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Interfaces between different media represent the most common structure in composite and complex materi-
als, e.g., with applications in microelectronics and photovoltaics. We analyze the elastic properties of the
a-Si/c-Si interface, which involves two completely different atomic structures. We prove that the continuum
approach and the atomistic simulation are consistent if atomic-scale elastic fields are properly averaged.
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The effective elastic behavior of heterogeneous �i.e., com-
posite, multilayered, or nanostructured� materials is deeply
affected by interface features occurring between phases char-
acterized by different elastic moduli.1–3 In particular, a key
issue consists in evaluating the stress and the strain fields
nearly or just across the interface between such phases.
While this problem has been extensively investigated by
continuum mechanics,4,5 comparatively little work has been
based on atomistic simulations. This is in spite of the matu-
rity they reached in dealing with solid mechanics6 and in
allowing for a detailed atomic-scale modeling of the struc-
tural complexity of heterogeneous materials.7–10

In this work we compare continuum and atomistic solid
mechanics to establish a general picture about the continuity
of elastic fields �i.e., strain and stress� across a planar inter-
face between two different media. In particular, we atomis-
tically model an amorphous/crystalline silicon interface
�a-Si/c-Si�, which involves both elastically different phases
and structures that quite differ at the atomic scale. In other
words, the a-Si/c-Si interface is an interesting model system
containing the two most relevant features of heterogeneous
materials. It also represents a system of paramount impor-
tance for applications in microelectronics, photovoltaics, or
optoelectronics.

In continuum mechanics the dynamics of a deformable
body under infinitesimal strain is described by the equation
of motion,11,12

�� T̂ + b� = �a� , �1�

where T̂ is the Cauchy stress tensor, b� is the externally ap-
plied force field, � is the mass density, and a� is the accelera-
tion field. A constitutive relation must be introduced in order
to link the stress to the strain. Under the linear hypothesis,
we can write

T̂ = Ĉ�̂ , �2�

where Ĉ is the stiffness tensor and �̂=1 /2��� u� + ��� u��T� is the
strain tensor with u� being the displacement field.

Let us consider a plane interface between two different

elastic media having stiffness Ĉ�a� and Ĉ�b�. Close to the in-
terface, the stress and the strain fields within material a �b�

are, respectively, T̂�a� and �̂�a� �T̂�b� and �̂�b��. From Eq. �1�, by
means of the Gauss divergence theorem, we can obtain a first
continuity relation

T̂�a�n� = T̂�b�n� �3�

for the stress field projected along the unit vector n� orthogo-
nal to the interface plane.

In order to derive the continuity condition for the strain
field, we preliminarily consider the general expressions for
the variation of length �l and the variation of angle �� in a
bulk material under deformation �̂. If t� is the unit vector
aligned with a segment of length l, then its length variation is

�l = �t� · �̂t��l . �4�

Similarly, if t� and s� are unit vectors defining an angle �, its
variation under the same deformation is

�� =
1

sin���
�cos����t� · �̂t� + s� · �̂s�� − 2�s� · �̂t��� . �5�

We suppose now that t� and s� are arbitrary unit vectors
lying on the interface plane. If we assume that interface deb-
onding or sliding does not occur, then �l and �� must to be
continuous, i.e.,

t� · �̂�a�t� = t� · �̂�b�t�,

s� · �̂�a�t� = s� · �̂�b�t�. �6�

These relations state the continuity of the strain field.
For linear elastic media, the interface relations provided

by Eqs. �3� and �6� supply the further boundary conditions,

Ĉ�a��̂�a�n� = Ĉ�b��̂�b�n� ,

t� · �Ĉ�a��−1T̂�a�t� = t� · �Ĉ�b��−1T̂�b�t�,

s� · �Ĉ�a��−1T̂�a�t� = s� · �Ĉ�b��−1T̂�b�t�. �7�

They predict a discontinuity in some of the components of
the strain and stress fields, and allow for their evaluation.

In order to further proceed, we need to define the interface
orientation as well as the state of deformation. We therefore
define a Cartesian frame of reference �x ,y ,z�, where �x ,y� is
the interface plane, and we assume that the unit vectors s�, t�,
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and n� are aligned along the x, y, and z axes, respectively �see
Fig. 1�. By imposing a uniaxial strain �zz �and �ij =0 ∀i , j
�z� we get

Tzz
�a� = Tzz

�b�, �8�

�zz
�a�

�zz
�b� =

C11
�b�

C11
�a� , �9�

D12
�a��Tyy

�a� + Tzz
�a�� + D11

�a�Txx
�a� = D12

�b��Tyy
�b� + Tzz

�b�� + D11
�b�Txx

�b�,

�10�

and

D12
�a��Txx

�a� + Tzz
�a�� + D11

�a�Tyy
�a� = D12

�b��Txx
�b� + Tzz

�b�� + D11
�b�Tyy

�b�.

�11�

In Eqs. �8�–�11� we have introduced the elastic constants C11
���

and C12
��� in the Voigt notation13 ��=a ,b� and the compliance

tensor D̂���= Ĉ���−1. Equation �8� states the continuity of the
longitudinal component of the stress while Eq. �9� predicts a
discontinuity in the longitudinal strain; similarly, Eqs. �10�
and �11� prove the discontinuity of the transverse compo-
nents of the stress. Moreover, we note that the last two equa-
tions correspond to �xx

�a�=�xx
�b� and �yy

�a�=�yy
�b� �i.e., they corre-

spond to Eq. �6� with t�= �1,0 ,0� or t�= �0,1 ,0��. If a uniaxial
deformation is considered, these transverse components of
the strain vanish everywhere and, therefore, both the left and
right members of Eqs. �10� and �11� will be zero.

In our atomistic model, material �a� corresponds to a-Si
and material �b� corresponds to c-Si. Therefore, we need, at
first, to generate a bulk a-Si sample and then determine its
elastic behavior. By using the Stillinger-Weber interatomic
force field,14 an a-Si sample containing as many as 24 000
atoms was obtained by quenching from the melt at the same
density of c-Si. A simple-cubic lattice of Si atoms was
melted at T=2500 K. Then, a first quenching led to the liq-
uid phase at T=1800 K. Finally, it was quenched again to
the solid phase at T=0 K with a rate as slow as 3
�1012 K /s. In the amorphous structure, the obtained 8% of
the atoms are threefold coordinated, 75% are fourfold coor-
dinated, and 17% are fivefold coordinated, corresponding to
an average coordination close to 4.1 in agreement with ex-
perimental data. Then, through small variations of the metric
tensor �defining the volume and the shape of the periodically
repeated simulation box�, all the components of the stress

tensor have been reset to zero �actually to a value smaller
than 10−2 GPa�. By applying a suitable set of uniaxial defor-
mations in the range 0��zz�0.1, we have obtained the
stress-strain longitudinal and transverse relations, as reported
in Fig. 2 �top�. We remember that the local stress field de-
serves a careful definition and calculation: we have adopted
the expression derived from the virial of the forces, namely
Tij =-  1

V��=1
N Fi

�rj
� at T=0 K �where Fi

� and ri
� are the ith

cartesian components of the total force and of the position of
the �th atom, respectively, in the volume V, �=1, . . . ,N�,
as described with more details elsewhere.15 Elastic and com-
pliance constants have been obtained as the numerical de-
rivative of the stress-strain curves at vanishing strain �clearly,
C44 and D44 have been obtained by a shear strain�. Present
atomistic data are summarized in Table I. The very same
procedure has been followed for c-Si as well. In this case the
strain was applied along the �001� direction. Results are re-
ported in Fig. 2 �bottom�. While for c-Si we have found three
independent elastic moduli �cubic symmetry�, in the case of
the amorphous system, the Cauchy relation 2C44=C11−C12
is well reproduced. This proves that our computational pro-
cedure indeed generated an isotropic amorphous material:
the a-Si slab, therefore, represents the atomistic counterpart
of an isotropic continuum. In Table I we also report experi-
mental and ab initio elastic moduli for c-Si �Refs. 16 and 17�
and molecular-dynamics data for the amorphous phase.18 The
c-Si data show that our present simulations based on the
Stillinger-Weber potential provide reasonably good elastic
moduli. As for the a-Si, we observe that our results show a
sizeable elastic softening with respect to the perfect crystal.
The observed softening of the elastic properties of a-Si is
consistent with previous investigations,18 as reported in

FIG. 1. �Color online� Atomistic structure of the �a-Si/c-Si� in-
terface. The reference frame �x ,y ,z� and the basis �s� , t�,n�� have been
represented.
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FIG. 2. �Color online� Longitudinal �Tzz� and transverse �Txx�
stress-strain relations for the a-Si �top panel� and c-Si �bottom
panel�, obtained with molecular-dynamics simulations.
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Table I. Overall these results stand for the reliability of the
present estimation of bulk elastic properties.

The a-Si/c-Si interface was obtained by glueing the slabs
and by relaxing the system using a damped molecular dy-
namics, thus allowing for the formation of chemical bonds
across amorphous/crystalline boundary. A set of uniaxial ho-
mogeneous deformations in the range 0��zz�0.1 was even-
tually applied to our composite system. After a suitable
equilibration time, the linear applied displacement uz=�zzz
relaxed to uz=�zzz+�uz�z�, where �uz is the difference be-
tween the final and the applied displacement. In Fig. 3 we
show the results for a deformation as large as �zz=0.04. In
Fig. 3�a� we report the perturbation �uz versus z; it is inter-
esting to observe the fluctuations of the displacement in the
a-Si slab induced by the structural disorder. Moreover, in
Figs. 3�b� and 3�c�, we show the longitudinal and the trans-
verse components of the stress tensor, respectively. We plot
the average value of the stress taken over slabs �normal to z�

as thin as an interplanar distance. These planar averages will

be hereafter referred to as T̄ij�z�. As a matter of fact, while in
the crystalline system the atomic stress is practically uniform
inside the sample, in the amorphous slab we find very large
fluctuations due to the structural disorder. In order to point
out the line up of the stress tensor at the interface, we further

average T̄ij�z� over a distance d along the z direction �simple
moving average �SMA�� by defining

T̄̄ij�z� =
1

2d
�

z−d

z+d

T̄ij�z��dz�. �12�

This is in fact the stress represented in Fig. 3�b� and 3�c�.
Typically, we use d�20 Å, corresponding to six interplanar

distances. This procedure allows for the estimation of T̄̄zz�z�
in both the a-Si and c-Si, providing a typical value within
each slab as large as 5.42 and 5.48 GPa, respectively. There-
fore, as expected from Eq. �8�, the average zz component of
the stress is continuous. Similarly, the ratio between the av-
erage strain field in a-Si and the corresponding strain field in
c-Si is found to be 1.108. On the other hand, from Table I we
get C11

�c-Si� /C11
�a-Si�=1.12. Once again, this result is in excellent

agreement with the continuum condition given in Eq. �9�. By
inserting in Eqs. �10� and �11� the average stress values for
any component, we obtain an almost perfect identity. We
conclude that continuum and atomistic interface elasticities

TABLE I. Elastic stiffness and compliance constants �at T=0 K� for c-Si and a-Si, obtained by present
atomistic simulations �Stillinger-Weber potential�. Ab initio calculations and experimental estimates for c-Si
are reported as well. Results based on molecular-dynamics simulations are also reported for the a-Si.

Elastic
Moduli

a-Si
�present work�

c-Si
�present work�

c-Si
�ab initio�
�Ref. 16�

a-Si �molecular dynamics�
�Ref. 18�
T=294 K

c-Si �Expt.�
�Ref. 17�
T=300 K

C11�GPa� 135 151.26 162.07 150 166

C12�GPa� 94 76.14 63.51 86 64

C44�GPa� 20 56.4 77.26 33 79

D11�GPa−1� 0.017 0.009988 0.00792 0.0114 0.0077

D12�GPa−1� −0.0071 −0.003347 −0.00222 −0.00417 −0.0021

D44�GPa−1� 0.049 0.0177 0.0129 0.0303 0.013
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FIG. 3. �Color online� Perturbation to the imposed displacement
after �a� relaxation, �b� transverse, and �c� longitudinal stress versus
the z coordinate. For stress data, the simple moving average �SMA�
has been considered to reduce the intensity of the fluctuations

�dashed lines for T̄̄zz and T̄̄yy, solid line for T̄̄xx�.
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FIG. 4. �Color online� Perturbation to the imposed displacement
obtained through relaxation for nine different values of the imposed
strain �ranging from �zz=0.02 to �zz=0.1�.
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are perfectly consistent, provided that atomic-scale elastic
fields are properly averaged.

Finally, we observe that the relaxed strain within the a-Si
�c-Si� slab is always larger �smaller� than the applied strain
�zz. This can be understood in terms of the quantity �uz�z�,
previously defined and reported in Fig. 4 for different values
of the applied �zz. We can write �zz

�a-Si�=�zz+d�uz
�a-Si� /dz and

�zz
�c-Si�=�zz+d�uz

�c-Si� /dz, where d�uz
�a-Si� /dz and d�uz

�c-Si� /dz
are easily obtained from Fig. 4. It is evident that
d�uz

�a-Si� /dz	0 and d�uz
�c-Si� /dz
0 for any applied strain.

Since this behavior is independent of the intensity of the
applied strain, we conclude that the longitudinal stress-strain
relations for a-Si and c-Si �see Fig. 2� cannot have intersec-
tion points: in other words, the amorphous phase is always
softer than the crystalline one for any state of deformation.
To conclude, we have verified that atomistic simulations for
the interface behavior are consistent with continuum results

provided that appropriate averages are applied to the atom-
istic elastic fields. Moreover, we have obtained the stress-
strain curves �transverse and longitudinal� of the Si amor-
phous and crystalline phases, proving that the a-Si is always
softer than c-Si. Finally, we point out that the nonlinear char-
acter of amorphous silicon is larger than in crystalline sili-
con. This is qualitatively due to the complex disordered
structure and to the rearrangements occurring during defor-
mation. As a matter of fact, within a-Si, atoms lie at dis-
tances that typically differ from the equilibrium crystalline
ones. This means that they feel deviations from a purely
harmonic potential.
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