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Abstract — We prove that the elastic fields within a generic nonlinear and anisotropic
inhomogeneity embedded in a (linear and anisotropic) matrix are uniform. We apply this general
result to the specific case of a dispersion of isotropic nonlinear spheres and we obtain a universal
mixing scheme for the Landau coefficients. This scheme describes a complex scenario frequently
found in material physics problems, where possible strong amplifications of the nonlinearities may

arise in some given conditions.
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Introduction. — The central problem in predicting the
elasticity of heterogeneous materials (like, e.g., composite
or nanostructured systems, mixtures, multi-defected or
multi-cracked media) consists in the evaluation of their
effective macroscopic elastic properties, still taking into
account the actual microscale material features. This
leads to the concept of homogenization, a coarse-graining
approach addressed to determine the relationship between
the microstructure and the effective elastic behavior.

Homogenization has been successfully developed for
linear elastic properties (as well as for linear electric
ones) [1]. The existence of upper and lower bounds for the
effective elastic moduli has been proved, independently of
the specific microstructure [2,3]. Alternatively, the effec-
tive elastic behavior of a heterogeneous system can be
obtained by taking into account the spatial correlation
among its constituents [4,5]. More in particular, dilute
dispersions of inclusions in a homogeneous matrix have
been widely studied both from the electrical [6] and the
elastic [7] point of view, as well as for systems containing
a distribution of cracks [8-11]. Finally, the iterative tech-
nique and the differential method are succesfully applied
for arbitrarily dense dispersions [12].

In heterogeneous or composite materials the nonlin-
ear regime has been investigated only under specific
conditions [13-18]. Nevertheless, the general nonlinear
elastic features are relevant in many materials science
problems. For instance, transient elastography has shown
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its efficiency to map the linear and nonlinear properties
of soft tissues and it is nowadays used as diagnostic tech-
nique [19,20]. In fact, it has been verified that malignant
lesions tend to exhibit nonlinear elastic behavior contrary
to normal tissues or to benignant lesions. This point is
explained by observing that malignant lesions alter the
structure of the cellular network enhancing the nonlinear
properties. The pathological nonlinear zones can be
profitably described by the so-called Landau coefficients
(see below), making feasible their localization through
noninvasive imaging techniques (ultrasound and/or
magnetic resonance) [21]. Another relevant example is
offered by the engineering of semiconductor quantum
dots, embedded in a confining solid matrix. The quantum
dots growth, ordering and orientation (occuring during
processing) are largely affected by elastic phenomena,
even beyond the linear regime [22,23]. Finally, many
problems of fracture mechanics in composite materials
do contain nonlinear features like, e.g., the interaction
between the stress fields generated by a moving crack and
a fiber (or, more generally, an inclusion) [24].

In this letter we prove a general property of the elastic
strain field within any nonlinear and anisotropic inhomo-
geneity, embedded into a linear (but anisotropic) matrix.
This general result is then applied to the more specific
case of a dispersion of nonlinear isotropic spheres (see
fig. 1), which paradigmatically represents most features
of the above examples.

Nonlinearity can be introduced in the theory of elas-
ticity by means of the exact relation for the Lagrangian
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Fig. 1: Dispersion of nonlinear spheres in a linear matrix with
volume fraction ¢ =V./V =V./(Ve + Vo).

strain (geometrical nonlinearity) and/or through a
nonlinear stress-strain constitutive relation (non-Hookean
physical nonlinearity) [25]. In this work, we adopt the
physical nonlinearity standpoint, whereas the geometrical
linearity is everywhere assumed: therefore, the balance
equations are based on the small-strain tensor €, on
the symmetric Cauchy stress T, and on an arbitrary
(nonlinear) stress-strain relation.

A general theorem on the elastic behavior of a
nonlinear anisotropic inhomogeneity. — The general
property we are looking for sets out from the Eshelby
theory, which solves the elasticity equations for a single
anisotropic linear ellipsoid (stiffness c 2)) embedded into
an anisotropic linear matrix (stiffness C(*)) [26]. Upon
uniform remote loading 7°° =CMe> it is proved [27]
that the strain field €° inside the ellipsoid is uniform and
assumes the value

& ={I-8[I- (W) P te, (1)
where the Eshelby tensor S depends only on the geometry
and on C(1).

We can generalize this result to the case where the
inhomogeneity is nonlinear, i.e. 7' =C® (€) €, where
c® (é) is any strain-dependent anisotropic stiffness
tensor (see fig. 2). The energy balance is described by
the Green formulation: for a given state of deformation,
the stress power is absorbed into a strain energy function
U(&), leading to the constitutive equation 7'(¢) = ag—éé)
equivalent to 7' = C(® (¢) € [25]. The strain energy function
can be identified with the internal energy per unit volume
in an isentropic process, or with the Helmholtz free-energy
per unit volume in an isothermal process. In the present
generalization nonlinear features are described by an arbi-
trary free-energy function U(€). In order to cope with this

Remote loading il

Remote loading 7

Fig. 2: Ellipsoidal inhomogeneity under remote load.

problem, we suppose to have found a solution for the
equation

&={I-S[I— (W)@ tex, (2)

obtained from eq. (1) through the substitution ¢ —
€@ (e%). If such a solution é* = é5* exists for a given €, it
means that the nonlinear inhomogeneity could be replaced
by a linear one with constant stiffness C(2) =(C®) (e5*),
without modifications of the elastic fields at any point.
Therefore, if €%* exists, then eq. (2) exactly describes,
through self-consistency, the elastic behavior of the nonlin-
ear anisotropic inclusion. This is not a trivial result: for
instance, such a generalization of eq. (1) is not valid if a
nonlinear behavior is assumed for material 1 (matrix).

The existence and unicity of a solution é°* for eq. (2) can
be exactly proved under the sole hypothesis of convexity
for the strain energy function U(€). We rearrange eq. (2)
as follows:

_,0U(&)

IA_A"S G A(]-) -~ = €@

LSl +S(CH) Oés €

COS™ = fles —EWS—1e> 4 8?5 )y, 3)
€

i {leé@) [S™!—Ile—eCMSte> + U(é)} = 0.
0€ | 2
Now, the first term represents a symmetric (because of
the Betti reciprocal theorem [28]) and positive definite
(because of the minimum-potential-energy principle [29])
quadratic form in €, while the second term is a linear
function of é. Therefore, the sum of these two terms is
a convex functional with relative minimum at [I — S]é.
If U(é€) is a convex functional (with U(0) =0) as well, the
brackets in eq. (3) contain the sum of two convex terms:
they result in an overall convex functional with a minimal
extremum at €°=¢é**. Therefore, a unique solution of
eq. (2) exists under the convexity assumption for U(€).
We have obtained an important new property of an
arbitrary inhomogeneity: if the linear elastic matrix is
subjected to remote uniform loading, then the stress and
strain fields (7°* and é*) inside the embedded inhomogene-
ity will be uniform, independently of the (nonlinear and
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anisotropic) constitutive relation for the inhomogeneity
itself.

Our theorem is based on the symmetric and the positive-
definite character of the tensor C(V[§~! —I]. We have
proved both properties, but for sake of brevity the cumber-
some demonstrations will be published elsewhere.

Application of the general theorem to the case of
a dispersion of spheres. — The general result stated in
eq. (2) can be applied to fully homogenize any dispersion of
arbitrarily nonlinear and anisotropic ellipsoidal inclusions.
Let us now consider a more specific dispersion of nonlinear
spherical isotropic inclusions. The density is described
by the volume fraction c¢, defined as the ratio between
the total volume of the embedded spheres and the total
volume of the heterogeneous material (see fig. 1). The
matrix is described by the linear constitutive equation T=
2u1€+ (K1 — %Ml) Tr (€) f, where K and u; are the bulk
and shear moduli, respectively. To model the spherical
inclusions, we adopt the most general isotropic nonlinear
constitutive equation expanded up to the second order
in the strain components: it follows that the function
U(€é) can only depend upon the principal invariants of the
strain tensor, i.e. U = U (Tr(€), Tr(é?), Tr(é*)). Therefore,
by expanding U(é) up to the third order in the strain
components, we obtain

U(E) = (@) + (KQ .

2u2) Te()?

+§Tr(é3) + BTr(é)Tr(é?) + %[T‘r(€)]3 (4)

and deriving the stress, we get
A . 2 .
T = 2M2€+ <K2 — 3M2> TI(E)I

+ A& 4+ B{Tr(e%)I 4 2¢Tr(é)} + C[Tx()]2]  (5)

for the material corresponding to the spherical inclusions.
The parameters A, B, and C are the Landau moduli [25]
and they represent the deviation from the standard linear-
ity. The explicit expression of the Eshelby tensor for a
sphere is reported below [27]:

1
m[((sik‘sjh +0in0;%)(4 — 511)

+6kh5ij (51/1 — 1)},

Sijkh =
(6)

where v; is the Poisson ratio of the matrix. We can
evaluate the effect of S;jr, over an arbitrary strain e},
getting

4 _6 K1+2/L1 &s }3K1—4,U,1

53K +4m

~S

=__> = Tr (e%) 1.
53K, + 41 r (&)

(7)

By inserting egs. (5) and (7) into eq. (2), it can be proved
that
Lé® + MTr (¢8) I+ N (¢8)* + O&°Tr (&%)

+ PTX[(e*)?)] + Q[Tx (¢°))? [ = &, (8)

defining the explicit relation between the internal strain
€* and the remote deformation é*°, for a single nonlinear
spherical inhomogeneity. The parameters

Ki+2
o148 Eit2m (MZ_1>’
53K +4p1 \ 1

5Ky — Ky (3—&-2%) — 4 (p2 — 1)

9)

M= , 10
5 (3K +4p1) (10)
:§£ K1+2/1'1 (11)
5p1 3Ky +4py’
_6B Ki+2m (12)
5/L1 3K1+4/L17
1 K4
P———~  |i5B-4 1+3>}, 13
15(3K1+4M1)[ ( M1 (13)
1 K1>}
=— |15C—-2B [ 1+3— 14
“ 15(3K1+4M1){ < G} (14)

depend on both linear and nonlinear moduli.

Let us now move to the actual case of a dilute dispersion
of spheres (see fig. 1). Under the hypothesis of a small c,
the average value of the strain in the overall system is
given by (€) = c€® + (1 — ¢)é>°. Similarly, the average value
of the stress is (T') = C) (¢) + ¢T's — ¢CMes. The average
fields (1) and (€), combined through eq. (8), determine
the effective constitutive equation for the heterogeneous
system. Basically, it is written as eq. (5) where, however,
the effective linear and nonlinear elastic moduli pefr, Kepr,
Acsr, Begr and Cepr must be introduced. As for the linear
elastic coefficients, we obtain

M2 — M1

Ueff = p1 +C R (15)
6 K142
c+(1—c) [14+§ (B2 —1) fotzm |
3K +4m) (Ky — K
Kop =Ky + (3K +4p) (Ko — K e (16)

3Ko+4p; — 3C(K2 — Kl) ’

We observe that K¢ and p.f only depend upon their
linear counterparts for materials 1 and 2. Interesting
enough, the effective Landau coefficients show a more
complicated structure

A
Aef:C?—2CT

: (17)
(N'M' = L'P’) (p2 — pa)
L3 (L' +3M')
(N'+3P) [Ky— K1 —3(ua—p1)] =~ B
L (L' +3M')

Beff =2c

—C
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Fig. 3: Mixing scheme for the nonlinear Landau coefficients.

1c(9C+9B+A)
= — 5 +
9 (L'+3M") 9
1c(AN'+60")(p2 —p1) 2
9 L’Q(L’+3M’) 9L (L'+3M")
1e(BN'+9P) (I — K1) AN’ (p2—pa)c

1c¢(A—-3B)
T
2 ¢(3B+A)

Cef

9  L*(L'+3M) 9 L?
1¢(9Q' +30"+3P' + N')(Ks — K1) (19)
3 (L' +3M")* ’

where we have introduced the parameters L' =c+ (1—
)L, M'=(1-¢)M, N'=(1—-¢)N, O'=(1-¢)0O, P’ =
(1—c¢)P, and Q' = (1 —¢)Q. We note that egs. (15)—(19)
hold even in the limiting case of ¢ =1, falling beyond the
adopted hypothesis of small volume fraction.

Despite the assumptions adopted to work out the
above equations, the following properties define a general
scenario valid for any nonlinear heterogeneous system
having reference to the geometry of fig. 1. First of
all, we have proved that A, B, and C determine the
effective nonlinear moduli of the heterogeneous material
by following the universal mixing scheme shown in fig. 3.

Furthermore, if the linear elastic moduli of the matrix
and of the spheres are the very same (i.e. Ki =Ko
and p1 = o), we simply obtain K = K1, ey = 1 and
Acpr = cA, Begr = cB, Cegy = cC'. In other words, the effec-
tive Landau coefficients are simply rescaled by the volume
fraction c.

Then, if we consider the special case of identical Poisson
ratios v =vo,=1/5 (and different Young moduli E; #
E,), we obtain veg =1/5, and

Ei(1—¢)+Ex(1+¢)

Bt = E;. 20
T B (l+co)+ B (1—c) ! (20)
The Landau coefficients can be calculated as follows:
SE3
i X, (21)

A B (T 0+ B (1=
where X = A, B or C. Therefore, v; =15 =1/5 is the only
situation where the mixing scheme of fig. 3 is simplified,
generating a direct correspondence among the nonlinear
moduli of the spheres and the effective nonlinear moduli
of the heterogeneous system. We deduce from fig. 4 that
the effective modulus X.fr can be as large as the modulus
X (also for small volume fraction ¢) if Fy/E; < 1. The
special value 1/5 for the Poisson ratio is not uncommon.
For linear porous materials (with spherical pores) and for
linear dispersions of rigid spheres, the following property

2 < logyg g—f <2

0 0.2

0.4
c

0.6 0.8 1

Fig. 4: Nonlinear Landau coefficients given in eq. (21) for
the special case of identical Poisson ratios v1 =v2 =1/5, for
a varying ratio between Young moduli F> and Fi.

holds: if 1 =1/5, then we have v =1/5 for any volume
fraction of pores or rigid spheres [12]. Moreover, in both
the above systems, in the limit of ¢— 1, the effective
Poisson ratio converges to the fixed value vegy =1/5,
irrespective of the matrix Poisson ratio [12].

Finally, we consider dispersed spheres made of a nonlin-
ear isotropic and incompressible material (i.e. Ky — 0o
in eq. (5)). The corresponding constitutive equation is
obtained as follows:

e= Lir A dndy s A ndi
22 1205 2445
1 . A . A o
——— Tr(T ] — —(T)? — —[Tx(T))?I, (22

where only the nonlinear coefficient A appears. Such
a relationship imposes Tr (é®) =0, as requested by the
incompressibility. As for the corresponding effective linear
moduli, eq. (15) for pes remains unchanged, while eq. (16)
leads to K = K1 + (K1 + %ul) 7=+ On the other hand,
the Landau coefficients have been eventually found to be

12 2
Ay =12540, Bup=—120A0, Cyp="0040, (23

where

B c (3K, —|—4,u1)3 w
{6(K1 +2p1) [epn + (1= )pa] + pa (9K + 8#1)}?24)
One can observe that the effective nonlinear elastic moduli
depend only on the modulus A, fully describing the nonlin-
earity of the spheres. This is an example of mixing where
a single nonlinear modulus affects all of the nonlinear
Landau coefficients of the mixture.

In order to show the most important achievements of
our theory, we performed a numerical implementation
of egs. (15)—(19). Under the hypothesis of K; > K, we
always observe a sizeable amplification of the nonlinear
effective modulus Cep. In fig. 5 we have plotted the
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Fig. 5: Linear and nonlinear effective elastic moduli in terms
of the volume fraction c.

effective moduli vs. the volume fraction ¢, considering
the mixture parameters p; =1,us=4,K; =10, Ky =1,
A=-3,B=38,C =5 in arbitrary units. The enhancement
of C.fr is remarkable; we underline that such an intriguing
feature is obtained for any set of parameters, provided that
the matrix is much more incompressible than the inclu-
sions. We point out that this feature occurs well within the
range of validity of the present theory, namely for small
values of ¢ (see fig. 5). Our numerical results prove that the
Landau moduli are not limited by some given bounds, at
variance with the case of their linear counterparts, which
are constricted by the classical Hashin-Shtrikman limita-
tions [2,3].

More in general, the enhancement of Landau moduli
suggests that the nonlinear effective properties can be
strongly affected by the linear moduli of the constituents
of the heterogeneous material. For example, the ratio
Cefr/C is sensibly modulated by the ratio K;/K,. This
point could be relevant in analyzing normal or patholog-
ical tissues in biomechanics and in studying functional-
ized materials with specific nonlinear properties. In fact,
the relationship here established between microstructural
features and effective properties can be used for designing
and improving materials or, conversely, for interpreting
experimental data in terms of the elastic behavior of their
constituents.

Conclusions. — In conclusion, we have developed a
complete homogenization theory for a dilute dispersion of
nonlinear spheres into a linear matrix. A fully analytical
set of equations describing the effective elastic behavior
is worked out. The present theoretical device is properly
suited to recognize complex unusual mixing phenomena
exhibited by a heterogeneous material. In particular, we
proved that each effective Landau coefficient only depends
upon its counterpart in the nonlinear inclusions for special
values of the Poisson ratio. Finally, we obtained a sizeable
enhancement of some nonlinearities when K > Ks.
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