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We investigate through atomistic simulations the mechanical behavior of a c-Si nanowire embedded in an
elastically different c-Si. The results are compared with the continuum predictions based on the elasticity
theory. The observed deviations between the two approaches are due to the presence of the disordered interface
in the atom-resolved system which, for small wires, induces sizable prestrain into the sample, also in absence
of any external loads. Finally, we develop a continuum model fully exploiting such interface effects provided
by the atomistic simulations.
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I. INTRODUCTION

The mechanical behavior of nanostructured materials is
strongly affected by interface features, occurring at the
boundary between phases characterized by different elastic
constitutive equations or crystalline structures.1,2 In particu-
lar, the embedding of a given nanoinclusion in a hosting
homogeneous matrix is deeply influenced by the lattice mis-
match, which ultimately governs the effective elastic proper-
ties of the heterogeneous system. In fact, both the inclusion
and the matrix accomplish an elastic relaxation to accommo-
date this mismatch and, therefore, they admit a state of de-
formation even if no external load is applied. We will refer to
such a complex system as a prestressed �or, equivalently,
prestrained� composite.

A typical example of prestressed system is represented by
semiconductor quantum dots or quantum wires, embedded in
a matrix with different lattice parameter.3,4 Several works
have been addressed to the calculation of the strain state in
buried quantum dots.5–7 Both quantitative and qualitative
knowledge of stress and strain distributions are essential for
characterizing and tailoring their optoelectronic properties,8,9

as well as for understanding their self-organization.10 Typi-
cally, the state of deformation is estimated using continuum
elasticity and, then, used as input for an electronic structure
calculation.11 However, while continuum elasticity is inher-
ently scale independent, the elastic relaxation of a nanostruc-
ture does depend on the actual length scale at which the
heterogeneity shows up. In other words, at the nanoscale
surface effects become important due to the increasing
surface-to-volume ratio and induce a size dependency in the
overall elastic behavior.12,13

The experimental evidence of this scale effect phenom-
enon has been addressed in a wide range of contexts.14 For
example, the effects of the reduced size on the elastic prop-
erties of nanowires have been measured by atomic force mi-
croscopy �AFM� and the increase of the effective elastic
modulus for the smaller diameters has been attributed to sur-
face effects.15 Similar results have been obtained through a
nanometer-scale bending test on a c-Si beam, using again
AFM methodologies.16 More recently, the size-dependent ef-
fective Young modulus of silicon nanocantilevers have been
measured by using electrostatic pull-in instability, within the

framework of the nanoelectromechanical systems �NEMS�.17

In this work we use a combination of atomistic and con-
tinuum methods to describe the elastic behavior of a silicon
nanowire embedded in a silicon homogeneous matrix with
different crystal orientation. This structure represents a good
model for real systems of large technological interest.18–20

Moreover, it also represents a conceptually relevant case
where the atomic structure leads to deviations from the stan-
dard continuum picture. We describe how the presence of a
disordered interface affects the elastic fields and generates a
size-dependent prestrain in both the nanowire and the sur-
rounding matrix. In addition, by looking at the mechanical
response of this model system to a remote load, we show
how the prestrain induces a strong localization of the elastic
fields nearby the inclusion. The atomistic simulations are de-
veloped to obtain a fully resolved picture of the structural
complexity of the disordered interface. On the other hand, a
continuum model is here developed, fully exploiting the ob-
served atomistic phenomena. This atomically informed con-
tinuum model does include the size-dependent effects de-
scribed above.

The present paper is structured as follows: in Sec. II we
describe the atomistic model of the inclusion, in Sec. III its
continuum counterpart is developed and, finally, in Sec. IV
we discuss the elastic behavior under external loading by
means of both atomistic simulations and continuum models.

II. ATOMISTIC MODEL

We consider a crystalline silicon �c-Si� homogeneous ma-
trix and we fix the x axis along the �100� crystallographic
direction of the diamond lattice �see Fig. 1�. The lattice pa-
rameter is set to the equilibrium value so as to obtain a
stress-free configuration. A cylindrical portion of the matrix
of radius R is then rotated by an angle � around the z axis
�see Fig. 1�. Because of the cubic symmetry of the diamond
lattice, the rotated cylinder behaves, upon loading along the
y axis, as an inclusion with a different elastic response than
the hosting matrix. In addition, the elastic mismatch between
the inclusion and the matrix depends on the angle of rotation
and vanishes for �=k� /2 �k=integer�. In most of our simu-
lations we fixed �=� /4 since this angle supplies the largest
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difference in the elastic response between the inclusion and
the matrix �see Sec. IV for details�.

The interaction among silicon atoms is described by the
Tersoff potential.21 The simulation cell is a thin slab orthogo-
nal to the z axis; periodic boundary conditions are applied so
as to obtain an infinite cylindrical inclusion. To minimizing
the interaction between the periodic images, the width of the
slab is ten times larger than the diameter of the inclusion,
both in the x and in the y directions. As for the mechanical
behavior, this structure is described by two-dimensional elas-
tic fields �plain strain conditions�. It means that all the rel-
evant quantities are functions only of the x and y coordinates.

By generating the input structure as above, we have ar-
ranged several samples with 2 nm�R�20 nm. The largest
simulated system contains as many as 1.3�107 atoms and
the corresponding length of the simulation cell along x and y
is as large as 400 nm.

The initial configurations have been relaxed through
damped dynamics in order to allow for chemical bonding at
the interface between the inclusion and the matrix. The con-
vergence criterion is set so to have interatomic forces in the
final configuration not larger than 10−5 eV /Å. After this re-

laxation, we have computed the atomic displacement field
u�0�x ,y� and we have found that the disordered interface gen-
erates a uniform hydrostatic compression within the inclu-
sion. Therefore, the present atomistic model correctly pre-
dicts that even in absence of any external load, the inclusions
exhibit a state of uniform internal prestrain. In Fig. 2 we
show the variation of such a prestrain �0=�ux

0 /�x=�uy
0 /�y as

function of the radius R. In order to obtain �0 for each
sample, we have fit the ux

0�x ,y� and uy
0�x ,y� surfaces inside

the inclusion guessing a linear dependence on x and y. In
order to test the linear hypothesis, i.e., the uniformity of the
internal strain field, we have used several fitting domains
obtaining a constant trend.

In Fig. 2 we note that the prestrain �0 �in absolute value�
reduces with increasing R. This effect can be explained as
follows. In Fig. 3 we report the atom number density and the
energy per atom as a function of the distance r from the
center of the inclusion; data are obtained from the sample
with R=10 nm. We note that the atom number density at a
distance r=R, corresponding to the position of the interface,
is lower than its value in the surrounding crystalline bulk.
The interface region behaves as a coating of constant thick-
ness d inserted between the matrix and the inclusion. There-
fore, the volume available for the inclusion is reduced with
respect to the initial configuration by a factor � R−d

R �2. When R
increases this volume variation and the resulting prestrain
tend to zero. We remark that, in principle, the thickness of
the disordered interface could depend on the value of the
angle � defined in Fig. 1. Nevertheless, in our calculations
such a thickness was found to be pretty constant, as dis-
cussed below �see Sec. III�. Further investigations about the
disordered structure at an interface can be found
elsewhere.22,23

III. CONTINUUM MODEL

In the previous section we proved that the prestrain within
the inclusion does depend on its size because of interface
effects. Here this result is considered as a guideline for the
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FIG. 2. �Color online� Internal prestrain �0 within the nanowire
as a function of the inclusion radius R. We report the atomistic
result �full symbols� and the continuum theory prediction �solid
line�.
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FIG. 3. �Color online� Energy per atom and atom number den-
sity as a function of the distance r from the center of the inclusion
of radius R. The data correspond to a sample with R=10.0 nm. For
r�R the local number density is much smaller than elsewhere
while the energy, as expected, is higher.

FIG. 1. �Color online� A c-Si inclusion of radius R embedded in
a Si matrix. General scheme of the system geometry �left panel� and
snapshot of an atomistic sample �right panel�. The elastic mismatch
between the inclusion and the matrix is obtained through a rotation
by an angle � of the inclusion. We also show the direction of the
applied deformation �y axis� and those of the longitudinal �l� and of
the transverse �t� displacements.
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development of a continuum model reproducing the elastic
features of the atom-resolved system. We consider the con-
figuration represented in Fig. 4, where a cylinder of radius R2
is forced to fit a similarly shaped void with radius R1�R2.
We also assume that both the hosting matrix and the cylinder
are made of isotropic materials described by the elastic
moduli ��1 ,�1� and ��2 ,�2�, respectively �� is the shear
modulus and � is the Poisson ratio�.

When R2	R1 a uniform compression inside the cylinder
is generated, as well as a radially decreasing compression in
the external region. For the following purposes, we are also
interested in the determination of the elastic fields when an
arbitrary load is remotely applied. This model must lead the
classical Eshelby results when R2=R1, i.e., when prestrain
and prestress are zero.24,25

The elastic field has been obtained through the complex
potentials methods due to Kolossov and Muskhelishvili.26–28

This robust approach to elasticity was recently adopted to
solve several two-dimensional �plane-elasticity� nanome-
chanics problems.29,30 In Appendix A we will show the de-
tails of this calculation. In order to apply this model to the
problem described in Sec. II, we have to set its elastic pa-
rameters �i.e., �1, �1, �2, and �2� consistently. This implies
that we must introduce two different isotropic media, respec-
tively, describing the elastic behavior of the nanowire and of
the matrix. If the linear elasticity of the matrix is described

by the stiffness tensor Ĉ�100�, then the inclusion is represented

�in the same system of reference� by the tensor Ĉ�100� rotated

upon the z axis, namely, Ĉ��� �remember that in our case
both the matrix and the inclusion are made of c-Si�. On the
other hand, the isotropic elastic moduli � and � for the two
phases depend upon the stiffness tensor components through
the following relations:

� = �C11 − C12�/2,

� = C12/�C11 + C12� . �1�

Therefore, we set

�1 = �C11
�100� − C12

�100��/2,

�1 = C12
�100�/�C11

�100� + C12
�100�� �2�

in the matrix and

�2 = �C11��� − C12����/2,

�2 = C12���/�C11��� + C12���� , �3�

in the inclusion. This approach is fully justified because we
have calculated the exact internal strain field for some para-
digmatic configurations with the anisotropic Eshelby
model31,32 and we have verified that our isotropic approxi-
mation does not affect the results under uniaxial elongations
or hydrostatic external loadings.

On the other hand, the formalism for the isotropic case is
much lighter than for the anisotropic one,33 thus providing a
more clean picture. Therefore, the choice of an isotropic con-
tinuum model derives from the observation that the complex
potentials method extended to anisotropic materials33 is so
complicated to nullify all the advantages of a simple model
that can be used appreciating the underlying physical
meaning.

The results of the atomistic simulations �full symbols in
Fig. 2� have been fitted by means of the analytic expression
for the prestrain �see Appendix A�

�0 =
�1�
2 − 1��R1 − R2�

2�2R1 − �1R2 + R2�1
2
, �4�

where 
2=3–4�2. The radius difference �R=R2−R1 has
been considered as the fitting parameter. Moreover, in order
to draw the comparison with the atomistic simulations we
have imposed �R1+R2� /2=R. Therefore, Eq. �4� is recast in
the form

�0 = −
�1�1 – 2�2��R

�2�R −
�R

2
� + �1�1 – 2�2��R +

�R

2
� . �5�

The fitting procedure provided a value �R=R2−R1=0.6 Å,
and proved that the present continuum model is consistent
with atomistic data, as shown in Fig. 2. This important result
stands for the fact that the width of the disordered interface
region can be considered independent from the curvature of
the interface �at least in the present context�; rather, it de-
pends only on the crystalline structure of the two materials.

IV. EFFECT OF EXTERNAL LOADING

An uniaxial homogeneous elongation of 1% along the y
direction �corresponding to a displacement field ux=0 and
uy =�yy

� y, where �yy
� =0.01� was applied to the samples de-

scribed in Sec. II. After the relaxation of the atomistic struc-
ture �performed through damped dynamics with the same
convergence criterion reported in Sec. II�, we have computed
both the longitudinal uy�x ,y� and the transverse ux�x ,y� dis-
placement fields inside and outside the embedded inclusion.

As a first step, we checked whether the internal strain
could be considered as a uniform field, as predicted by the
continuum elasticity.24 We have found that this prediction is
indeed well verified by atomistic simulations, provided that

FIG. 4. Scheme of the continuum theory model of a prestrained
inclusion. Its radius R2 is bigger then the radius R1 of the hole in the
host matrix �both defined in the reference undisturbed configura-
tion�. The elastic properties of the two media are represented by the
shear modulus �
 and by the Poisson ratio �
, where 
=1,2.
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we neglect a narrow disordered coating �about 0.5 nm thick�
close to the interface. In order to obtain these estimations we
have applied a fitting procedure similar to that used for the
prestrain calculation �see Sec. II�.

A further analysis has been performed to investigate the
dependence of the internal strain upon the elastic mismatch
between the inclusion and the matrix described by the rota-
tion angle � as shown in Eqs. �2� and �3�. In Fig. 5, we show
the differences �xx−�0 and �yy −�0 between the resulting in-
ternal strain �after the application of the load� and the pre-
strain as function of � for an inclusion with R=2 nm. As
expected for a cubic crystal like c-Si, both the longitudinal
�empty symbols in Fig. 5� and transverse �full symbols in
Fig. 5� strain components are � /2-periodic. Moreover, the
angle �=� /4 leads to the largest difference between the in-
ternal strain and the applied one. In Fig. 5 we also report the
results obtained through the atomically informed continuum
model described in Sec. III �full and dashed lines�. We note a
good agreement between atomistics and continuum and we
remark that for �=� /2 the inclusion has the same crystallo-
graphic orientation of the matrix. Nevertheless, a disordered
interface and the corresponding prestrain are present. This is
due to the fact that a pure � /2-rotation does not arrange the
atoms consistently with the surrounding crystal �in order to
obtain such a correspondence we have to apply a suitable
translation along the �111� direction as well�. Interesting
enough, we found �xx−�0=�xx

� and �yy −�0=�yy
� for �=� /2,

where �xx
� and �yy

� are the components of the remotely applied
strain field. In other words, in spite of the complexity of the
continuum equations described in Appendix A, the prestrain
roughly acts as an additive constant to the applied strain.

In Fig. 6 we report the longitudinal ��yy� and transverse
��xx� strain fields inside the inclusion under load versus the
inclusion radius R �for �=� /4�. The results of the con-
tinuum theory are obtained by setting the prestrain to the
value stated by the fitting procedure of the atomistic data

�see Sec. III�. For large values of the radius, the effect of the
interface-induced prestrain is negligible �see also Fig. 2� and
the elastic fields become size independent. Moreover, in the
limit of vanishing prestrain �or equivalently for R→�, as
shown in Fig. 2�, the constant values approached by the ato-
mistic data correspond to those predicted by the Eshelby
continuum model.24

Finally, we have investigated the effect of the inclusion on
the surrounding matrix. Also in this case, we have found that
the prestrain plays an important role in the determination of
the elastic state of deformation of the system. In Fig. 7 we
show the longitudinal displacement field across the inclusion
�R=10 nm�. In order to magnify the effects, we report the
perturbation uy�xc ,y�−�yy

� y to the uniform applied displace-
ment �where xc is the abscissa of the center of the inclusion�.
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FIG. 5. �Color online� Longitudinal �yy �empty symbols� and
transverse �xx �full symbols� strain inside the inclusion after the
application of the load to the sample with R=2 nm. We show the
difference between these strain components and the corresponding
prestrain ��0� as a function of the rotation angle �. We also report
the values ��yy

� =0.01 and �xx
� =0� of the strain applied to the overall

system �horizontal dotted lines�. The solid and the dashed curves
represent the continuum theory predictions for the longitudinal and
for the transverse field, respectively.
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FIG. 6. �Color online� Longitudinal ��yy� and transverse ��xx�
internal strain components as a function of the radius R of the
cylindrical inclusion. Full and dashed lines represent the continuum
theory. We also show by dotted lines the corresponding asymptotic
values approached when the interface-induced prestrain becomes
negligible.

FIG. 7. �Color online� Longitudinal displacement uy�x ,y� show-
ing the behavior of the elastic field across the inclusion
�R=10 nm�. The continuum predictions �blue and green curves�
have been obtained by imposing x=xc, where xc corresponds to the
center of the inclusion. The atomistic data �red dots� represent the
displacement in the set of atoms having x� �xc−�x ,xc+�x� where
�x=1 nm. In order to better detect the effect of the inclusion, we
report the difference, uy�xc ,y�−0.01y, between the longitudinal
field and the uniform applied displacement of 1% in the y direction.
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We have reported two different predictions obtained through
the continuum model described in Sec. III and in Appendix
A. Corresponding atomistic data �red dots� are reported as
well. The dashed green line represents the effect of the re-
motely applied load to the prestrained system and it is in
good agreement with the atomistic scenario. The dotted blue
curve shows the behavior of the system under load when the
prestrain is absent. By comparing the two continuum models,
we note that the internal fields are quite similar and the dif-
ference roughly corresponds to �0. On the contrary, the ex-
ternal fields are completely different. In the model including
prestrain, the curve in Fig. 7 exhibits a very fast decay to
zero. In other words, the prestrain causes a strong localiza-
tion of the elastic fields around the interface. This effect is
associated with a loss of continuity of the displacement field
due to the narrow interface region which separates the two
bulk zones. It is interesting to observe that our atomically
informed continuum model perfectly takes into account both
the fast decay and the displacement discontinuity, being in
good agreement with the atomistic simulations.

V. CONCLUSIONS

In this paper we have described several atomistic simula-
tions performed to investigate the elastic behavior of a c-Si
inclusion embedded in a differently oriented c-Si matrix. In
particular, we have described the effects of the presence of a
prestrain, which is experimentally observed in many real
cases.8 In addition, we have analyzed the elastic strain field
in the system both with and without a remotely applied ex-
ternal loading. Moreover, we have developed an elastic
model �framed within continuum mechanics� fully exploiting
the main atomic-scale features. We have proved that the gen-
eralization of the standard Eshelby theory �with a simple
hydrostatic prestrain inside the inclusion� is sufficient to cor-
rectly describe the overall elastic behavior of the embedded
structure. In this work we have focused on a circular shape of
the inclusion: of course, both the analytical model and the
computational procedure can be generalized in order to take
into account an elliptic shape with arbitrary aspect ratio. In
fact, as it is well known, the Eshelby theory is able to con-
sider any elliptic shape in two-dimensional elasticity or any
ellipsoidal shape in three-dimension elasticity.31 Moreover, it
is important to remark that our results have been obtained for
the crystalline silicon, but they can be transferred to other
covalently bonded materials as well and, more generally, to
brittle and ceramic systems. As for to the applications, we
underline that this investigation can be directly used to ana-
lyze the generation of prestrain during the embedding or the
self-assembling of nanoparticles, such as quantum dots and
quantum wires, in a matrix with different structure and
physical properties. In particular, we have discussed the phe-
nomenon of the localization of the elastic fields in the neigh-
borhood of the inclusion, modulated by the actual prestrain.
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APPENDIX A: SOLUTION OF THE CONTINUUM MODEL

In order to solve the model presented in Sec. III, we use
the complex variable method for the two-dimensional
elasticity.34 In each homogeneous region of the xy plane the
displacement vector field and the stress tensor field can be
represented by means of a couple of Kolossov-
Muskhelishvili elastic potentials.26–28 We assume that the
elastic state of a given homogeneous region 
 is exactly
described by two holomorphic functions �
�z� and �
�z�,
where the complex number z=x+ iy represents the position
on the plane. The Kolossov-Muskhelishvili equations allow
for the determination of the elastic fields in each region28

ux

 + iuy


 =
1

2�


�

�
�z� − z�
��z� − �
�z�� , �A1�

�xx

 + �yy


 = 2��
��z� + �
��z�� , �A2�

�yy

 − �xx


 + 2i�xy
�
� = 2�z̄�
��z� + �
��z�� , �A3�

where f̄ is the conjugate of f while f� and f� indicate the first
and the second derivative of the analytic function f , respec-
tively. In our model the phase with 
=1 corresponds to the
matrix and the phase with 
=2 corresponds to the inclusion.
It means that �1�z� and �1�z� are defined for �z�	R1 and
�2�z� and �2�z� are defined for �z��R2. Moreover, the pa-
rameter 

 introduced in Eq. �A1� is given by 

=3–4�


under the assumed plane strain conditions.28 The solution of
the elastic problem can be obtained by imposing the perfect
bonding at the interface described by the following continu-
ity relations:

�z + ux
1 + iuy

1��z=R1ei� = �z + ux
2 + iuy

2��z=R2ei�,

��̂1 · n���z=R1ei� = ��̂2 · n���z=R2ei�.

These boundary conditions can be expressed in terms of the
elastic potentials,

	�z +
1

2�1
�
1�1 − z�1� − �1��	

z=R1ei�

= 	�z +
1

2�2
�
2�2 − z�2� − �2��	

z=R2ei�
, �A4�

��1 + z�1� + �1��z=R1ei� = ��2 + z�2� + �2��z=R2ei�. �A5�

The potentials �2�z� and �2�z� can be represented by Taylor
series and �1�z� and �1�z� by Laurent series.33,34 A detailed
analysis of the problem proves that the following simplified
representations are sufficient to solve the problem:

�1�z� = �1��yy
� − �xx

� + 2i�xy
� �z +

H1

z
+

H3

z3 , �A6�

�1�z� =
�1��xx

� + �yy
� �z


1 − 1
+

F

z
, �A7�
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�2�z� = Az , �A8�

�2�z� = Bz . �A9�

The linear terms in �1�z� and �1�z� represent the remotely
applied load described by an arbitrary strain with compo-
nents �xx

� , �yy
� , and �xy

� . The continuity relations given in Eq.
�A4� and Eq. �A5� lead to a linear system for the complex
parameters H1, H3, F, A, and B. The parameters H1, H3, and
F describe the elastic fields in the matrix around the inclu-
sion and can be eventually obtained as

Re
H1� = 4
�1�2�R1 − R2�R1

2

2�2R1 − �1R2 + R2�1
2

+ 2
��xx

� + �yy
� ��R1�2�
1 − 1� − R2�1�
2 − 1���1R1

2

�2�2R1 − �1R2 + R2�1
2��
1 − 1�
,

�A10�

Im
H1� = 0, �A11�

Re
H3� =
R1

4�1��yy
� − �xx

� ���2R1 − �1R2�
R1�2
1 + �1R2

, �A12�

Im
H3� = 2
�1R1

4�xy
� ��1R2 − �2R1�

R1�2
1 + �1R2
, �A13�

Re
F� =
R1

2�1��yy
� − �xx

� ���2R1 − �1R2�
R1�2
1 + �1R2

, �A14�

Im
F� = 2
�1R1

2�xy
� ��1R2 − �2R1�

R1�2
1 + �1R2
. �A15�

The parameters A and B represent the uniform field in the
cylindrical inclusion

Re
A� =
R1�1�2��yy

� − �xx
� ��
1 + 1�

R1�2
1 + �1R2
, �A16�

Im
A� = 2
�1�2R1�xy

� �
1 + 1�
R1�2
1 + �1R2

, �A17�

Re
B� = 2
�1�2�R1 − R2�

2�2R1 − �1R2 + R2�1
2

+
��xx

� + �yy
� ��
1 + 1�R1�2�1

�2�2R1 − �1R2 + R2�1
2��
1 − 1�
, �A18�

Im
B� = 0. �A19�

The knowledge of all the parameters allows us to obtain any
component of any elastic field by means of the Kolossov-
Muskhelishvili Eqs. �A1�–�A3�. It is possible to verify that,
if we consider R1=R2, we exactly obtain the results of the
Eshelby theory for a cylindrical inclusion.31 Our general so-
lution takes into account both the effects of the remotely
applied loads and those induced by the different size between
the cylinder and the hosting hole �prestrain�. If we suppose to
consider the case where no loads are applied to the system,
we obtain only two not vanishing parameters, namely,
Re
H1� and Re
B�. Indeed, in both Eq. �A10� and Eq. �A18�
only the first term is independent on the applied loads.
Therefore, the parameter Re
B� describes the uniform iso-
tropic compression inside the cylinder �internal prestrain�
while Re
H1� describes the asymptotically vanishing �as
1 /z� compression in the matrix �external prestrain�. By sub-
stituting the expression of Re
B� �with no loads� in Eq. �A1�
we eventually obtain the internal isotropic prestrain �0 as

�0 =
�1�
2 − 1��R1 − R2�

2�2R1 − �1R2 + R2�1
2
. �A20�

This equation has been used in the main text to obtain the
fitting of the atomistic prestrain fields through suitable values
of the difference �R=R2−R1.
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