of solid mechanics 
3.1. Introduction and historical background 
 The formal structure of the elasticity theory from the atomistic (or 
molecular) point of view represents a crucial issue, largely addressed in the 
scientific literature since the first attempts to model the mechanical behavior of 
the elastic (or deformable) bodies. During the XIX century, different 
approaches have been introduced in order to model the elastic behavior of the 
solid media. Firstly, Fresnel [9] and Navier [10] published, respectively in 
1820 and 1821, very similar results based on the so-called corpuscular 
approach; they systematically adopted the Lagrange “Mécanique analytique”, 
describing the motion of an elastic solid decomposed into a given collection of 
point masses interacting by means of distance-varying elastic forces. This 
approach does not consider the modern concept of stress because the forces are 
transmitted at molecular level only. On the contrary, in 1822, Cauchy [11] 
introduced the continuum approach to study the elastic properties of the solid 
bodies. In such a theory, he obtained the equilibrium equations exactly in the 
same form in which they appear in modern textbooks: therefore, he defined a 
sort of tensorial pressure (stress) and he stated that the stress tensor divergence 
is zero (at equilibrium and in absence of volumetric external forces). 
Moreover, in 1828, Cauchy [12] introduced the linear constitutive relations 
(the Hooke law) defining two different elastic constants needed to model the 
isotropic media. 
 Despite several efforts, the problem of reconciling the opposing molecular 
and the continuum approaches remained a very intriguing challenge for many 
years. The simplest molecular models - including only central two-body 
interactions - describe the mechanical behavior of any material by means of a 
single elastic constant, a sort of scalar stiffness. At variance, the continuum 
approach predicts in the isotropic case the need of two independent and 
material-specific parameters. So, the basic question is: do we need just one or 
actually two elastic modulus(i) to properly describe elastic isotropic media? 
 The first robust attempt to answer to this problem has been given by Voigt 
[13]: according to his model, the regular structure of a crystal suggests that, 
when a molecule (or atom) is added to the lattice, an ad hoc couple of forces 
acts on the molecule in order to set its correct orientation within the crystal. 
According to the modern terminology, we can say that such a molecular torque 
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could correspond to an effective many-body interaction, at work among the 
elementary constituents of the lattice. Voigt, by considering both the central 
forces and the three-body interactions (i.e. the simplest effective molecular 
torques), obtained the general equations of the elasticity theory for isotropic 
solids containing two independent constants, as predicted by continuum 
approach and consistently with experimental knowledge.  
 Many other crucial developments have been performed during the XIX 
century: Poisson and Saint-Venant confirmed and extended several molecular 
elasticity results; Green and Thomson introduced the energetic and the 
thermodynamic concepts in the continuum approach. In Italy Castigliano, Betti 
and Beltrami formalized the theory from the mathematical point of view and 
found out several theoretical and applied methods, mainly based on the 
potential theory [14]. A complete narration about the history of the elasticity 
theory falls beyond the scope of the present work and can be found elsewhere 
[15].  
 Although this subject has been widely investigated in the past, the 
connection between the continuum and the atomistic approaches remains a 
topic of crucial importance also in present-day material science. In particular, 
some modern developments are useful in order to correctly derive the 
interaction force model to be used in atomistic simulations. In next Sections 
we analyze three paradigmatic important cases, namely: 
 

i. two-dimensional hexagonal crystal (triangular isotropic lattice) with two-
body interactions (see Section 3.3); 

ii. two-dimensional hexagonal crystal (triangular isotropic lattice) with two-
body and three-body interactions (see Section 3.4); 

iii. two-dimensional square crystal (square anisotropic lattice) with two-body 
and three-body interactions (see Section 3.5). 

 

 Such examples should be important in order to improve the potentials 
adopted in atomistic simulations for solving solid mechanics problems. The 
conclusions will be of general validity, although our arguments are developed, 
for sake of simplicity, for 2-dimensional crystals only. 
 
3.2. Two-body and three-body interactions 
 In this Section we throughly discuss two-body and three-body interactions 
between/among atoms in a crystalline structure. We point out that in this 
discussion we do not specify any particular crystal lattice, focusing solely on 
the effective modeling of the chemical bonds.  
 We begin by taking into consideration an arbitrary lattice of point masses 
which interact through simple central forces (two-body interaction), acting 
between nearest neighbors only. We focus on a pair of particles placed in 
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positions )0(
1r
G  and )0(

2r
G  at equilibrium or, equivalently, in a configuration of 

minimum energy. If a small deformation is applied, the new positions will be 
given by 
 

( ))0()0(
iii rurr GGGG

+=                                                    
            

(3.1) 
 

where we have introduced the displacement vector field ( ))0(
iru GG  defined for 

any equilibrium position in the lattice. We point out that this simple definition 
is central to the atomistic description of the classical fields used in the 
continuum theories. 
 We further assume that the two-body interaction may be represented by a 
force linearly varying with the distance between the atoms, i.e. by an effective 
spring. Indeed, by taking advantage of the small displacement hypothesis, we 
can say that the linear approximation corresponds to the expansion of the 
interaction potential in a Taylor series centered in the minimum-energy 
configuration, truncated just at the first (quadratic) non-zero term. Therefore, 
the spring constant Ks can be evaluated as the second derivative of potential 
energy with respect to distance.      
 If the particles in 1r

G and 2r
G

are nearest neighbors, the force on the first 
particle due to the second one is 
   

( )lrrnkF s −−= 121 ˆ GGG
                                                           (3.2) 

 

where )0(
1

)0(
2 rrl GG

−=  is the equilibrium distance and n̂  is the unit vector in the 

direction of the central force (see Fig. 1 for details).  
 By adopting eq.(3.1) and by assuming slow variations of the displacement 
on the atomic scale, we can expand this force up to the first order in the 
difference ( ) ( ))0(

1
)0(

2 ruru GGGG
− . Then, writing 
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we obtain 
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where we have introduced the jacobian matrix [ ] βααβ ruru ∂∂=∂∂

GG . Finally, 
defining the symmetric strain tensor
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Figure 1. Displacement and distance vectors for a pair of atoms, before and after 
deformation. The unit vector ˆ n  in the direction of the central force is shown as well. 
 

εαβ =
1
2

∂uα

∂rβ

+
∂uβ

∂rα

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
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                           (3.5) 

 
we find 
 

( )nnnlkF s
B ˆˆˆ2

1 ε
IG

⋅≈                                                                          (3.6) 

 
 This is the force acting on a given particle caused by a neighboring atom, 
placed at distance l and aligned in direction n̂ , when the local deformation is 
characterized by the strain tensor  

I 
ε . In order to compute the total force applied 

to a single atom, we have to choose a microscopic crystal structure, as shown 
in the next Sections. 
 

 
Figure 2. Distances and angles for a three-atom cluster. The unit vectors ˆ n  and ˆ m  in 
the direction of the central forces are shown as well. 
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 We now take into consideration a three-body interaction among nearest 
neighbors. In this case we begin by defining a potential function involving 
three atomic positions 1r

G , 2r
G  and 3r

K . We assume that the three angles 1ϑ , 2ϑ  
and 3ϑ  (see Fig. 2) are respectively equal to α1, α2 and α3 at equilibrium. 
Therefore, we can choose a potential energy of the form 
 
U 3B =

1
2

H1 cos ϑ 1( )− cos α1( )[ ]2+ H 2 cos ϑ 2( )− cos α 2( )[ ]2+ H 3 cos ϑ 3( )− cos α 3( )[ ]2{ } 
 (3.7) 

 
where H1, H2, H3 are suitable constants. Eq.(3.7) governs the behavior of the 
angles 1ϑ , 2ϑ  and 3ϑ  between atoms and it has the following main property: 
the minimum value (U3B=0) is reached only when ϑ i = α i  for i=1,2,3. Since 
we want to study the case of a triangular lattice, we take into consideration the 
following additional hypothesis: the three equilibrium angles are given by 
α1 = α 2 = α 3 = π / 3; therefore, we may write 
 

U 3B =
1
2

hl 2 cos ϑ 1( )−
1
2

⎡ 
⎣ ⎢ 
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(3.8) 

 
where we have let H1=H2=H3=hl2, being l the inter-atomic distance in the 
unstrained lattice. In such a way, the constant ks (describing the two-body 
interactions) and the constant h (describing the three-body interactions) 
usefully assume the same physical units.  
 By applying the same approximations used to derive eq.(3.6), we find the 
following net force on atom 1 
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2
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2
33

1 εεεεεε
IIIIIIG   (3.9) 

 
where m̂  and n̂  are the unit vectors defined in Fig. 2. In order to give an 
explanation of this equation, we remark that the bilinear form nm ˆˆ ε

I
⋅  is directly 

connected to the variation of the angle between the directions m̂  and n̂  
induced by the deformation described by ε

I . As expected, the force term given 
in eq.(3.9) depends on the angular distortion of the triangle represented in Fig. 
2. Moreover, we can say that if 2ϑ  and 3ϑ  are equal, then the force is oriented 
along the bisector of the angle 1ϑ in such a way to increase 1ϑ  if 3/1 πϑ <  and 
to decrease 1ϑ  if 3/1 πϑ > . 
 Another important example of three-body interactions is that describing a 
cubic crystal (or, equivalently, its 2-dimensional version). By considering the 
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simple case of a planar square lattice, we may obtain the corresponding 
equations by letting α1 = α 2 = α 3 = π /2  in eq.(3.7) (of course, in this case, 
the triangle shown in Fig. 2 should be replaced by a square). The three-body 
potential energy reduces to 
 

U 3B =
1
2

hl 2 cos 2 ϑ 1( )+ cos 2 ϑ 2( )+ cos 2 ϑ 3( )[ ]
              

                        (3.10) 
 

where, once again, we have let H1=H2=H3=hl2, being l the lattice constant. 
Therefore, the expression    
 

( )( )mnnmlhF B ˆˆˆˆ43
1 +⋅≈ ε

IG
                                               (3.11) 

 

directly provides the force on atom 1. 
 
3.3. Triangular lattice with central forces only 
 In this Section we derive the balance equation of continuum mechanics for 
isotropic media, in the simple case of pure central forces and in the linear 
regime approximation given by eq.(3.6). Under such hypothesis, we have to 
choose an isotropic 2-dimensional crystal: as a matter of fact, the only 
crystalline isotropic structure in two dimensions is the regular triangular lattice 
shown in Fig 3. 
 Any particle has six nearest neighbors placed at distance l (equal to the 
edge of the triangular mesh). By computing the force due to the opposite 
neighbors A and B of atom 1, we find 
 

( )nnlkF BAs
B

AB ˆˆ2
,1 εε

IIG
−⋅=                                                      (3.12) 

 

where we used eq.(3.6) and we indicated the unit vector connecting A to B 
with n̂ . The total force on atom 1 is given by the sum of three terms similar  
to eq.(3.12) (calculated, respectively, along the three directions A-B, C-D and 
E-F shown in Fig. 3). Now, in order to give a continuum description of the 
system, we have to divide the total force by the area occupied by each atom, 
i.e. by S = l 2 3 2 . The resulting force density is 
 

( )
n

l
nkf BA

s
B

AB ˆˆ
3

322
,1

εε
IIG −

⋅=                 
                                     

            (3.13) 

 

 The ratio ( )BAl
εε
II

−
1  in eq.(3.13) can be identified with the projection 

( )εIGrn ∂∂⋅ˆ  of the gradient of the strain tensor. With this insight, the total force 
due to the couple AB becomes 
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Figure 3. Planar (2-dimensional) triangular crystale with lattice constant l. One can 
easily find the area S of the unit cell and the first neighbors (A, B, C, D, E, and F) of the 
atom 1. 
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Finally, the Newton law describing the motion atom 1 is obtained as follows 
 

ubfff B
EF

B
CD

B
AB

��GGGGG
ρ=+++ 2

,1
2

,1
2

,1                                                     (3.15) 
 
where b

G
 is the density of external forces applied to the system, ρ is the mass 

density and u��G  is the acceleration. Each of the force terms in eq.(3.15) can be 
developed through the eq.(3.14), leading to the final elasticity equation  
  

( ) ubuuk s
��GGGG ρ=+⎥⎦

⎤
⎢⎣
⎡ ⋅∇∇+∇ 2

4
3 2                                             

       
           (3.16) 

 
 This is the main result of this Section, describing the linear elastic 
behavior of a planar triangular lattice governed by purely central forces.  
 It is interesting to draw a comparison with the standard results of 
continuum mechanics for isotropic solids. We remind that the displacement 
equation derived from continuum is 
 

( ) ( ) ubuu ��GGGG ρµλµ =+⋅∇∇++∇ 2                                                            (3.17) 
 
where λ and µ are the Lamé material-specific constants. The comparison 
between eqs.(3.16) and (3.17)  provides the effective elastic moduli of the 
triangular lattice 
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λ = µ =
3

4
ks                                                                    (3.18)

 
 
or, equivalently, its Young modulus and the Poisson ratio  
 

E =
5 3

8
ks and ν =

1
4                          

                                (3.19) 

 
Eqs.(3.18) and (3.19) prove that an atomistic model for the triangular lattice 
with central forces only is not able to take into account all the elastic features 
predicted by the continuum elastic theory (and confermed experimentally). In 
particular, eq.(3.18) indicates that, according to this model, the material should 
have only one characteristic elastic constant, while eq.(3.19) implies that it 
should exist a universal value of the Poisson ratio, independent on the actual 
physical properties of the material.  
 
3.4. Triangular lattice with two-body and three-body 
interactions 
 We now extend the case study investigated in the previous Section (see 
Fig. 3) to including three-body interactions as well. By adopting the angular 
dependent force defined in eq.(3.9), we can itemize the full set of forces at 
work as follows: 
 

• two-body interaction forces, as given in eqs.(3.14) and (3.15); 
• three-body interaction forces. For instance, six angular contributions are 

working on atom 1 of Fig. 3, as calculated in eq.(3.9): they correspond to 
the angles A1C, C1F, F1B, B1D, D1E and E1A. 

• the external forces applied to the lattice. 
 

 Following the same procedure outlined in the previous Section, we get 
 

( ) ubukuhk ss
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     (3.20) 

 
We can draw a comparison with the continuum version, eq.(3.17), finding the 
effective elastic moduli of the lattice 
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            (3.21) 

 
or, equivalently, the Young modulus and the Poisson ratio  
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In conclusion, only this improved lattice model can correctly describe the 
elastic behaviour of any isotropic media, since it provides the atomistic 
expression for both independent elastic constants. In other words, we can state 
that at least three-body interactions are indeed mandatory in order to accurately 
reproduce the complex mechanical behaviour of real isotropic materials. This 
feature will be extensively used in the next Section. 
 Finally, we introduce some energetic considerations. It is well known that 
the elastic moduli must fulfil some restrictions, due to thermodynamic reasons. 
More precisely, the Lamé constants must obey the inequalities µ > 0 and 
(2µ+3λ) > 0. On the other hand, the Poisson ratio ν and Young modulus E 
satisfy the relations -1 < ν < 1/2 and E > 0, respectively [16]. Consequently, 
the interaction parameters ks and h must be as follows 
 

ks > 0     and    − 4 3
27

ks < h <
20 3

27
ks                                        (3.23) 

 
 When h approaches the value 2734 sk− , the Poisson ratio becomes 
equal to 1/2 (a situation found in rubbery materials): the system is volume 
(area) preserving since the three-body interactions are working contrarily             
(h <0) to what expected. In fact, when a given angle differs from its 
equilibrium value, the three-body forces operate in the direction of bringing the 
system as far as possible from the equilibrium. In other words this three-body 
contribution makes the system mechanically unstable (of course, the sum of 
the two-body and the three-body contributions is always stabilizing under the 
condition given in eq.(3.23)).  On the other hand, when h approaches the value 

27320 sk , the Poisson ratio has negative value -1 (a situation common in 
some re-entrant polymer foams): in this case the structure is shape preserving, 
allowing only deformations described by isotropic rescaling of the body. This 
happens because of the large value assumed by the angular stiffness h.  
 
3.5. Square lattice 
 We now turn to considering the square lattice shown in Fig. 4. We are 
interested in this (particularly simple) anisotropic material since we want to 
prove that also in this case the three-body interactions are indeed necessary to 
fully describe elasticity, as previously found for the isotropic case. For further 
convenience, we remind that in continuum mechanics a cubic crystal (as well 
as its planar 2-dimensional counterpart) is described by three independent 
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elastic constants, namely C11, C12 and C44. The definition of such constants is 
based on the stress-strain constitutive relations: yyxxxx CCT εε 1211 += , 

yyxxyy CCT εε 1112 +=  and  xyxy CT ε44= , where Tαβ  are the components of the 
stress tensor (please note the the above constitutive relations are written for a 
2-dimensional body under plain strain border conditions).  
 In the present case the forces working on atom 1 can be summarized as 
follows (see Fig. 4 for details): 
 

• two-body interaction forces acting between the first neighbors A, B, C and 
D, described by eq.(3.6) with spring constant ks and interaction distance l; 

• two-body interaction forces acting between the second neighbors E, F, G 
and H, described by eq.(3.6) with spring constant kd and interaction 
distance l2 ; 

• three-body interaction forces (constant h). Four contributions are working 
on atom 1 of Fig. 4, as calculated in eq.(3.11); they correspond to the agles 
A1B, B1C, C1D and  D1A;  

• the external forces applied to the lattice. 
 
 The balance equation leads to  
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(3.24) 

 
 
 

 A comparison with the results of the continuum mechanics for cubic 
anisotropic systems allows us to find a direct relationship between the elastic 
constants and the atomistic parameters  
 

C11 = ks + kd

C12 = kd

C44 = 2 kd + 4h( )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⇔

h =
1
8

C44 − 2C12( )
ks = C11 − C12

kd = C12

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

                                             

(3.25) 

 
 Such relations demonstrate that three kinds of forces (corresponding to the 
materials parameters ks, kd and h) are indeed necessary for correctly modeling 
the elastic behavior of the cubic crystal, at least under the assumption of small 
deformations.  In addition,  the second set of  formulas in eq.(3.24) could be  
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Figure 4. Portion of a planar square lattice with inter-atomic distance l. The arbitrary atom 1 
interacts with the crystal by means of three kinds of forces: spring-like forces (constant ks) 
with atoms ABCD, spring-like forces (constant kd) with atoms EFGH and angular dependent 
forces which tends to maintain right the angles A1C, A1D, B1D and C1B. 
 
useful to fit the atomistic force model onto the experimentally-known elastic 
constants. It is also useful to remark that the elastic constants are subjected (in 
cubic symmetry) to the thermodynamic restrictions: 0,0 4411 >> CC  and 

111211 2/ CCC <<− . They have the following implications on the atomistic 
parameters: 0>+ ds kk , 04 >+ hkd , 03 >+ ds kk  and 0>sk , which must be 
always verified to obtain a physically stable material. Interesting enough, this 
case study shows that the range of interactions at the atomic scale cannot be 
restricted just to the first neighbors in the general case of anisotropic materials. 
This feature will be extensively discussed in the next Section. 
 Finally, it is noteworthy the fact that also an isotropic material can be 
represented by the square lattice model. As a matter of fact, by imposing the 
isotropy Cauchy relation C44=C11-C12, it must hold the relation h =1/8(ks-2kd); 
under this condition, the overall behavior of the square lattice is 
macroscopically isotropic and only the two coefficients ks and kd define the 
elastic behavior of the  system. In such a case it is possible to obtain the Young 
modulus and the Poisson ratio as follows 
  

E = ks
3kd + ks

2kd + ks

and ν =
kd

2kd + ks                                       
     (3.26) 
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 The above ks and kd parameters satisfy the thermodynamic inequalities 
03 >+ ds kk  and 0>sk , assuring the positive definiteness of the potential 

elastic energy. Therefore, kd must belong to the interval (-ks/3,+∞): the left 
bound corresponds to ν = -1 and the right one to ν = 1/2. Moreover, if kd = 0, 
from eq.(3.26), we obtain E = ks and ν = 0. The zero-value for the Poisson 
ration is easily justified: with no diagonal springs (kd =0), a simple traction 
along a given atomic bond direction cannot induce deformations along the 
orthogonal direction (lateral restriction).  
 In conclusion, this Section has outlined a number of important formal 
properties that an atomistic interaction force model must have in order to be 
consistent with the elasticity of deformable bodies, as formalized by 
continuum solid mechanics. This properties will be used in the next Section as 
a conceptual guideline to work out reliable and accurate potentials. Further 
discussion about the link between elastic constants and interatomic potentials 
can be found in Ref.[6]. 
 
4. Improved potentials for solid mechanics 
4.1. General overview 
 In order to discuss some vary basic and important features relevant to 
developing improved potentials for applications in nanomechanics, we will 
directly refer to the atomistic simulation of brittle fracture in covalent materials 
(Si, Ge, C, SiC) which turned out to be a very challenging problem: as a matter 
of fact, most of the available potentials for elemental as well as compound 
group-IV materials are not able to reproduce the brittle nature of crack 
propagation [17]. In the case of silicon this holds for the Tersoff potential [18], 
the Stillinger Weber (SW) potential [19] and the Environment-Dependent 
Interatomic Potential (EDIP) [20]: all of them predict unphysical behavior 
during fracture. To our knowledge only a few force models are able to predict 
the brittle fracture in covalent materials [21, 22, 23]. However, they work just 
for a specific material and they are not transferable. 
    By comparing the atomic force provided by SW and EDIP potentials with 
the Universal Energy Relation (UER) obtained by ab initio calculations [23], 
Marder et al. [19] concluded that  none of the available models for silicon 
accurately describes the force-separation curve. Such conclusion has been 
recently supported by the use of pseudopotential method [20, 24]. Several 
alternative theoretical approaches have been therefore explored in order to 
study fracture. In the spirit of the multiscale approach, classical force models 
have been used in combination with other methods [25]. The classical force 
model is used far from the crack tip, while the chemical bonding nearby the 
crack tip is described by semiempirical tight-binding [19] or ab initio density 
functional calculation [26]. Alternatively, the model potential is locally 
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modified through a learn-on-the-fly procedure [27]. Very recently, it has been 
also proposed a multiparadigm approach [28] where a reactive force field is 
applied at the crack tip. 
   Despite the above considerable effort, the search for simpler model 
potentials remains open. This is mainly due to the lower computational cost of 
model potentials with respect to methods involving ab initio or tight binding 
calculations. By following the general conclusions outlined in the previous 
Section (namely, the need of many-body interactions and relatively long-
ranged forces), it is here investigated how a valid and efficient potential can 
indeed be generated. The argument is illustrated by using the Tersoff potential 
as the prototype for interaction models for group-IV materials. 
 
4.2. Universal energy relation 
 The UER [23] is a two-parameter equation of state describing the variation 
of the internal energy U(s) of a solid upon the scaled interatomic separation 
(hereafter referred to as s): 
 
U(s) = −E0 1+ s( )e−s

                                                            (4.1) 
 
 where E0 is the the cohesive energy per atom (absolute value ) and s is 
 

s =
r
r0

−1
⎛ 

⎝ 
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⎠ 
⎟ 

1
µ                                                

                    (4.2) 

 
with r and r0 being the interatomic distances in the strained and in the 
equilibrium configuration, respectively. µ is an adimensional parameter 
measuring the material anharmonicity.  
 This parameter can be fitted on experiments or ab initio calculations and it 
can be easily cast in the form 
 

µ =
1
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E0

Bω
⎛ 
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1
2

                                                                    
(4.3)

 
 
where ω  is the (average) atomic volume and B is the bulk modulus of the 
material [29]. For the zincblend structure, we have ω = 2 / 3( )3

r0
3. In the case 

of silicon carbide, diamond, silicon and germanium, we calculated µ=0.221, 
0.230, 0.205 0.198, respectively. As shown in the following, these relatively 
large values are not compatible with the (oversimplified) assumption of first-
next-neighbor interactions only, consistently with the conclusions of the 
previous Section. 
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Figure 5. Work (bottom) and force (top) for hydrostatic separation of silicon carbide as 
a function of the interatomic separation (r/r0). 
 
 The work W(s) necessary to stretch hydrostatically a perfect crystal up to a 
scaled interatomic distance s is calculated from eq.(4.1) as 
 
W (s) = E0 + U(s)                                                                  (4.4) 
 
 The work W(s) is completely controlled by the three constants E0, µ, r0 
that, in turn, depend on the actual material. For example, the inflection point rI 
of the curve w(s) corresponds to rI = r0(1+µ), occurring at s =1. Such an 
interatomic separation is obtained by spending a work W(rI) = (1-2/e)E0 as 
large as 26% of the total work of separation (per atom) E0. In Fig. 5 (bottom) 
the work function W(s) (full line) is represented for the choice µ=0.22, 
corresponding to the SiC case. 
 The force f(s) necessary to separate atoms at the interatomic distance s is 
straightforwardly obtained from W(s) 
 

f (s) =
dw
ds

= E0
s

µr0

e−s

                                                             
(4.5) 

 
 This force is positive in the case of tensile strain (r > r0, i.e. s > 0). f is 
represented in Fig. 5 (top panel) by a full line. The maximum separation force 
fmax = E0 (eµr0)-1 is found to be rI = r0(1+µ) =1.44r0, falling within the first              
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r1nn = r0  and the second r2nn = 1.633 r0. At distances r > rI (s > 1) the force f 
decreases as the separation increases. A 90% force reduction (i.e. f = fmax/10) is 
observed when r ∼ 2.0r0 > r3nn = 1.91 r0. It is important to clarify that the 
hydrostatic separation energy described by UER does not correspond to any 
realistic fracture event. Nevertheless, we guess that any force model suitable 
for fracture must be able to correctly reproduce the UER curve.  
 
4.3. Determining the minimum range for the model potential 
 The development of a force model with not-too-short range of action is 
worked out from the corresponding UER by imposing a small number of very 
fundamental requirements:   
 

i. the force must be a continuous function of strain;   
ii. the maximum separation force must be correctly reproduced (i.e. fsr

max= 
fmax); 

iii. the bulk modulus at equilibrium must fit the experimental (or ab initio 
value); 

iv. at tensile strains (up to rI) the bulk modulus must not increase; 
v. the work of separation E0 must be correctly reproduced. 
 
 The condition (ii) is related to the fracture toughness of the perfect 
material. For instance, if the maximum force is overestimated, the fracture 
toughness of the material is overestimated as well. Similarly, conditions (iii) 
and (iv) are needed in order to reproduce the elastic properties of the material. 
Finally, condition (v) stands for a simple physical requirement: the atomic 
bonds cannot stiffen during tensile deformation up to the maximum force. 
 The simplest force model fulfilling the above conditions is represented in 
Fig. 5 (top panel) as a dotted line. We will refer to such a model as minimum 
range model (MRM). It consists in a linear elastic force over the interval r0 ≤ r 
≤ rc (where the bulk modulus is given by the constant value B), while for rc ≤ r 
≤ Sc the force is constant and equal to the fmax value provided by UER.  Finally, 
for any interatomic distance larger than Sc the force is zero. The actual value of 
rc is fixed by the intersection between the linear force with slope B, occurring 
in the region [r0, rc], and the constant fmax. The parameter Sc  is , in turn, fixed 
by the cohesive energy E0 [30] 
 
Sc = r0 + r0 e + 0.5e−1( )µ                                                            (4.6) 
 
 This value sets the minimum range below which it is not possible to find a 
force model satisfying the conditions (i)-(v); in other words a model with force 
extension below Sc is unlikely to describe brittle fracture. 
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 The value Sc/r0 depends only on the parameter µ characterizing the 
material. It can be proved that, in the case of covalent group-IV materials, such 
a minimum value Sc is close to the second nearest neighbor (2nn) distance at 
equilibrium. In particular, in the case of silicon carbide, it is found that Sc ≈ 
1.64 r0 that is slightly larger than second nearest neighbor distance r2nn ≈ 1.15 
r0, whereas in the case of silicon and germanium we get Sc ∼ 0.9 r2nn. These 
values suggest that only by taking into account interactions beyond the first 
neighbor (∼ r2nn), it is possible to correctly describe the maximum separation 
force and, in turn, the fracture toughness of a material. This conclusion, 
although derived by different arguments, is nicely consistent with the 
discussion reported in the previous Section. 
 The minimum range model is indeed a very rough model, its only value 
being explicatory. In particular, this force model can hardly be used in 
atomistic simulations. A better device is obtained by multiplying the energy 
function U(s) by a cutoff function h(s), so as to obtain a new force model T(s) 
 
T(s) = U(s)h(s)                                                                   (4.7) 
 
 The corresponding work separation Wsr(s) is modified accordingly 
 
W sr(s) = E0 + T(s)                                                                 (4.8) 
 
and it is (relatively) short ranged as well. An example of such a model is 
represented as a dot-dashed line in the bottom panel of Fig. 5 where [R, S] is 
the range where the cutoff h(s) operates. We remark that the cutoff function 
does not modify the total work of separation, so that condition (v) is satisfied. 
Furthermore, it does not modify the force field close to the equilibrium 
distance. Accordingly, conditions (iii), (iv) and (v) are still satisfied by 
construction. Condition (ii), instead, is satisfied only if the range S of the force 
model is larger than Sc, according to the previous analysis.  
 These remarks are valid in general, regardless the actual form of the 
potential. In particular, they apply to the original Tersoff potential [31] where 
S=1.33r0, a value much shorter than the 2nn distance. This model is 
represented in Fig. 5 as dot-dashed line. As expected, the force is 
overestimated in the range [R, S] and an unphysical peak is observed in the 
separation force which results four times larger than the correct maximum 
value fmax (Fig. 5, top panel). 
 The unphysical artifacts due to the imposed severe short rangeness of the 
interatomic forces prevent the correct description of brittle crack propagation 
in group IV materials, as shown in Fig. 6 (right panels) where the                
original Tersoff model was used. In the SiC case (panel A') the crack does not  
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Figure 6. Left panels: artifacts in the crack propagation due to incorrect cutoff force in 
silicon (top) and silicon carbide (bottom). Right panels: brittle propagation in well 
reproduced by modified force model. 
 
propagate along the plane of maximum stress (which corresponds to the plane 
containing the initial crack seed). In the case of silicon (panel B') a plastic 
accomodation of the stress at the crack tip is even observed, contrary to the 
brittle nature of this material. 
 
4.4. Improving the force model 
 Following the above discussion, we introduce an improvement of the 
Tersoff potential by modifying its cutoff function. The new force model - 
hereafter labeled as ˜ T - is represented in Fig. 5 as a dashed line: it extends 
quite above the equilibrium distance (i.e. it is not restricted just to first next 
neighbors only), however the cutoff function is step-like. The ˜ T  model is 
consistent with the original Tersoff potential when describing systems in 
condition of low deformation (i.e. when the action of the cutoff function is not 
involved). For example, all the elastic bulk properties are unchanged. Even the 
work of separation corresponding to the ˜ T  model is in very close agreement 
with the UER curve up to the cutoff. It is, nevertheless, necessary to take into 
account that the work of separation 0

~E  is different from E0. This difference 
corresponds to the removal of the work done by the cutoff forces and it is 
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˜ E 0 = d ˜ T 
r0

∞

∫ < E0

                                                   

 (4.9) 

 
Similarly, the work γ~ necessary to create new surface during the crack opening 
is modified with respect to the surface energy value γ.  
 Notably, such a modified force model is able to reproduce the brittle 
behavior of group-IV materials, as shown in Fig. 6 for silicon and silicon 
carbide (panels B and A, respectively). In addition, the calculated failure 
strength σf of cracked systems turns out to be nicely close to the continuum 
Griffith predictions. This is shown in Fig. 7, where it is reported the failure 
strength of SiC, Si, Ge and C samples containing a crack of semilength c. The 
systems were uniaxially loaded along [111] crystallographic direction in all 
cases. The Griffith curve σLEFM(c) for any material is reported in Fig. 7, as 
well.  
 In order to better quantify the difference between the original T and the 
modified T~  Tersoff-like models we have compared the failure strength 
calculated according to both models. The results for a cracked SiC sample are 
reported in Fig. 8. Open circles and full diamonds refer to T and T~ ,  
respectively. We can observe that the original Tersoff model overestimates the 
failure strength of an amount of about 24-32 GPa with respect to the modified  
 

 
 
Figure 7. Failure strength σf, normalized with respect to the ideal strength σth, as 
function of the crack semi-length c. They are reported the results for cracked Si, C, Ge 
and SiC samples uniaxially loaded along [111] direction. The corresponding linear 
elastic fracture mechanics (LEFM) curves, obtained with the calculated parameters E 
and γ~ , are reported as well. 
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Figure 8. Comparison of the failure strength σth for a cracked SiC sample, uniaxially 
loaded along [111] crystallographic direction, calculated according to both original 
(circle symbols) and modified (diamond symbol) Tersoff model. They are reported also 
the linear elastic fracture mechanics (LEFM) curves, obtained by using the surface 
energy calculated according to the original (dashed line) and to the modified 
(continuum line) Tersoff model. 
 
model. Both results have been compared with the curve obtained within the 
linear elastic fracture mechanics and calculated using for the surface energy 
the corresponding values γ (dashed line) and γ~  (continuous line) for the 
original and modified potential, respectively. Finally, we observe that the 
modification of the Tersoff model considerably improves even the ideal 
strength σth of perfect C, Si, Ge, SiC crystals (under the condition of uniaxial 
loading). For the SiC case, in particular, we observe that the calculated 
strength thσ~ =58±1 GPa  is close to the result 50.4 GaP provided by density 
function theory [32], whereas we get thσ =103±1 GPa by using the original 
Tersoff potential.  
 
5. Failure strength of silicon carbide containing 
nanovoids 
5.1. Basic concepts about failure strength  
 Defects such as cracks and voids affect the mechanical behaviour of brittle 
solids since they modify their overall strength. Often such defects are 
unavoidable because they form during materials synthesis and processing, but 
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sometimes they may be introduced by design, in order to obtain specific 
properties. This is the case of porous materials where pores at a suitable 
concentration are used to control many properties, like e.g. thermal or acoustic 
isolation and impact energy absorption. In any case, such inhomogeneities are 
of great relevance on the mechanical response of the system, since they 
enhance the local stress and they possibly may initiate failure. 
 The strength of materials containing cracks and voids is traditionally 
described according to stress intensification or stress concentration arguments, 
respectively [33] The need of different approaches is motivated, according to 
standard linear elastic fracture mechanics, by the mathematical divergence of 
the stress field nearby the crack tip: loading a cracked system produces a 1/ x  
singularity at the crack tip (x being the distance from the crack tip along the 
plane of the crack) and a critical stress equal to zero is expected. As a 
consequence, a straightforward prediction of failure stress, as uniquely based 
on local stress criteria, can not be applied. The critical stress of the cracked 
body is therefore calculated by analyzing the stress singularity at the crack tip: 
the failure takes place when the stress intensity factor is equal to the material 
fracture toughness Kc.  
 Continuum approaches based on stress analysis are based on linear elasticity 
and they unlikely work at the nanoscale. Their possible weaknesses could in 
principle be due to the failure of at least one of the three underlying (constitutive) 
hypotheses they rely on, namely continuum, or elasticity or linearity. In this 
Section we investigate this issue by addressing the specific problem of a brittle 
material (crystalline silicon carbide) containing nanovoids, differing by shape and 
size [34]. We will offer a thorough comparison between atomistic simulations 
performed as outlined in the previous Sections and we will comment about 
possible approaches aimed at improving standard continuum models. 
 
5.2. Geometry of the simulation cell and border conditions 
 The investigated system is defined Fig. 9, where a β-SiC monocrystal - 
embedding a cylindrical hole - under tensile load σA is shown. Similar 
geometries are adoped for the straight crack and for the spherical hole. In the 
x-y plane of the simulation cell is kept fixed both in size and shape, and 
periodically repeated. In this plane the lattice parameter is equal to 4.318 Å. 
For such a system, as well as for the crack and the spherical hole, we basically 
want to calculate the failure strength as a function of the defect size and shape, 
in plane strain border conditions. 
 In order to generate the differently shaped nanovoids, we follow different 
procedures. The straigth crack is obtained by cutting a given number of 
interatomic bonds across a segment of the central plane in the strained 
simulation cell, which is then relaxed so as to create a Griffith-like hole.  We 
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point out that, because of the very discrete nature of the lattice, there is an 
arbitrariness - as large as the interbond distance c0 =2.644 Å along the x direction 
– in defining the actual crack length: this will reflect in the numerical results. The 
cylindrical and the spherical holes are, in turn, obtained by removing Nh atoms in 
a selected region of radius r at the center of the simulation cell. The actual hole 
size is defined to be r +δr, where δr is the maximum variation of the radius that 
does not modify the number Nh of removed atoms. The cylindrical voids are 
oriented along the y axis, perpendicularly to the applied stress. Finally, in the 
case of the straight crack, we considered the semilength r to vary in the range c0 
< r < 25c0, while the dimension of the cylindrical (spherical) hole ranges within 
1.3 Å < r < 40 Å (1.3 Å < r < 20 Å).  
 We make use of  a simulation cell with dimensions Lx=Lz=L and Ly ~ 12 Å for 
cracks and cylindrical voids, while we select a cubic shape Lx=Lz=Ly=L for 
spherical holes. In order to avoid finite size effects, we set in any case L/r>10. The 
resulting number of atoms ranges from 3×105 to 2.5×105 atoms for straight cracks 
and cylindrical voids, while up to 8×105 particles are used for spherical holes. 
 The atomistic simulations were performed according the dumped dynamics 
method described in Sec.2 and by adopting the modified Tersoff potential 
described in the Sec.4. As already commented, the calculated critical strain for β-
SiC loaded along the [111] direction are, respectively, εzz~0.20 and σth=58 GPa, in 
very good agreement with available experimental and ab initio data. Furthermore, 
the present simulation set-up has proved to be reliable and quantitative in 
predicting brittle fracture in silicon carbide [35, 36]. 
 

 
 
Figure 9. Geometry of a monocrystal containing a cylindrical hole. The system is under 
strain σA applied along the z direction. The alignment of the cartesian axes to the 
crystallographic directions is reported. 
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5.3. Results and discussion 
 The atomistic results for a monocrystal containing a straight crack are 
reported as full symbols in Fig. 10, as function the crack semilength r. At 
vanishing crack length, the calculated critical stress approaches the 
theoretical strength σth of the crystal, as expected. The atomistic results are 
compared to the standard continuum Griffith theory for brittle fracture 
(dashed line in Fig. 10): they completely disagree in the region 
corresponding to a small crack, clearly indicating the need to improve 
continuum when working at the nanoscale. 
 In order to improve classical continuum models, modern theories of 
fracture are generally formulated so as to incorporate into their formalism a 
suitable material length scale λ [37, 38, 39]: this key quantity is aimed at 
describing a process zone close to the crack tip where at least one of the 
standard constitutive hypotheses – namely, continuum, or linearity, or pure 
elasticity – fails. 
 The characteristic length scale is typically given by  
 

λ ≈
2Kc

2

πσ th
2

                                                        
                        (5.1) 

 

 
Figure 10. Failure strength of a SiC system containing a crack of semilength r. The 
loading condition is shown in the inset. Full symbols: atomistic data; dashed line: standard 
Griffith theory; full and dot-dashed lines: improved continuum models (see text). 
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 The attribution to λ of a physical meaning is not unique and it could be 
related to the existence of either a plastic zone (i.e. the mechanical response is 
beyond pure elasticity), or a cohesive zone (linearity is lost) or a discrete unit 
for crack advancement (continuum hypothesis is no longer applicable). In any 
case, we point out that none of the above modern theories is able to quantify 
the actual value of the length scale λ: typically, it must be estimated by fitting 
from experiments.  
 Here we have the unique chance to rather use atomistic data as input: this 
is a much more appealing perspective, since atomistic simulations can be 
performed under conditions which, by construction, are very close to 
continuum framework. By using present results as fitting data-base we have 
determine the actual value of λ (varying in the range 1.4 - 6.0 Å) for two 
different revised continuum models [34]: the results are shown in Fig. 10 as 
full and dot-dashed lines, respectively. The agreement is now remarkable and 
it fully reconciles the atomic-scale picture to continuum one. 
 The calculated failure strength for a system with an infinite cylindrical 
hole is represented in Fig. 11 (open diamonds). The observed scattering of the 
atomistic data depends on the atomic-scale microstructure. A strong 
dependence of the failure stress σf upon the hole size is observed: this is in 
qualitative contrast to elasticity theory which predicts the costant value σf = 
1/3 (dotted line). Once again, by revising continuum hypothesis and by 
indroducing the discrete length scale λ, we can nicely reproduce the atomistic 
trend of σf upon the hole size (full and dot-dashed lines). The fitted lengths are 
in this case varying in the range 2.2 Å < λ < 6.6 Å: interesting enough, these 
values differ from the prediction given by eq.(5.1). 
 Finally, the results for the strength reduction due to a spherical hole are 
reported in Fig. 12 as full diamonds.  Even in this case, atomistic simulations 
prove that σf  strongly depends upon the hole size, while standard elasticity 
predicts the costant value σf = 1/2 (dashed line). The best fits with improved 
continuum models are shown by full and dot-dashed lines and are obtained by 
setting 2.8 Å < λ < 7.9 Å. Once again these values are quite different than the 
estimations provided by eq.(5.1). 
 In conclusions, the present results seem to indicate that a continuum 
formalism enclosing the concept of a relevant length scale (or process zone) 
for failure strength works definitely better than standard elasticity. However, 
eq.(5.1) must be considered as a tool for estimating just the order of magnitude 
of such a process zone, since its actual value can only be quantitatively 
estimated by means of a fully atomistic approach. Present simulations further 
prove that λ is not a physical material parameter; rather, it is related to the 
system geometry. In particular, it is found that the process zone is larger for 
holes than for cracks. 
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Figure 11. Failure strength of a system containing a cylindrical hole of radius r. Open 
diamonds: atomistic data; dotted line: linear elastic theory; full and dot-dashed lines: 
improved continuum models (see text). 
 

 
 
Figure 12. Failure strength of a system containing a sphericall hole of radius r. Full 
diamonds: atomistic data; dashed line: linear elastic theory; full and dot-dashed lines: 
improved continuum models (see text). 
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