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By combining continuum elasticity theory and tight-binding atomistic simulations, we work out the

constitutive nonlinear stress-strain relation for graphene stretching elasticity and we calculate all the

corresponding nonlinear elastic moduli. Present results represent a robust picture on elastic behavior and

provide the proper interpretation of recent experiments. In particular, we discuss the physical meaning of

the effective nonlinear elastic modulus there introduced and we predict its value in good agreement with

available data. Finally, a hyperelastic softening behavior is observed and discussed, so determining the

failure properties of graphene.
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The elastic properties of graphene have been recently
determined by atomic force microscope nanoindentation
[1,2], measuring the deformation of a free-standing mono-
layer as sketched in Fig. 1 (top). In particular, in Ref. [1]
the experimental force-deformation relation has been ex-
pressed as a phenomenological nonlinear scalar relation
between the applied stress (�) and the observed strain (�)

� ¼ E�þD�2; (1)

where E and D are, respectively, the Young modulus and
an effective nonlinear (third-order) elastic modulus of the
two-dimensional carbon sheet. The reported experimental
values are E ¼ 340� 40 Nm�1 and D ¼ �690�
120 Nm�1. While the first result is consistent with pre-
vious existing data [3–7], the above value for D represents
so far the only available information about the nonlinear
elasticity of a one-atom thick carbon sheet.

Although nonlinear features are summarized in Eq. (1)
by one effective parameter D, continuum elasticity theory
predicts the existence of three independent third-order
parameters Cijk for graphene, as reported below. In other

words, while Eq. (1) represents a valuable effective relation
for the interpretation of a complex experiment [1], a more
rigorous theoretical picture must be worked out in order to
properly define all the nonlinear elastic constants of gra-
phene and to understand the physical meaning of D. This
corresponds to the content of the present Letter where we
investigate the constitutive nonlinear stress-strain relation
of graphene, by combining continuum elasticity and tight-
binding atomistic simulation (TB-AS) [8].

To obtain the nonlinear stress-strain relation of an elastic
membrane, we need at first to elaborate an expression for
the corresponding strain energy function U (per unit area).
Since, as illustrated in Fig. 1 (bottom), the underlying
lattice is hexagonal, it is useful to consider the coordinate
set � ¼ xþ iy and � ¼ x� iy [9], where the x and y
directions are, respectively, identified with the zigzag
(zz) and the armchair (ac) directions. Because the strain

energy function is invariant under a rotation of �=3 about
the z axis (normal to the suspended monolayer), there are
two linear moduli (the two-dimensional Young modulus E
and Poisson ratio �) and three nonlinear independent elas-
tic coefficients (�i, i ¼ 1, 2, 3) all expressed in units of
force/length; we easily proved that

2U ¼ E

1þ �
������ þ E�

1� �2
�2�� þ�1ð�3�� þ �3��Þ

þ�2��������� þ�3�
3
��;

(2)

FIG. 1 (color online). Top: scheme of the indentation of a
suspended monolayer graphene (side view). Bottom: definition
of zigzag and armchair directions (top view).
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where ��� ¼ �xx þ �yy, ��� ¼ �xx � �yy þ 2i�xy, and

��� ¼ �xx � �yy � 2i�xy. In order to further proceed we

must better focus the strain definition which in elasticity
theory is twofold: we can introduce the so-called small

strain tensor �̂ ¼ 1
2 ð ~r ~uþ ~r ~uTÞ, being ~u the displacement

field, or the Lagrangian strain �̂ ¼ 1
2 ð ~r ~uþ ~r ~uT þ

~r ~uT ~r ~uÞ. While �̂ takes into account only the physical
nonlinearity features (i.e., a nonlinear stress-strain depen-
dence observed in regime of small deformation), �̂ de-
scribes any possible source of nonlinearity, including both
physical and geometrical (large deformation) ones.

We start using �̂ in Eq. (2) and we get the nonlinear
elastic coefficients �1, �2 and �3 which are related to the
third-order elastic constants C111, C222, and C112, as cus-
tomarily defined in crystal elasticity [10], through the
following relations

�1 ¼ 1
12ðC111 � C222Þ; �2 ¼ 1

4ðC222 � C112Þ;
�3 ¼ 1

12ð2C111 � C222 þ 3C112Þ:
(3)

The strain energy function is finally obtained as

2U ¼ E

1þ �
Trð�̂2Þ þ E�

1� �2
ðTr�̂Þ2 þ 1

3
C111�

3
xx

þ 1

3
C222�

3
yy þ C112�

2
xx�yy þ ðC111 � C222 þ C112Þ

� �xx�
2
yy þ ð3C222 � 2C111 � C112Þ�xx�2xy

þ ð2C111 � C222 � C112Þ�yy�2xy; (4)

where we set ������ ¼ Trð�̂2Þ and �2�� ¼ ðTr�̂Þ2. The
stress-strain nonlinear constitutive equation for in-plane

stretching is straightforwardly obtained by T̂ ¼ @U=@�̂,

where T̂ is the Cauchy stress tensor.
Since the analysis of the experimental data provided in

Ref. [1] through Eq. (1) is assuming an applied uniaxial
stress, we now suppose to apply a uniaxial tension �~n

along the arbitrary direction ~n ¼ cos�~ex þ sin�~ey, where

~ex and ~ey are the unit vectors along the zigzag and the

armchair directions, respectively (see Fig. 1, bottom).

Under this assumption we get T̂ ¼ �~n ~n � ~n, with in-plane
components defined as Txx ¼ �~ncos

2�, Txy ¼
�~n cos� sin�, and Tyy ¼ �~nsin

2�. Similarly, by inverting

the nonlinear constitutive equation we find the correspond-
ing strain tensor and the relative variation of length � ~n ¼
~n � �̂ ~n along the direction ~n. By combining these results,
we obtain the stress-strain relation �~n ¼ E�~n þD~n�

2
~n

along the arbitrary direction ~n (see Fig. 1, bottom), where
D~n is given by

D~n ¼ 3
2ð1��Þ3�3 þ 3

2ð1��Þð1þ�Þ2�2 þ 3ð2cos2�� 1Þ
� ð16cos4�� 16cos2�þ 1Þð1þ�Þ3�1: (5)

If we set ~n ¼ ~ex (i.e., � ¼ 0), we get the nonlinear modulus

DðzzÞ for stretching along the zigzag direction

DðzzÞ ¼D~ex

¼3ð1þ�Þ3�1þ 3
2ð1��Þð1þ�Þ2�2þ 3

2ð1��Þ3�3:

(6)

Similarly, by setting ~n ¼ ~ey (i.e., � ¼ �=2), we obtain the

nonlinear modulus DðacÞ for stretching along the armchair
direction

DðacÞ ¼D~ey

¼�3ð1þ�Þ3�1þ 3
2ð1��Þð1þ�Þ2�2þ 3

2ð1��Þ3�3:

(7)

We observe that the above expression forDðzzÞ apply for all
stretching directions defined by the angles � ¼ k�=3 (k 2
Z), while DðacÞ holds for the angles � ¼ �=6þ k�=3.
Since the nanoindentation experiments generate a strain

field with radial symmetry [1], as sketched in Fig. 1(bot-
tom), in order to get the unique scalar nonlinear elastic
modulus appearing in Eq. (1) we need to average the
expression of D~n over �. This procedure leads to

hD~ni ¼ 1

2�

Z 2�

0
D~nd� ¼ DðzzÞ þDðacÞ

2

¼ 3

2
ð1� �Þ½ð1þ �Þ2�2 þ ð1� �Þ2�3� (8)

proving that the experimentally determined nonlinear
modulus actually corresponds to the average value of the
moduli for the zigzag and armchair directions.
We now repeat the above procedure by using the

Lagrangian strain �̂: even in this case we demonstrated
that the strain energy function is given by the very same
Eq. (4), where �̂ is replaced by �̂ and the Cijk by the

Lagrangian third-order moduli CL
ijk. By imposing the iden-

tity Uð�̂Þ ¼ Uð�̂Þ (where the Lagrangian strain can be
written in term of the small strain by �̂ ¼ �̂þ 1

2 �̂
2

[11,12]) we obtain the conversion rules CL
111 ¼

C111 � 3E
1��2 , CL

222 ¼ C222 � 3E
1��2 , CL

112 ¼ C112 � E�
1��2 ,

DL
~n ¼ D~n � 3

2E (for any ~n) and hDL
~n i ¼ hD~ni � 3

2E. The

constitutive equation can be finally derived in the form

T̂PK ¼ @U=@�̂, where T̂PK is the second Piola-Kirchhoff
stress tensor. Hereafter we will refer to the small strain and

Lagrangian scalar nonlinear modulus by hD~ni and hDL
~n i,

respectively. They both will be compared with the experi-
mental parameter D of Eq. (1). The analysis below will
identify the actual theoretical counterpart of D.
The important result summarized in Eq. (8) (as well as in

its Lagrangian version) implies that the scalar nonlinear
modulus can be obtained by the third-order elastic con-
stants (as well as the linear ones). They can be computed
through energy-vs-strain curves corresponding to suitable
homogeneous in-plane deformations, thus avoiding a tech-
nically complicated simulation of the nanoindentation ex-
periment. Therefore, the following in-plane deformations
have been applied: (i) a uniaxial deformation 	 along the
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zigzag direction, corresponding to a strain tensor �ðzzÞij ¼
	
ix
jx; (ii) a uniaxial deformation 	 along the armchair

direction, corresponding to a strain tensor �ðacÞij ¼ 	
iy
jy;

(iii) a hydrostatic planar deformation 	 , corresponding to

the strain tensor �ðpÞij ¼ 	
ij; (iv) a shear deformation 	 ,

corresponding to an in-plain strain tensor �ðsÞij ¼
	ð
ix
jy þ 
iy
jxÞ.

In this work the needed energy-vs-strain curves have
been determined by TB-AS, making use of the tight-
binding representation by Xu et al. [13]. A periodically
repeated square cell containing 400 carbon atoms was
deformed as above. For any given applied deformation,
full relaxation of the internal degrees of freedom of the
simulation cell was performed by zero temperature
damped dynamics until interatomic forces resulted not

larger than 0:5� 10�11 eV= �A.

For the deformations �ðzzÞij , �ðacÞij , �ðpÞij , and �ðsÞij the elastic

energy of strained graphene can be written in terms of just
the single deformation parameter 	

Uð	Þ ¼ U0 þ 1
2U

ð2Þ	2 þ 1
6U

ð3Þ	3 þOð	4Þ; (9)

where U0 is the energy of the unstrained configuration.

Since the expansion coefficientsUð2Þ andUð3Þ are related to
elastic moduli as summarized in Table I, a straightforward
fit of Eq. (9) has provided the full set of linear moduli and
third-order elastic constants, while the shear deformation
was used to confirm the isotropy of the lattice in the linear
approximation. Each energy-vs-strain curve, shown in
Fig. 2, has been computed by TB-AS as above described,
by increasing the magnitude of 	 in steps of 0.005 up to a
maximum strain j	maxj ¼ 0:055. Arrows in Fig. 2 indicate
the different nonlinear behavior along the zz and ac
directions.

The outputs of the fitting procedure are reported in
Table II where the full set of third-order elastic constants
of monolayer graphene is shown. We remark that C111 is
different than C222; i.e., a monolayer graphene is isotropic
in the linear elasticity approximation, while it is aniso-
tropic when nonlinear features are taken into account. By
inserting the elastic constants Cijk of Table II into Eqs. (3),

(6) and (7), we also obtained the nonlinear moduli for both
the zz and ac directions.

In Table III we report the values of the calculated elastic
moduli, together with the available experimental and theo-
retical data. The present TB-AS value for E is in reason-
able agreement with literature [1,5,6,15], while the value of
� is larger than most of the ab initio results [6,14,15,17]
(but for the result in Ref. [16]). While this disagreement is
clearly due to the empirical character of the adopted TB
model (where, however, no elastic data were inserted in the
fitting data base), we remark that the values of hD~ni and
hDL

~n i predicted by means of Eq. (8) are affected by only

10% if we vary � in the range of values shown in Table III.
Table III shows that the predicted hD~ni is much closer to

the experimental value D than its Lagrangian counterpart

hDL
~n i. This seems to suggest that measurements in Ref. [1]

were performed in the physical nonlinearity regime (small
strain formalism), rather than in the geometrical nonline-
arity one (Lagrangian formalism), as also confirmed by the
excellent agreement shown in Fig. 3 commented below.
Since Cijk < 0 (and D< 0), graphene is a hyperelastic

softening system. Therefore, the present model plays a
crucial role in determining the failure behavior of the
graphene membrane [18,19].
In order to substantiate the above statement, we show in

Fig. 3 the graphene stress-strain curve, as defined in
Eq. (1). Both the theoretical and experimental curves

TABLE I. Relationship among the energy expansion coeffi-
cients Uð2Þ and Uð3Þ of Eq. (9) and the elastic moduli of graphene
for four in-plane deformations (see text).

Deformation Uð2Þ Uð3Þ

�ðzzÞij
E

1��2 C111

�ðacÞij
E

1��2 C222

�ðpÞij
2E
1�� 4C111 � 2C222 þ 6C112

�ðsÞij
2E
1þ� 0

−3.23
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FIG. 2 (color online). Strain energy density U, obtained by
TB-AS, as a function of the strain parameter 	 corresponding to
the four homogeneous deformations summarized in Table I.

TABLE II. Small strain and Lagrangian nonlinear elastic mod-
uli of graphene in units of Nm�1.

Small strain Lagrangian

C111 �1689:2 CL
111

�2724:7

C222 �1487:7 CL
222 �2523:2

C112 �484:1 CL
112 �591:1

DðzzÞ �696:2 DLðzzÞ �1163:7
DðacÞ �469:6 DLðacÞ �937:9
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have been obtained by using the Young modulus and the
scalar nonlinear coefficient as reported in Table III. We
remark that in Fig. 3 the small strain hD~ni value was used.
The agreement between the experimental curve and the
theoretical (small strain) one is remarkable. In addition, by
means of Fig. 3 we can determine the failure stress (maxi-
mum of the stress-strain curve) �f ¼ �E2=4hD~ni, corre-
sponding to a predicted failure stress as high as
42:4 Nm�1. This result is in excellent agreement with
the experimental value 42� 4 Nm�1, reported in
Ref. [1]. These values correspond to the failure strength
of a two-dimensional system. In order to draw a compari-
son with bulk materials, we define an effective three-
dimensional failure stress �3D

f ¼ �f=d, where d is taken

as the interlayer spacing in graphite. By considering d ¼
0:335 nm [20], we obtain �3D

f ffi 130 GPa. This very high

value, exceeding that of most materials (even including
multiwalled nanotubes [21]), motivates the use of one-
atom thick carbon layers as possible reinforcement in
advanced composites.
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FIG. 3 (color online). Theoretical (present work) and experi-
mental (see Ref. [1]) stress-strain curves, as defined in Eq. (1).
Shaded area represents the experimental error.

TABLE III. Linear and nonlinear elastic moduli of graphene in units of Nm�1 (� is dimen-
sionless).

E � D hD~ni hDL
~n i

Present 312 0.31 � � � �582:9 �1050:9
Ref. [1]a 340� 40 � � � �690� 120 � � � � � �
Refs. [3,4]b 235 0.413 � � � � � � � � �
Ref. [5]c 384 0.227 � � � � � � � � �
Ref. [6]d 345 0.149 � � � � � � � � �
Ref. [14]d � � � 0.173 � � � � � � � � �
Ref. [15]d 350 0.186 � � � � � � � � �
Ref. [16]d � � � 0.32 � � � � � � � � �
Ref. [17]d � � � 0.12–0.19 � � � � � � � � �
aExperimental.
bTersoff-Brenner.
cEmpirical force-constant calculations.
dAb initio.
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