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Local elastic fields around cracks and their stress density of states
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The exact local elastic fields around a slit or circular crack under load are calculated by means of a
generalized version of the Eshelby theory, where the flat shape of the crack is correctly accounted for. The
concept of density of states is then introduced and applied in characterizing the fluctuations of the nearby

elastic stress field.
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I. INTRODUCTION

The investigation on the mechanical properties of hetero-
geneous, composite, or imperfect materials has been prima-
rily focused on the search for the effective physical proper-
ties exhibited at the macroscopic scale."? Typically, such
investigation is based on homogenization techniques: at first,
the exact mathematical analysis of the mechanical behavior
induced by a single defect (like an inclusion, an inhomoge-
neity, or a crack)’ is worked out; then, the analysis is com-
pleted by considering the interactions among the defects,*>
in the limit of low density. Such a hypothesis can be partially
removed by means of the iterated homogenization® or by
differential schemes.”® These techniques have been applied
both to the case of embedded inhomogeneities”!? and to the
case of dispersed defects, such as microcracks in a
matrix.!13 A common feature of all effective medium theo-
ries is that the actual microscopic details of the investigated
physical quantities are coarse grained. For example, strain
and stress fields are averaged over a suitable region and the
possible local fluctuations are, therefore, neglected.

It has been widely recognized that different methodolo-
gies must be concurrently integrated in order to properly
model the interplay between phenomena occurring at differ-
ent length scales. This idea leads to the multiscale approach:
a paradigm effectively coupling different methods and thus
providing a unique theoretical device able to pass physical
information across different scales.'* For example, the above
macroscopic continuum homogenization theories can be
linked to atomistic simulations, which describe the complex
behavior of a given system at the nanoscale, i.e., at the most
fundamental level.!> Sometimes, different techniques may
lead to the same result at a given length scale. An important
and relevant example is given by the atomistic validation'®
of the continuum stability theory!” for crack propagation in
ideally brittle, single-crystal materials.

Despite several efforts toward the multiscale paradigm,
little attention has been so far devoted to the quantitative
evaluation of the local fluctuations of elastic fields in the
neighborhood of an inhomogeneity (e.g., a crack, an inclu-
sion, or a void). Such fluctuations can easily extend over a
spatial domain so large to result out of reach for atomistic
simulations. On the other hand, homogenization theories
simply do not take these features into account. This situation
is similarly found when studying the physics of nonhomoge-
neous dielectric continua.'8-?!
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In this work, we address the determination of the elastic
fields (namely, displacement, strain, and stress) around a
crack, when the elastic region is under uniform external load-
ing. We work out our theory in the framework of continuum
mechanics (linear elasticity) and we introduce the concept of
density of states (DOS) for the stress field. The main goal is
twofold: (i) characterizing (analytically) the spatial distribu-
tion of the elastic fields nearby the crack and (ii) evaluating
(numerically) their local fluctuations by means of the stress
DOS.

As for the first goal, we consider two paradigmatic geo-
metrical configurations (i.e., slit and circular) of a single
crack under load. They are represented in Figs. 1 and 2,
respectively.

These canonical problems contain all the features of in-
terest in linear elastic fracture mechanics (LEFM).?? The key
idea is to calculate the displacement field by means of a
novel methodology based on the Eshelby theory.?>?* In its
original formulation, such a formal set copes with the prob-
lem of finding the elastic perturbation induced by the pres-
ence of an ellipsoidal inclusion embedded into a linear, iso-
tropic, and homogeneous medium under uniform loading.
The slit or circular shape of a given crack can be obtained by
a suitable transformation of an ellipsoidal void and, there-
fore, they both correspond to a limiting case of the standard
Eshelby theory.

A huge body of knowledge has been developed in the
framework of LEFM about the above topics. For instance,
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FIG. 1. Left panel: geometry of a slit crack lying in the (x;,x3)
plane. Right panel: elastic medium (with the Young modulus E and
the Poisson ratio v) containing a slit crack (with length 2L) under
uniaxial stress o (along x,).
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FIG. 2. Left panel: geometry of a circular crack lying in the
(x1,x,) plane. Right panel: elastic medium (with the Young modu-
lus E and the Poisson ratio v) containing a circular crack (with
radius R) under uniaxial stress o (along x3).

the singular behavior of the stress near the end of a slit crack
or near sharp corners has been found in several pioneering
works.>~2° Moreover, circular cracks have been studied by
using integral equations and integral transforms.’*-32 Never-
theless, we remark that the existing results always represent
an ad hoc solution for a given particular case. Under this
respect, the first goal of the present study is aimed at recon-
ciling different LEFM results into a self-contained general
theory.

The second issue of the present work consists in the use
of the DOS as a tool to characterize some relevant mechani-
cal quantities, notably the stress field. If we subdivide a re-
gion containing a crack under loading in a large number of
very small domains and we count the number of domains in
which a given component T;; of the stress tensor has values
in the interval (7, 7+A7), then we can effectively define the
stress density. Such a definition is fully developed in Sec. V,
where we also show that the stress DOS displays singulari-
ties. We prove that this theoretical concept is a valuable tool
to quantify the space distribution of any tensor field (or its
components).

The structure of the present paper is the following. In Sec.
II, we present an outline of the Eshelby theory. In Secs. III
and IV, we develop the theory for the slit crack and for the
circular crack, respectively. Finally, in Sec. V, we introduce
the concept of DOS for the stress and we discuss some no-
table applications.

II. OUTLINE OF THE ESHELBY THEORY

Let an ellipsoidal inclusion () be embedded into a matrix,
remotely loaded by uniform external forces (see Fig. 3,
right).

The homogeneous solid matrix (hereafter referred to as
material 1) is characterized by the relation T=CWe or,

equivalently, T,
components T

C, nEkns Where T is the stress tensor (with

) € is the strain tensor (with components ¢;;),
and C" is the stiffness tensor represented by the elastic con-
stants C( ). In a similar way, the elastic properties of the

jkh®
embedded (uniform) inclusion are described by the tensor
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FIG. 3. Left panel: geometry of an ellipsoidal inclusion. Right

panel: elastic medium (with stiffness tensor é’(l)) occupying the
volume PR°\Q) and including an inhomogeneity (with stiffness ten-

sor é(z)) of volume () under arbitrary loading 7>

¢®@ having elements C; «n- We choose a reference frame de-
fined by three fixed Cartesian orthogonal axes, as shown in
Fig. 3, where the position vector is 7=(x;,x,,x3). In the
present work, we adopt the Voigt notation; therefore, the six-
element strain and stress vectors are written as

- T
E=[e en €3 €, €3 €3],

T=[T\, Ty Ty Ty Ty Tyl (1)

where [-]7 means the transposed vector. By adopting this
notation scheme, the stiffness four-index tensor for both the
isotropic solid and the inclusion is represented by a 6 X6
matrix

a(n) b(n) b(n) 0
bW g pw 0
_ b p g
0 0 0 2u"
0 0 0 0 2u”
0 0 0 0 0 2u®

)

[=EN el e =]
oS O O o O

where a(”):k(”)+;lﬂ(”) and b(”)zk(”)—§ w™ are simple com-
binations of the elastic moduli. The index n=1,2 refers to
the matrix and inclusion, respectively, while the elastic
moduli are named k (bulk modulus) and w (shear modulus).

The stress-strain relation is accordingly cast in the form T
=CWE within the matrix (i.e., in R*\Q) and T=C®?F inside
the embedded particle (i.e., within ). The bulk and the
shear moduli can be replaced when needed by the Young

Q) 1y (m) 3k
modulus E(")=T>+I;W and the Poisson ratio V(n)_m%

We suppose that the forces remotely applied generate a
uniform elastic deformation when no inclusion is present
into the body. The corresponding elastic state is fully de-

scribed by the linear displacement u; (), by the uniform
i Juy,

strain  €,= 2( o3 +£) and by the uniform stress 77

Cl(lkh € If we now embed the inclusion into the matrix, we

must evaluate the perturbation to such elastic fields both in-
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side and outside the inclusion. Firstly, we define the total
displacement as the sum of the unperturbed displacement u;
and a perturbation u! induced by the insertion

ui=u; +ul. (3)

Following the Eshelby theory, the perturbation u/ is the dis-
placement corresponding to the equivalent eigenstrain (mim-
icking the inclusion) defined by

€ ={{I- (") 'cT" -8y e (4)
Details are found elsewhere.? Here, we have introduced the

Eshelby tensor S and the 6 X 6 identity matrix IS depends
only on geometrical factors of the ellipsoidal inclusion and

on the Poisson ratio of the host matrix. In other words, S
contains all the physical information needed to predict the
mechanical interaction between the inclusion and the matrix
under external load.

The displacement u! induced by the equivalent eigen-
strain € can be evaluated in terms of the so-called harmonic
®(7) and biharmonic W(7) potentials’>>>* as

1 S; 6
"Aze | ———p . _ Zihg _ Zikg
u}(7) 6kh|:8'n'(1—v) K g K gt
)
_Lﬂq)i] (5)
1-vdm -

Hereafter, we adopt the symbol f,i=§)€ and we extend this
notation to higher order derivatives. Equations (3) and (5)
are valid anywhere. The harmonic potential is defined by the
Poisson equation V>®=-47 if 7, 0 if 7¢ (), and the
integral form of its solution is ®(r)=[ “;%ﬂdf. Similarly, the
biharmonic potential is defined by means of the biharmonic
equation V4*W=—87 if 7e (), 0 if 7¢ Q, and the standard
integral representation®?3 is W(r)=[q|r—x|dx. Such har-
monic and biharmonic potentials only contain geometrical
information about the embedded ellipsoid (i.e., the semiaxis
lengths).

It is worthwhile recalling some explicit expressions pro-
viding the above potentials or their derivative as used to
determine the elastic fields?

d(r) = Wa,a2a3f L(F’S)ds

)

o0 R(s)
AR
v (r) = Walaza3xif A, 2S ds, (6)
A RG)  aj+s
where f(r,s), n(r), and R(s) are defined as follows:
2 2 2
o xl x2 X3
r,s) = ,
frs) = o o s
n(r): flrn(n]=1,
R(s) = \(a} +5)(a3 +5)(a +5). (7)

The quantity 7(r) is defined in implicit form and it is con-
sidered as the largest positive root of the equation
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fl7, n(r)]=1. The integrals defined in Eq. (6) are used for the
external region assuming 7(r) given in Eq. (7) and for the
internal region assuming 7(r)=0.

For the sake of completeness, we briefly summarize also
the solution of the problem in terms of the strain tensor. The
perturbation to the strain is defined by the standard relation

Z (ko
Eih_Z r?xh+

relation @=8¢". Therefore, the total strain €=€°+& =€~

&xk) and it can be evaluated accordingly to the

+Se" [corresponding to the total displacement given in Eq.
(3)] can be found through the following relations (Voigt no-
tation):

e={I-S[I-(CY)'CON'e ifFeQ,

e=(+SH[I-(C'CPT'-8he ifFeQ, (8)

where S*(7) is the so-called external point Eshelby tensor.
Finally, the generic form of the Eshelby tensor, which is
correct both inside and outside the inclusion, can be written
by means of the elastic potentials as follows:**

14 5]{/’1 1
S.. =Y., ———P.—— (5., D .
ljkh(;) 87T(1 _ V) Jijkh 1= v Jij 87T( ih*,jk
+ 03Dy + 8P i+ 6D ). 9)

Usually, the notation adopted for the Eshelby tensor is dif-
ferent for the infernal points and for external ones,

Sijin(P) =Sy if 7 e Q,

Sijin(r) = Sp(r) if 7 & Q. (10)

Taking a different notation for the internal and the external
region is particularly efficient in order to remind that the
internal Eshelby tensor is constant and, therefore, the internal
stress and strain are uniform tensor fields.

III. SLIT CRACK

The elementary object of our model is an ellipsoidal void
with a very small minor axis, so to reproduce the flat shape
of a crack. If one of the semiaxes of the ellipsoidal void, say,
as, becomes very large and the minor semiaxis a, becomes
negligibly small, then the ellipsoid reduces to a slitlike crack
with semilength a;=L (see Fig. 1). In order to correctly per-
form the limiting process, we start considering a void with
infinite a3 and finite a, and a,, corresponding to an elliptic
cylinder aligned with the x; axis. We define the aspect ratio
as e=a,/a;=a,/ L. The actual slitlike crack geometry will be
eventually obtained by the limit a,—0 or, equivalently, e
— 0. The complete results for the elastic potentials describ-
ing this geometry are reported in Appendix A. There, we also
verify that the quantities ®; and W ;;; approach zero when
the aspect ratio e becomes vanishingly small. This is a point
that will play a crucial role in the following development of
the theory.

In general, we suppose that the matrix is at first placed in
an equilibrium state of uniform elastic strain, due to external
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loads. The inclusion is then embedded into the matrix, thus
affecting the state of strain, as described by the Eshelby
theory. In particular, it is important to notice that the internal
strain is uniform provided that the external or bulk strain is
uniform. When the physical condition Cgf,:h=0 defining a
crack is considered, then the induced internal strain and the
equivalent eigenstrain become identical. Their link to the ap-
plied external strain,

if reQ, (11)

is easily obtained from Eqs. (4) and (8). The eigenstrain € is
an important quantity since it appears in Eq. (5) providing
the displacement. From now on, the only elastic moduli de-
scribing the system are those of the matrix ((:’(2)=0 in the
crack): therefore, for the sake of simplicity, we proceed by
only using the Young modulus E and the Poisson ratio v of

such an isotropic medium. In Eq. (11), the Eshelby tensor S
depends on the aspect ratio e=a,/a; and on the Poisson ratio
v of the matrix. The exact expression of the Eshelby tensor
for the elliptic cylinder is given in Appendix B, where we
also prove that the eigenstrain appearing in Eq. (11) is sin-
gular when e —0.

We now proceed to calculate the exact displacement field
around the crack. In the present work, we analyze both the
case of pure uniaxial stress and of pure uniaxial strain, both
in mode I loading. The components of the total displacement
are obtained from Egs. (3) and (5) in the limit ¢ —0,

ES
P .€
ui(r) = u; (F) + lim uf(7) = u; (F) + lim _*ikhSkh
e—0 e—0 87(1 — v)
. Ej;cq)k
—1lim = i
e—0 2  em0 4m(l =)

*
veu P,

(12)

where the potential derivatives ®; and W ;; are given in
Appendix A, while the term [I-S]™" entering in Eq. (11) for
the eigenstrain € is derived in Appendix B. Since in this
work we consider the case of pure uniaxial stress as well as
of pure uniaxial strain, we must follow different procedures.

A. Pure uniaxial stress conditions

In pure uniaxial stress condition, we apply the load

77=[0 ¢ 0 0 0 0], (13)

where the quantity o represents the tensile stress applied in
mode I along the x, direction, as represented in Fig. 1, right.
The corresponding external strain is simply given by

vo T

vo
&=|-— -= 0 0 0]. (14)
E E

S ERS

By using Egs. (11) and (B3), we obtain the equivalent eigen-
strain
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Lk [(21}2—1)0' 2-2V+e)o vo ]T

€ = - O O O .
E eE E

(15)

The total displacement is eventually calculated through Eq.
(12),

_O'XI(1+V)|:1—2V2_E 27] ]’ (16)
a VL +7q

= E 1+v
y =0'X2(1+V)|:V(1+2V)+§ L>+ 77} (17)
2 E 1+v a n ’

ovx
Uz =— E3. (18)

We remember that the slit crack is aligned along the x5 axis
and the two surfaces of the crack lie on the plane (x;,x3).
The parameters «, B3, and 7 are listed below,

azx%nz +x§(L2 + 1),

B=1-20)(x +x3) 77 +2(1 = 3L + (3 - 4v)x3L% 7,

1 1
7= E(X% +x53-L%) + E\"/(X% +x3+ L) =4l (19)

The expression for 7 is derived from Eq. (A5) in the limit
e¢—0. Equations (16)—(18) (and the similar ones described
below for other cases) are important because they describe in
a very compact form the displacement field in the whole
space. They contain, as particular cases, all the standard
LEFM results.

In principle, from Egs. (16)—(18), it is easy to calculate
the strain or the stress tensor in some region of interest, by
using the constitutive relation of the matrix. Here, we do not
report this calculation since it is rather complicated and does
not add any conceptual issue to the present discussion.
Rather, we focus on the shape assumed by the crack under
loading and we calculate the displacements at the crack sur-
face. In particular, we take into consideration the upper sur-
face of the crack. If x,— 0% and |x,| <L, then

L, B
———x, and ——2(1-v). 20
1= ot ad =21y (20)
By using these limiting conditions in Egs. (16)—(18), we ob-
tain the displacement of the upper crack surface,

w=="H1=207),

u2=2§(1 — )WL =Xl (21)

Incidentally, the same result is found in the Landau and Lif-
schitz elasticity textbook.’> There, a different approach to
deal with sharp cracks is outlined: the Landau-Lifschitz
method exactly provides the results given in Eq. (21) for the
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zone of the crack far away from the tips [see Eq. (31.14) of
Ref. 33]. On the other hand, the crack tip region is only
approximately described, while our present procedure is rig-
orously valid everywhere.

The typical crack opening displacement (COD) of LEFM
is simply given by twice the above quantity u,. It is interest-
ing to observe that Eq. (21) confirms that the original crack
segment x,=0, —L<x; <L in the plane (x;,x,) is trans-
formed into an ellipse by the applied forces; in fact, from Eq.
(21), one can derive the standard ellipse equation

2 2

2 40%(1 - 172>
o A=
|:1+E(2V2—1):| L? E?

(22)

Finally, we obtain the T, (opening) component of the stress,

o200 20) s -]

ox;  oxz 0x,
(1-2v)(1+v)

Ty = 5 (23)

which is reported in Fig. 4. When x,=0, Eq. (23) provides
the well known Inglis result,?

o
Ty = ?Lz if x, — 0,

VX7

This result is important since it naturally drives to the con-
cept of stress intensity factor (SIF), which was phenomeno-
logically introduced by Irwin.** Along the x; axis, the dis-
tance from the tip of the slit crack is given by x;—L. When a
tensile stress o is applied along the x, axis (see Fig. 1), the
singular behavior of the stress field near the tip crack is de-
scribed by the following SIF:

~ vES

(1-v)ES
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FIG. 4. (Color online) Tensile stress field 7, along x, in a slit
crack. We have assumed the values E=1, o=1, v=0.33, and L
=0.5 in arbitrary units. The region under consideration is described
by —3<x;<<3 and 0<x,<<3. The results are represented for pure
uniaxial stress conditions. The color map (shown on the right) rep-
resents the intensity of 75, in arbitrary units.

Y ’I_
KI = lim T22\"27T(x1 - L) =oVLT. (25)
x1—L,x,—0

The last equation corresponds to the isotropic version of the
remarkable result by Barnett and Asaro.? The stress intensity
factor K; is independent of elastic moduli. We also remark
that the paradigmatic case described in this section was used
by Griffith!” in his theory of crack instability. Stress intensi-
fication is confirmed by atomistic simulations as well.'®

B. Pure uniaxial strain conditions

In pure uniaxial strain conditions, the external applied
strain is defined as

&=[0 § 0 0 0 0, (26)

where & is the constant strain in the x, direction. This strain
field is associated with the following applied stress:

= (1-20)(1+ )

Similarly to the procedure developed in Sec. III A, we define
the quantity o representing the tensile stress applied in mode
I (ie., the element 75,) and the quantity & measuring the
strain along x,, as respectively, as

__(-vEs _(1—2v)(1+v)o'
=201+’ B (1-vE '

Substituting Eq. (28) into Eq. (26), we obtain the external
applied strain in terms of the tensile stress o,
(1-2v)(1+v)o T

€={0 ———— 0 0 0 0. (29
€ (1-v)E 29)

o (28)

The components of the total displacement are obtained from
Eq. (12),

(I-2v)(1+w)

T
vEo 0 0 o}. (27)
(1-20)(1 + v)
[
_oox(l+) B Ui
= [(1—2v)—a L2+7J’ (30)
Con(l+)| v1-20) B [LP+q
2= E { 1-v +a n :|’ G
M3=O. (32)

The parameters «, 8, and 7 are once again given by Eq. (19).
Once more, the displacement of the upper crack surface can
be obtained by using Eq. (20),

u =- %(1 -2v)(1 +v),
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2 e
“2=E0(1 - vz)\"L2—x%. (33)

Such relations correspond to an elliptic deformation of the
crack surfaces described by

2 2
X X2
=1. (34
" A T
I+E(2V—1)(l+v) T g2

Finally, we remember that the Inglis result given in Eq. (24)
and the relative calculation of the SIF given in Eq. (25) are
still valid in the same form.

IV. CIRCULAR CRACK

We take now into consideration an ellipsoid of revolution
(a;=a,=R) with the principal axis aligned along x3; we de-
fine the aspect ratio e as e=as/a;=as/a,, where a,, a,, and
as are the semiaxes aligned, respectively, along the axes xi,
X,, and x5 of the given reference frame. The geometry of a
circular crack is recovered in the limit of e—0 (strongly
oblate ellipsoid), as one can see in Fig. 2, right. Henceforth,
we consider e as a finite quantity and we will perform the
limit at the end of the procedure. Furthermore, we calculate
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the derivatives of the elastic potentials given in Egs. (Al)
and (A2) under the assumptions a;=a,=R and as;=eR. The
expressions for such potentials or their derivatives are not
reported here for the sake of brevity. By now, the idea should
be manifested: we use the displacement as given in Eq. (12)
where the eigenstrain is calculated by means of Eq. (11). To
evaluate such an eigenstrain, we need the internal Eshelby
tensor for ellipsoids of revolution: its structure is described

in Appendix C, where the singular behavior of the term (7
—g]‘l is discussed as well. From this point on, we must
impose the external applied forces (or, equivalently, the

strain €”) in order to find out the final results under the pure
uniaxial stress and pure uniaxial strain conditions.

A. Pure uniaxial stress conditions

The external forces are characterized by a tensile stress
T3;=0 (see Fig. 2). Such a loading corresponds to the exter-
nal strain given by Eq. (14), which, by using Egs. (11) and
(C4), provides the asymptotic value of the eigenstrain

T
v) 0 0 o] (35)

The explicit result describing the total displacement u,, and
uy is eventually given as

40(1

mwEe

E*ejO{O 0

op(1 +v) (1+20)(1-v) 2 Vn| 28 Ry
uy==———" (1 =-2v)| ——————— —arctan — | - ————— (36)
2FE 1-2v)(1+v) = R TaR + 7
1+ 142 2 n| 2B-xRAR*+n) R
u3=—0x3( ) (1—21/){—1}( u + — arctan \77} +——'8 s RY n)? , (37)
E (1 )(1 - 21/) w a \ n
|
where the vanable u represents the radial displacement u R? 5 B
d——3-2v (39)
=uj+us, p=\xi+x; belng the radius. We have also intro- = Rz_p2x3 and

duced the total axial displacement u5 and the following defi-
nitions:

a=p’7 +x3(R*+ 7)*,

B=(1-2v)(x3+p?) 77 +4(1 — v) 3R + (3 — 2v)x3R%,

I I
7= (@40 =R + NG+ p? + R~ 4R (38)

On the upper surface of the crack (if x3— 0%, p<R), the
limiting relationships

are fulfilled and, therefore, the COD is characterized by

== (1 +20)(1-v),

4 0 o —
uy=——(1-1*)\VR> - p°. (40)
mE

Moreover, the stress along the direction of application of the
mode I loading can be easily obtained as

E J d
LU LY
(1=-2v)(1+v)|p dp X3
and it is reported in Fig. 5. Such a relation can be specialized

on the plane x;=0 containing the circular crack at radial
distance p> R, obtaining

T33=
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Ty3=—

= + arctan
T [ Np~ - R

(42)

This relation represents the analogous of the Inglis formula
[see Eq. (24)] for the case of circular crack. Similarly, we can
evaluate the stress intensity factor. The radial distance from
the border of the crack is given by p—R, and the SIF is
calculated as

—

— 2VR
lim \'2’7T(p—R)T33=_,—U'.

p—Rx3—0 N

K;= (43)
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B. Pure uniaxial strain conditions

The external strain is again given by Eq. (29), which, by
using Egs. (11) and (C4), provides the asymptotic value of
the equivalent eigenstrain

40(1 =17 0 0 OT

7Ee (44)

g*e':fo[o 0
We observe that € is identical for pure uniaxial stress [see
Eq. (35)] and pure uniaxial strain conditions [see Eq. (44)] in
the limit of very small aspect ratio. The final result is

— —
1+ 2 / 2B RV
up:—w{(l—2v)<l——arctan w)——é#}, (45)
2F T r mTaR +7n
1+ 2 7\ 2pB-XR*R*+7) R
Uy = oxs(l+v) (1- 2v)< "+ = arctan ﬁ) + 2B xR R +7) 7’)? , (46)
E 1-v & r T o 9

where «, B, and 7 are defined as in Eq. (38). The limits of
the displacement on the upper crack surface are given by

u =— %(1 —20)(1 + ),

p

4 0 —s
us=——(1- v )\VR? - p’. (47)
wTE

Finally, we point out that Egs. (42) and (43) hold in the case
of pure uniaxial strain mode I loading as well.

FIG. 5. (Color online) Tensile stress field 733 along x; in a
circular crack. We have assumed the values E=1, o=1, v=0.33,
and R=1 in arbitrary units. The region under consideration is de-
scribed by —3 <x3<<3 and 0 <p<<3. The results are represented for
pure uniaxial stress conditions. The color map (shown on the right)
represents the intensity of 733 in arbitrary units.

V. DENSITY OF STATES FOR THE STRESS

The knowledge of the exact and complete solution for the
elastic fields around a crack allows us to easily define and
calculate the density of states for the stress field. We take
into consideration the Tij(F) component of the stress tensor
and we define its density of states g(7) in a given region ()
(QCR? or QCRY) as follows:

g(7n) = Ar- Tij(F)]dFa (48)

mis(Q) Jg

where mis({)) indicates the measure of () (either area or
volume), &(x) is the Dirac delta function, and 7 is the posi-
tion vector either in two or three dimensions. If we suppose
that 7,,;, < T;;(r) < 7,,,, within (), then the following proper-
ties can be easily verified:

f g(ndr=1, (49)
[ f T, (Pd7 (50)
_ Tg T)AT= mls(Q) 0 ij ryar.

min

Moreover, starting from Eq. (48), it can be proved that

1 1
mis(Q) J 7, 7=nno |§Tij(ﬂ|

g(n) = ds, (51)
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which naturally underpins the possibly singular behavior of
g(7). When QCR?, the set {T;(r)=1} represents a two-
dimensional contour line of the component 7}; and, therefore,
the right-hand side of Eq. (51) is a line integral (ds is the
length element on the line). On the other hand, if ) C M3, the
set {T;;(r) =} represents a three-dimensional contour surface
for the component 7;; and the indicated operation is a surface
integral (ds assumes the role of area element on such a sur-
face).

The clear implication of Eq. (51) is that if T;;(r) is sta-
tionary at a given point, the integrand in the DOS expression
diverges. In other words, Van Hove singularities occur in the

DOS function wherever VT;;(r)=0.2" A detailed analysis*
shows that there are various types of Van Hove singularities
in three-dimensional space, depending on whether the func-
tion goes through a local maximum, a local minimum, or a
saddle point. In three dimensions, the DOS itself is not di-
vergent, although its derivative is so and the function g(7)
shows square-root singularities. In two dimensions, the DOS
is logarithmically singular, while in one dimension, the DOS
itself is infinite.

Both the definition and the singular behavior of the stress
DOS make this notion very similar to the one widely used in
solid state physics,37 for instance, to describe the distribution
of electron energy states or to define the density of vibra-
tional modes in the case of crystalline systems. Both in the
electronic and phonon cases, the DOS may exhibit some sin-
gularities (Van Hove singularities).?! Nevertheless, some im-
portant distinctions with respect to the present elastic case
should be emphasized: in the electronic case, the DOS can be
measured by means of several experimental techniques and
its Van Hove singularities are accessible through suitable ex-
citations at the corresponding energies. In the mechanical
counterpart, such experimental evidences are not available
since, of course, a method to stimulate a given elastic re-
sponse is not physically achievable. The concept of DOS in
mechanical problems is nevertheless interesting and useful.
Our results show that the probability density function asso-
ciated with the stress field in a region containing a defect
exhibits a double-peak or a triple-peak character. Therefore,
the variance (or second moment) of the field is inadequate in
characterizing the field fluctuations nearby the defect. To
prove the importance of the local field distribution, we un-
derline that all the moments of the stress density have a
physical meaning and a practical application: in heteroge-
neous or composite systems, the effective physical param-
eters, describing the behavior at the macroscale, can be nu-
merically obtained by means of simple averaging of the
fields (i.e., stress and strain fields) over the region under
consideration. So, we easily observe that the effective prop-
erties are determined from lower moments of the local fields.
On the other hand, the local field distribution is also funda-
mental in understanding material failure or breakdown phe-
nomena. These effects (both in dielectric and elastic context)
occur at localities where the intensity of the relevant field
(i.e., stress in our case) is maximum or at spots where the
energy concentration is very large. Therefore, the identifica-
tion of such regions and the quantification of the failure pro-
cesses are based on the determination of higher order mo-
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ments of the DOS. Accordingly, the stress DOS, containing
the complete information on the spatial fluctuation of that
field (i.e., all the possible expectation values or moments of
arbitrary order), allows the quantitative evaluation of effec-
tive properties (linked to low order moments) and failure and
breakdown features (linked to higher order moments).

In the following, we take into account a single crack in a
solid medium and we numerically evaluate the density of
state for the stress field in a given region containing the
crack.

A. Slit-crack density of states

Let us consider a slit crack under tensile loading in mode
I, as shown in Fig. 1. The T,, component of the resulting
stress field can be calculated by means of Eq. (23), as re-
ported in Fig. 4.

Two different shapes of the region () have been taken into
consideration in order to better understand the meaning of
the stress DOS. The first one is described by —3 <x; <3 and
0<x,<3 (corresponding to a rectangular region), and the
second one by x%+x§<9 and 0<x,<3 (corresponding to a
half circular region). Because of the very complicated stress
field distribution, it is hard to evaluate analytically the inte-
gral appearing in Eq. (48) or in Eq. (51) and, therefore, we
solved these equations numerically. The resulting DOSs for
the stress field 7, are shown in Fig. 6. The curves of the
DOS are identical both for the pure uniaxial strain and the
pure uniaxial stress cases. One can observe that within the
rectangular region, the DOS shows three peaks (falling at 7
=0.960, 7=1.009, and 7=1.019), while within the half circu-
lar region, only two peaks are indeed found (at 7=0.960 and
7=1.024). Figure 7 reports the contour lines of the stress
field for each peak of its DOS. We remark that the value
assumed by the DOS at a given value 7 is given by an inte-
gration over the contour 7,,=7, weighted with a quantity
inversely proportional to the modulus of the gradient of 75,
(i.e., a quantity that increases if the function is flat). There-
fore, the central lobe in Fig. 7 corresponds to the common
peaks at the value 7=0.960 (see Fig. 6). This contour allows
for the generation of a Van Hove singularity since it is the
longer contour in that very flat zone (it is tangent to the
boundary), in both the rectangular and half circular regions.

301

251

g0 2r

i i
8.8 0.85 0.9 0.95 71_ 1.05 11 1.15 1.2

FIG. 6. (Color online) Density of states for the stress in a slit
crack. The region is described by —3 <x; <3 and 0 <x, <3 for the
line with three peaks (black) and by x%+x%<9 and 0<x,<3 for
the line with two peaks (red). The results are identical both for pure
uniaxial stress and pure uniaxial strain conditions.
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FIG. 7. (Color online) Contour lines for the function T, in
correspondence of the peaks exhibited by the DOS curves of Fig. 6.
The lines have been computed at the values 7=0.960, 7=1.009, 7
=1.019, and 7=1.024. The boundary x%+x%=9 has also been repre-
sented (red).

Moreover, the two interrupted lines in Fig. 7 correspond to
the contour line at the value 7=1.009. This contour has an
extremal character only for the rectangular region and, there-
fore, a Van Hove singularity is exhibited only for such a
case. Finally, the last peaks (the second in the half circular
region and the third in the rectangular region, see Fig. 6) are
located in very near points. The related contour lines in Fig.
7 are those with a double lobe. They have a different behav-
ior: while the first line intersects the arc x{+x3=9 and can
produce a singularity in the rectangular domain, the second
line produces the singularity in the half circular domain since
it does not intersect this same arc. This analysis suggests
that, in order to calculate the density of states for the stress,
different regions can be taken into account depending on the
physical situation we are dealing with. For example, if we
consider a cylindrical body with a slit crack aligned to its
directrices (with the radius of the cylinder much greater than
the half-length of the slit crack), we may assume a circular
region (coincident with a section of the body) in order to
evaluate the fluctuation distribution of the stress inside the
medium. On the other hand, if we are considering a two-
dimensional lattice distribution of parallel slit cracks, we

n i i
8.8 0.85 0.9 0.95 71_ 1.05 1.1 1.15 1.2

FIG. 8. (Color online) Density of states for the stress in a cir-
cular crack. The region is described by -3 <x3 <3 and 0 <p <3 for
the line with three peaks (black) and by p2+x§ <9 and 0<p<3 for
the line with two peaks (red). The results are identical both for pure
uniaxial stress and pure uniaxial strain conditions.
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FIG. 9. (Color online) Contour lines for the function 733 in
correspondence of the peaks exhibited by the DOS curves of Fig. 8.
The lines have been computed at the values 7=0.950, 7=1.002, 7
=1.014, and 7=1.016. The boundary p2+x§=9 has also been repre-
sented (red).

may consider a rectangular region (the primitive cell of the
periodic structure) to evaluate the spectrum of the stress field
over the entire plane.

B. Circular crack density of states

We have considered a circular crack with radius R=1 ex-
posed to a tensile stress o=1. In the case of pure uniaxial
stress conditions, the results for the stress 733 have been
shown in Fig. 5. Please note that we have assumed the values
E=1 and v=0.33 for the elastic moduli of the matrix.

Once again, two different shapes of the region () have
been taken into consideration in order to better understand
the physical meaning of the stress DOS. The first one is
described by -3 <x3<3, and 0<p<3, and the second one
by p2+x§<9 and 0<p<<3. The DOS profile is identical
both for the pure uniaxial strain and the pure uniaxial stress
cases. The resulting DOSs for the stress field T35 are shown
in Fig. 8. One can observe that the DOS profile shows three
(two) peaks in the cylindrical region —3<x3;<<3 and 0<p
<3 (spherical region p2+x§<9 and 0<p<3). The three
peaks of the first DOS appear at the values 7=0.950, 7
=1.002, and 7=1.014, while the two peaks of the second
DOS fall at the values 7=0.950 and 7=1.016. Again, this
scenario can be investigated by means of the stress contour
lines shown in Fig. 9. The conclusions of the previous sec-
tion can be applied also in the present case.

VI. CONCLUSIONS

In the first part of this work, we have outlined a general
methodology (mainly based on the external point Eshelby
theory) addressed to obtaining the exact analytical expres-
sions for the displacement field around a crack under load.
The foremost achievements for mode I loading are obtained
for both a slit and a circular crack. In any case, we have
considered pure uniaxial stress as well as pure uniaxial strain
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loading conditions. Our results are not only consistent with
standard findings of LEFM, but they also generalize previous
approaches and frame them into a unique picture describing
the elastic behavior of a medium containing any kind of
crack (or, more generally, elastic inhomogeneity). We remark
that the present approach is robust enough to be applied to
the more general case of an elliptic planar crack. Although
this problem is not explicitly treated in the present work,
such an extension could be an interesting future development
since the complete analytical solution of this case is still an
open problem of linear elastic fracture mechanics.

For any loading condition, the present theory allows for
the exact calculation of any component of any elastic field,
everywhere in the elastic solid. Therefore, within our
method, the density of state for the components of the stress
tensors naturally defined and calculated. This is a concept
allowing a quantitative investigation on the spatial fluctua-
tions of any mechanical quantities within a given material
body. In particular, it is interesting to observe that the density
of states for the tensile part of the stress around a crack
exhibits some singularities. Although in this work we fo-
cused on the stress DOS for a single crack (slit or circular)
embedded into a homogeneous medium, it is nevertheless
possible to extend such a concept to the case of a distribution
of defects or inhomogeneities. In this case, the stress DOS is
valuable in characterizing the state of order of the defected
solid body. Indeed, when the defects are periodically distrib-
uted in the matrix (in a crystal-like fashion), the singularities
are very prominent and evident. On the other hand, when the
defects are randomly distributed and oriented, the stress DOS
function does not exhibit any singularity because the charac-
teristic fluctuations of the elastic fields are smeared out by
the complicated and irregular interactions among the defects.

The distribution of the local fields is of fundamental and
practical importance in understanding many crucial material
properties, such as breakdown phenomenon and the nonlin-
ear behavior of composites. It is noteworthy that the DOS
analysis of field fluctuations provided in this paper for me-
chanical quantities describing cracking processes can be, in
fact, applied to other phenomena, including electromagnetic
fields in heterogeneous media and velocity fields for flow
through porous media.

22,
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APPENDIX A: ELASTIC POTENTIALS
FOR THE SLIT CRACK

In order to define the exact displacement field around the
void inclusion, we begin by calculating the quantities ® ; and
W ;;x which appear in Eq. (5). From Eq. (6), we obtain
2, ds
@) al-2 + s R(s)

+00

O, (r)=- Wa1a2a3f (A1)

7!

and

+:x:
sds

) (a; + s)(aj2 +5) R(s)

21a,a,a3x;,
W u(r) == (Sijf T2 2N

7|

400
21a,a,asx;
- 5kif 2 2
s (aj +5)(a; +s)

sds
R(s)
* 2majayasx;  sds
= Ok 2 2
29 (@ + s)(aj + s) R(s)
N dma aras pxxx; 1
(a; + n)(a; + n)(a;+ MR(n)

A
» (af, +7)
(A2)
Equations (A1) and (A2) can be specialized for the present

geometry (a;=L, a,=ea,, a;— ®) getting the following set
of expressions:

mex,[L* + - \/(L2 + ) (e’L* + )]
(1-eA)(L*+ 7)

O, (r)=-4

s

mexy[e2L2 + p—\(L* + ) (2L + 7)]

() =4
2 (-2t 7) :
® 4(7) =0, (A3)
2L2 3
dliex’ <271ﬂ>
L +7y

V=4
11 (1—62)2

2x, 222+ 2)622L2 n+ x22 7+ )c]2L4e4 + X 27+ x22L4 '

1

L+

Wexz[(l +e?) —(n+ 627]+2€2L2)\/
4

(L* + p)(e*L* + 7)

Al 2ex,*x
] 1 X27 12+ 7

\I,,112=_ (1 —62)2

2X1262L277 + 2x22L277 + x22772 + )clzL“e4 + xl2 7+ x22L4 ’
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L*+7 L*+q \°
71'exz[(e2 -3)+(22L2 =P+ 37/ —(e2L2 N 7])3} 471'Lzexz3 7\ (—esz o
4

Wopn=- ,
222 (1-e?)? 2x, 2L+ 2,2 L2+ x, 7 + x, 2Lt + x 2 + x, 7L
( 2 1) ( 2 2 2L2)\/ 1 4 L2 2 L2+77
mex;| (e"+ 1) = (n+e“n+2e wL%exx -
Vo g e (P + (L ) AT
= - + R
122 (1-¢e%? 2x, 2%+ x, 2 L+ x 2P + 0,7 L PP+ 20, Ly

‘I',lzl = ‘P,zll = \P,IIZ’

Vo=V =V . (A4)

The elements W ;;; not listed above are all zero. Moreover, considering the largest positive root of the corresponding quadratic
algebraic equation, the quantity 7(7) defined in Eq. (7) assumes the following closed form:

1 1
== +x2-L2 - L) + = V/()c2 +x0+ L) —4L23% + 22 L2 (x - x3) + ALY (2 - 2). (A5)
St S VN 1 1%

It is easy to prove that the expressions given by Egs. (A3) and (A4) approach zero when the aspect ratio e becomes vanishingly
small. This is an important result since the final results (describing the actual displacement around the crack) will be obtained
as a limiting process for e — 0 of the product of two terms, one converging to zero and the other diverging to infinity, leading
to finite outcomes.

APPENDIX B: ESHELBY TENSOR FOR ELLIPTIC CYLINDERS

The Eshelby tensor S, for elliptic cylinders, is given by?
- |M 0
S= , (B1)

where the submatrices M and N are

el e+2 1-2v| e e 1-2v ev
¢ + € _
2l (+e)* 1+e | 2[(0+e)? 1+e | 1+e

1
M=1 1 1 1-2v| | 1+2 1-2v v |,
-yl 4 - 3 +
I (1462 14e | (42 14e| 1+e

0 0 0
1 1+¢2 - 0 0
+ —
21— (1+e)? g
1
N= 0 0 |. (B2)
l+e
e
0 0
l1+e

It is important to notice that the tensor -8 appearing in Eq. (11) is singular when e — 0. This result well describes the singular
behavior of the strain field in flat void inclusions and it can be proved by the direct calculation of the inverse matrix,

(I-M)™! 0

F=57=1" 0" gen )

(B3)

where [ is the 3 X 3 identity matrix. The calculations lead to these explicit results for the submatrices
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_(1+2e—2ve—2v)(1—v) Qre+2v-1)(1-v) (2e—2ve+2v—1)v—
(1-2v) (1-2v) (1-2v)
(I-M)"'= Qre+2v-e)(1-v) (e—2ve-2v+2)(1-v) QRve-2v+2-e)v |, (B4)
e(l1-2v) e(1-2v) e(l1-2v)
i 0 0 1 ]
_(l+e)2(l—v) 0 |
e
(I-N)'= 0 l+e 0 (B5)
i 0 0 e+1 ]

So, it is evident from Egs. (B4) and (B5) that the eigenstrain given by Eq. (11) is singular when ¢ — 0 (some elements diverge

to infinity). In particular, we may write the asymptotic relation

0 0 0 0 00
2u(1-v) 2(1-v)% 2v(1-v)
0 0
(1-2v)e (1-2v)e (1-2v)e
0 0 0 0 0 0
-3 =0 1- B6
=81 e~ 0 0 0 Y00 (B6)
e
1
0 0 0 0 -0
e
0 0 0 0 0 0

Equation (B6) contains all the physical information needed

11328 -3e?>—4¢*8 +8Lve* — 8Ly

to describe the behavior of a slit crack. S = g (1-e*)(1-v) )
APPENDIX C: ESHELBY TENSOR FOR ELLIPSOIDS le*+ £ -4’ +8Lve” — 8Ly
OF REVOLUTION Sun=- 8 (1-e*)(1-v) ’
The general structure of the Eshelby tensor for the ellip- ) ) 5
soids of revolution is given by3 Siip=— 1278+ £2+ 2Lve” - 2£V’
- - 2 (1-e’)(1-v)
S Sun Suss 0 0 0 , , , ,
St St Siiss 0 0 0 83311=1e -£-2e 2—21}62 +2v+4Lve —421/’
5. S Sui S 0 0 0 2 (1-e3(1-3)
0 0 0 Sun-Sun 0 0 G o 1-2¢*+4e’L - L+ ve’ —v-28ve* +28v
0 0 0 0 28535 0 33337 (1-e)(1-v) ’
0 0 0 0 0 2813 2 2 2
L (él) 813]3:_16 £+2£—1+£‘;ve - Lv—ve +V‘ (©2)
4 (1-e)(1-w»)

The form of S correctly describes the symmetries of an el-
lipsoid of revolution, which has two equivalent axes and a
third one with different behaviors. The complete expressions
for the entries of the tensor are

The depolarization factor £ depends on the shape of the
ellipsoid and it can be computed in closed form. The ellip-
soid is prolate (of ovary or elongated form) if e>1 and
oblate (of planetary or flattened form) if e<1,
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e —— e—\er—1
B — 2eVe’—1+In — s ife>1
¢ d¢ 4(e?=1)? e+ve -1
£=2| TivpieLn= )
2)y (E+DXE+D) ¢ | mo2e == 2arctan —— | ife<1
—_— - V - - B 1re
4(\/1 _ e2)3 V1 -¢?

As described in Eq. (11), the relationship between the external strain and the eigenstrain is given by ’é*=[7— S’]‘l'éw. We take
into consideration only the leading singular terms containing the 1/e divergence since we are focusing on the e<<1 case,

0 0 0 0 0 0
0 0 0 0 0 0
4v(1-v)  4v(1-v) 4(1-v)? 0 0
7(1-2v)e w(1-2v)e =(1-2v)e
[1-8]'e—0 0 0 0 0 0 0 (C4)
4(1 -
m(2 - v)e
4(1 -
0 0 0 0 4=y
m(2 - v)e

As before, Eq. (C4) contains all the details necessary to model the behavior of a circular crack, obtained in the limit of the
aspect ratio e approaching zero. Moreover, Eq. (C4) is the circular crack counterpart of the Eq. (B6), obtained for the slit-crack

geometry.
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