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The physical heterogeneity and the geometrical periodicity of several bundle architectures found in
biological materials play a key role in determining their superior mechanical performances. The un-
derlying mechanism is based on the shear stress transfer between hard fibers and soft matrix. This
process yields a size-dependent behavior characterized by specific lengths scales. Here, we elaborate a
Floquet-based homogenization valid for arbitrary periodically heterogeneous fiber bundles with fibers
subject to mutual interactions. This approach allows us to separately evaluate the energy distribution
within the fibers and the matrix, and to define an efficiency function able to optimize the mechanical
response of the bundle. We show the existence of a characteristic length scale that maximizes the
transfer of the elastic energy from the fibers to the matrix, thus reducing the fibers solicitation and
enhancing the overall mechanical response. This theory is able to describe the geometrical features of
several biomaterials, such as nacre shell, muscle sarcomere, collagen fibril, and spider silk, in excellent
agreement with experimental data. Moreover, it can be used to design bioinspired artificial structures
with optimal response.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The process of evolution over millions of years has generated a
wide range of different natural materials and architectures. Among
these, fiber bundle assemblies have outstanding mechanical
properties, exhibiting a remarkable balance between stiffness,
strength and fracture toughness (Smith et al., 1999; Fratzl and
Weinkamer, 2007; Meyers et al., 2008; Ashby et al., 1995; Gibson
et al., 1995; Ji and Gao, 2004). Such performances are attributed
to their peculiar heterogeneous and hierarchical microstructure,
with organizations ranging from the molecular to the macroscopic
scale (Gao et al., 2003; Yao et al., 2011; Bosia et al., 2012). The
smallest units in such materials are simple fibers embedded in a
soft matrix. The most important mechanism at the base of the
mechanical behavior is the stress transfer between fibers and ma-
trix, which is mediated by shear interactions. There is an overall
consensus on the fact that the above general structure, combined
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served.
with the shear mechanism, is definitively beneficial for the me-
chanical response of biological bundles (Gao et al., 2003; Yao et al.,
2011; Bosia et al., 2012; Cranford, 2013). Nacre shells, muscle sar-
comeres, collagen fibrils, and spider silks are remarkable examples
of such high-performance materials. The architecture of these
structures is shown in Fig. 1. The nacre (mother-of-pearl) is
composed of blocks of aragonite CaCO3 and a protein organic phase,
assembled in a brick and mortar geometry, see panel (a). The
mineral platelets (bricks) are separated by an organic phase matrix
(mortar) and a distribution of nanosized mineral bridges can be
observed at the platelet-platelet interfaces (Shao et al., 2014;
Okumura and de Gennes, 2001; Sun and Bhushan, 2012). Panel
(b) shows the muscle and sarcomere structures. The geometry of
the sarcomere unit is constituted by interdigitating antiparallel
filaments of actin and myosin, the elastic titin filaments and the
cross-linker proteins (Kossmann and Huxley, 1961; Tedesco et al.,
2010). In this case, the shear among actin and titin-myosin fila-
ments is mediated by the matrix of cross-linker proteins. In this
work, we always refer to the passive response of the sarcomere
structure, the active behavior being not relevant here. Panel (c)
shows the structure of collagen-I, the building block of eye's cornea,
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Fig. 1. Architectures of biological materials. Panel (a): bricks-and-mortar structure of nacre (or mother-of-pearl). Panel (b): structure of the muscle fibers based on the sarcomere
unit; it is composed of actin, myosin and titin filaments and the cross-linker proteins. Panel (c): collagen structure and schematic representation of the axial arrangement of
molecules showing a periodic nanomorphological heterogeneity. Panel (d): schematic orb-web built by a spider composed of fibers with a skin-core structure. We can observe the
composition of a silk core fibril: proteins contain highly oriented alanine-rich nanocrystals of antiparallel beta-sheets along the fiber axis embedded in a glycine-rich matrix of
random polypeptide chains and moderately oriented helical structures (adapted from Huang et al., 2012, with permission).
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skin, tendon and bone. Tropocollagen molecules (length ~300 nm)
are assembled in fibrils (length ~1mm), which arrange to form the
collagen fiber (length ~10mm) (Holmes et al., 2001; J€ager and Fratzl,
2000; Hulmes et al., 1995). Here, the shear transfer between fibers
is supported by the aldol cross-links. Finally, panel (d) shows the
scheme of the spider silk structure. One can find an orb-web built
by a spider and its architecture going from the skin-core structure
to the organization of the repetitive core (Huang et al., 2012;
Cranford et al., 2012). This core exhibits the typical brick and
mortar geometry composed of beta-sheets and a semi-amorphous
phase. These examples share three important features: (a) the
physical heterogeneity, (b) the geometrical periodicity, and (c) the
stress-transfer mechanism between fibers and matrix of the
bundle. These features represent the starting point of the theory
here developed.

From the theoretical point of view, several investigations have
been conducted in bundle systems. One of the most important
paradigm is the classical “shear-lag” interaction scheme among fi-
bers. Originally introduced to study the elasticity and the strength
of paper and other fibrous structures (Cox, 1952), the shear-lag
model was after exploited to understand the behavior of compos-
ite materials (Hutchinson and Jensen, 1990; Nairn, 1997), and to
analyse failure phenomena through the well-known fiber bundle
model (FBM) (Pradhan et al., 2010; Kawamura et al., 2012). Initially
introduced for studying the failure of spun cotton yarns (Peirce,
1926), the FBM was further elaborated for considering a parallel
arrangement of fibers with statistically distributed strength
(Daniels, 1945). In the FBM context, the shear-lag model has been
largely adopted to study the matrix power-law creep compliance
(Lagoudas et al., 1989; Beyerlein et al., 1998; Mahesh and Phoenix,
2004), the nonlinear matrix (Mason et al., 1992) and the matrix
plasticity (Beyerlein and Phoenix, 1996). Further, the shear-lag
model has been recently used to investigate the effects of a popu-
lation of cracks on the overall mechanical bundle behavior (Manca
et al., 2014a, 2015). The matrix-fibers interaction, based on the
shear-lag paradigm, has been shown to yield a spatially non-local
elasticity with a size-dependent behavior (Wada and Tanaka,
2011). This behavior is at the origin of optimal length scales con-
trolling both the fiber length and their overlapping in the bundle
macrostructure (Buehler, 2006, 2008; Chen et al., 2009; Wei et al.,
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2012; Ni et al., 2015). Also, several models have been developed for
describing the mechanical behavior of bio-inspired short fiber
unidirectional nanocomposites (e.g., composed of carbon nano-
tubes). In particular, the strength and failure properties (Sun et al.,
2015; Zhang et al., 2010, 2014), the effects of the distribution of
fibers (Lei et al., 2012) and the elastic bounds of the effective
Young's modulus have been thoroughly studied (Lei et al., 2013).
While the classical analysis of composites with aligned fibers
(Gibson, 2012) and the topical results above reported allowa crucial
understanding of the shear-load mechanism, these techniques are
not specifically developed to analyse and optimize arbitrarily
complex structures from the point of view of the elastic response
and of the energetic balance. Moreover, the actual periodicity of
these structures has not been taken into account as basis of the
mechanical modeling.

In this work, we develop a theory for homogenizing and opti-
mizing periodically heterogeneous bundle geometries. This theory
allows to describe a bundle composed of M fibers arbitrarily
distributed on the bundle cross-section, with a periodic arrange-
ment along the longitudinal direction. Therefore, a periodic cell can
be always identified. In order to develop a general theory, this cell
will be considered as composed of S sub-sections with homoge-
neous physical properties (Young's moduli of fibers and shear
interaction coefficients among fibers). While the geometry of the
system is fully three-dimensional, the elastic fields (stress, strain
and displacement) are functions of one variable only (the abscissa
on the longitudinal direction). To develop our theory, we need to
evaluate the effective elastic response of such a periodic bundle
structure. In this regard, the classical homogenization schemes
allow to determine the effective elastic response of several two-
and three-dimensional composite structures (Milton, 2002;
Torquato, 2002; Kanaun and Levin, 2008a, 2008b), ranging from
dispersions of particles (Walpole, 1981; Kachanov and Sevostianov,
2005; Giordano, 2003, 2005; Colombo and Giordano, 2011) to
distributions of cracks (Kachanov, 1992, 1994; Giordano and
Colombo, 2007a; Giordano and Colombo, 2007b). However, these
classical approaches are not appropriate to determine the effective
stiffness of periodically inhomogeneous shear-lag bundles, which
are essentially one-dimensional systems. Therefore, we propose
here a Floquet-based homogenization, yielding an exact closed-
form expression for the overall Young's modulus of the bundle. In
addition, this analysis allows the determination of the elastic en-
ergy accumulated within the fibers (under extension) and within
the matrix (under shear). The knowledge of these energies allows
to define a suitable efficiency function C , used to optimize the
bundle structure. The underlying idea is that the elastic response is
optimized by transferring, as much as possible, the energy from the
fibers to the matrix. Indeed, in consistency with the Griffith (1920)
or Irwin (1957) criterion for crack growth, minimizing the elastic
energy stored in the fibers reduces the possibility of creation and
propagation of fractures. On the other hand, the consequently
stronger solicitation of the matrix is less critical since it is typically
composed of a soft material, less subjected to fracture processes.
The introduction of the efficiency function C represents the most
important and innovative point of the present development with
respect to previous achievements (see, e.g., Gibson, 2012, and pa-
pers quoted above). Indeed, it allows us to properly optimize the
mechanical response of a bundle (in terms of elastic energy dis-
tribution), by fully taking into account the arbitrary periodicity and
heterogeneity of the system. Importantly, if we study the shape of
C versus some characteristic lengths of the bundle for quite
different fiber-bundle materials, we always observe a maximum
corresponding to the optimal structure. Therefore, the maximiza-
tion of the efficiency function controls the emergency of optimal
length scales for fiber bundles. The corresponding results have been
accurately confirmed against available experimental data con-
cerning several biological structures. They can be applied to design
optimal bioinspired artificial structure, as well. We remark that our
approach is based on a linear elastic model, hence based on linear
elastic properties of fibers and matrix. This is an approximation
since the matrix of natural bundles may undergo large de-
formations, thus originating nonlinear behaviors and plastic phe-
nomena (Chen et al., 2009). On the other hand, this approximation
allows us to propose an analytical solvable model, capable of
considering an arbitrary geometry.

The structure of the paper is the following. In Section 2, we
introduce the Floquet-based homogenization theory dealing with
an arbitrary bundle geometry. Then, in Section 3, we present the
energetic analysis of the system. In Section 4, we analyse an illus-
trative example of bundle structure by introducing the optimiza-
tion of the shear efficiency. In Section 5, we show the results
concerning more complex structures: the periodic staggered ge-
ometry and the staircase geometry. Finally, in Section 6, we discuss
how our optimality criterion is able to predict the characteristic
lengths of several biological architectures.
2. Effective Young's modulus for arbitrary bundle structures

To begin, we take into consideration a single elastic fiber with
cross-section of area S. The longitudinal deformation of this one-
dimensional system is described by the longitudinal displacement
u(x) and the scalar stress t(x), where x is the linear abscissa along
the fiber. It means that we consider u and t approximately constant
over the cross-section, thus neglecting the dependence on y and z
(it is reasonable when l[

ffiffiffiffi
S

p
). As customarily, after a deformation,

the point originally located at x, assumes the new position xþu(x). If
we consider a small fiber segment of length dx located at x, we can
write the static balance of forces as F(x)þG(x)Sdx¼0, where F(x)¼
t(xþdx)S�t(x)S is the force applied by the remaining parts of the
fiber (on the left and on the right) and G(x) is the externally applied
body force (per unit of volume). By dividing the above balance
equation by Sdx and performing the limit for dx/0, we obtain the
equation

vtðxÞ
vx

þ GðxÞ ¼ 0: (1)

Moreover, we have to introduce the constitutive equation for the
elasticity of the fiber. To do this, we consider a linear relationship
(Hooke law) between the scalar stress and the scalar strain ε(x)¼v

u(x)/vx, as follows

tðxÞ ¼ EεðxÞ ¼ E
vuðxÞ
vx

; (2)

where E is the Young's modulus of the fiber.
Let us now consider a bundle of M fibers, which are parallel but

arbitrarily arranged on the perpendicular plane (cross-section of
the bundle). Accordingly to previous analysis for one fiber, the
system is described by the following set of equations

vtiðxÞ
vx

¼ �GiðxÞ; (3)

vuiðxÞ
vx

¼ 1
EiðxÞ

tiðxÞ; (4)

for ci ¼ 1;…;M, where the force applied to each fiber is given by
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GiðxÞ ¼
X
j¼1

M

kijðxÞ
�
ujðxÞ � uiðxÞ

�
; (5)

describing the linear interaction among the fibers within the
bundle. For the sake of generality, in this scheme we considered
both the Young's moduli Ei and the interaction coefficients kij as
functions of the abscissa x (heterogeneous system). In particular,
this is useful to introduce a bundle structure characterized by a
spatial period L. We suppose that each cell of periodicity is
composed of S homogeneous bundle segments having lengths ln
(n¼1,…,S) with

PS
n¼1ln ¼ L (see Fig. 2). Moreover, we consider all

fibers with the same uniform cross-section S. For any homoge-
neous segment of the cell, we can write the elastostatic stress-
displacement interaction equations

dti
dx

¼ �
X
j¼1

M

kðnÞij

�
uj � ui

�
; (6)

dui
dx

¼ 1

EðnÞi

ti; (7)

where ti(x) and ui(x) are longitudinal stress and displacement along

the i-th fiber, kðnÞij are the interaction coefficients and EðnÞi represent

the Young's moduli of the M fibers within the n� th segment

(i,j¼1,…,M and n¼1,…,S). It means that we have kijðxÞ ¼ kð1Þij and

EiðxÞ ¼ Eð1Þi in the first segment (0<x<l1), kijðxÞ ¼ kð2Þij and

EiðxÞ ¼ Eð2Þi in the second segment (l1<x<l1þl2), and so forth.
Therefore kij(x) and Ei(x) are piece-wise periodic function of x with
period L. While Eq. (6) represents the balance of forces for each
fiber, Eq. (7) describes the linear response controlled by the Young's
modulus Ei. The sum in the right hand side of Eq. (6) means that

when ujsui a force �kðnÞij ðuj � uiÞ is applied to the i-th fibre and a

force kðnÞij ðuj � uiÞ is applied to the j-th fiber (see the works by

Manca et al., 2014a, 2015, for further details). The symmetrical

matrix kðnÞij (kðnÞij ¼ kðnÞji with kðnÞii ¼ 0) is straightforwardly associated

to the (arbitrary) graph describing the fiber interactions on the

cross-section of the bundle. Of course, being the values of EðnÞi and

kðnÞij n-dependent (i.e. segment-dependent), we generate the arbi-

trary physical heterogeneity within the system. For any segment we
introduce the following matrix representation of the previous
balance equations
Fig. 2. (a) Scheme of a periodic bundle composed ofM piece-wise homogeneous fibers
embedded in an elastic matrix. (b) Structure of a periodic cell composed of S segments
of lengths l1, …,lS (with

PS
n¼1 ln ¼ L). Each segment is described by a matrix A n con-

taining all Young's moduli and interaction coefficients.
d x
!
dx

¼ A n x
!

cn ¼ 1;…; S; (8)

where x
!¼ ðt1;u1; t2;u2;…ÞT2<2M represents the state vector of

the system (T means transposed) and A n characterizes the me-
chanics of the n� th segment

A n ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0
P
j
kðnÞ1j 0 �kðnÞ12 … 0 �kðnÞ1M

1

EðnÞ1

0 0 0 … 0 0

0 �kðnÞ21 0
P
j
kðnÞ2j … 0 �kðnÞ2M

0 0
1

EðnÞ2

0 … 0 0

« « « « « «

0 �kðnÞM1 0 �kðnÞM2 … 0
P
j
kðnÞMj

0 0 0 0 …

1

EðnÞM

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (9)

Finally, we have S linear differential systems for the S segments
of the periodic cell (n¼1,…,S). Moreover, it is important to remark

that the state vector x
!
, being composed of stresses and displace-

ments, must be continuous at any segment interface. It means that
we consider ideal mechanical contacts between adjacent segments.
We can further observe that, globally, we are dealing with a Floquet
system of the following form

d x
!
dx

¼ A ðxÞ x!; (10)

which is valid for the entire bundle, where A ðxÞ ¼ A ðxþ LÞ being
L ¼PS

n¼1ln the period of the structure. In particular, we have
A ðxÞ ¼ A 1 in the first segment (0<x<l1), A ðxÞ ¼ A 2 in the second
segment (l1<x<l1þl2), and so forth.

We are interested in defining and calculating the effective
Young's modulus of the structure. To do this, we can imagine an
overall displacement field formed by a linear term describing the
uniform prescribed strain, plus an additional perturbation due to
the relaxation of the heterogeneous structure (shear among fibers
induced by the inhomogeneity)

uiðxÞ ¼ εxþ diðxÞ; (11)

where ε is the prescribed strain and di is the local perturbation
generated by shear interaction effects. We remark that, although
the prescribed strain is uniform, the actual strain in each fiber is not
uniform because of the heterogeneity of the bundle and the in-
teractions among fibers. This point is taken into account by the
unknown functions di(x), which, in general, are not linear and can
be calculated as described below. The final lengths of all fibers in
the cell must be the same after the relaxation (all fibers must cover
the whole real axis subdivided in periodic cells). Therefore, the
perturbations di(x) are periodic functions of period L. We can also
define the following quantity

x
!¼ h!þ εx v!; (12)

where h!¼ ðt1; d1; t2; d2;…ÞT and v!¼ ð0;1;0;1;…ÞT . Hence, we
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can write

d h!
dx

¼ d x
!
dx

� ε v!¼ A ðxÞ x!� ε v!; (13)

or, equivalently

d h!
dx

¼ A ðxÞ h!þ ε½A ðxÞx� I 2M� v!; (14)

where I 2M is the identity matrix of order 2M. Now, if we observe
the structure of the matrix in Eq. (9), we note that the relation
A ðxÞ v!¼ 0 is always verified in each segment of the structure (i.e.
cx), and therefore we obtain

d h!
dx

¼ A ðxÞ h!� ε v!: (15)

We have seen that the components di(x) must be periodic; also
the ti(x) must be periodic for the continuity of the stress. Finally, we
search for the periodic solutions of Eq. (15). From the mathematical
point of view, this is a Floquet system of differential equations with
an additional constant term. The fundamental matrix solution of a
general Floquet system is defined by dFðxÞ=dx ¼ A ðxÞFðxÞwith the
conditionF(0)¼I 2M. This initial condition can be arbitrarily chosen
(nonsingular) (Pontryagin, 1962), and we fixed F(0)¼I 2M in order
to simplify further calculations, in particular to impose the value
h!ð0Þ in the solution of Eq. (15). The fundamental matrix can be
always written in the form

FðxÞ ¼ P ðxÞexpðB xÞ; (16)

where P ðxÞ is a periodic matrix and B a constant one (Floquet-
Lyapunov theorem, see Pontryagin, 1962). Here, we also consider
the relation P ð0Þ ¼ P ðLÞ ¼ I 2M coming from the fact that
F(0)¼I 2M. The general solution of Eq. (15) can bewritten as follows

h!ðxÞ ¼ FðxÞ h!ð0Þ �
Zx
0

FðxÞF�1ðyÞε v!dy ¼

¼ P ðxÞexpðB xÞ
2
4 h!ð0Þ �

Zx
0

expð�B yÞP �1ðyÞε v!dy

3
5:
(17)

In particular, we have

h!ðLÞ ¼ P ðLÞexpðB LÞ
2
4 h!ð0Þ �

ZL
0

expð�B yÞP �1ðyÞε v!dy

3
5;

(18)

where we have substituted x¼L. Now, we search for a periodic so-
lution for h! and, therefore, we impose h!ðLÞ ¼ h!ð0Þ, by obtaining

½I 2M � expð�B LÞ� h!ð0Þ ¼
ZL
0

expð�B yÞP �1ðyÞε v!dy; (19)

where we used the condition P ðLÞ ¼ I 2M .
It is important to observe that the problem defined in Eq. (19)

for obtaining h!ð0Þ has multiple solutions for the following rea-
sons: firstly, we have imposed an overall strain to the periodic
bundle structure and therefore we can imagine an arbitrary
displacement to the whole system, thus generating an infinity of
solutions. It means that we can add the same constant to all func-
tions di(x) without changing the strain and stress fields within the
bundle. Moreover, according to the interaction scheme between the
fibers, we can always divide the entire bundle in a number r of sub-
bundles not connected by any interaction (1�r�M). In this case, we
will have r degrees of freedom for the arbitrary displacements and,
therefore, the rank of the matrix I 2M�exp(B L) will be 2M�r. Even
for the simple case of a completely connected bundle (r¼1), wewill
have a matrix I 2M�exp(B L) without full rank, being in this case
2M�1.

Anyway, the translations of the independent sub-bundles are
not relevant for the overall mechanical behavior of the system.
Hence, for obtaining a solution for h!ð0Þ from Eq. (19) we will use
the Moore-Penrose pseudo-inverse, in order to solve the problem
of the reduced rank (Moore, 1920; Penrose, 1955). The Moore-
Penrose pseudo-inverse N þ (n by m) of a matrix N (m by n) is
defined by the four properties N N þN ¼ N , N þN N þ ¼ N þ,
ðN N þÞ� ¼ N N þ, and ðN þN Þ� ¼ N þN , where the symbol M *

indicates the conjugate transposed of the matrix M . By means of
this definition, N þ always exists and it is unique (Ben-Israel and
Greville, 2003; Golub and Van Loan, 1996). It is possible to prove

that given an arbitrary system N q!¼ b
!

( q!2<n, b
!
2<m), it has at

least a solution for q! if and only if N N þ b
!¼ b

!
(Ben-Israel and

Greville, 2003; Golub and Van Loan, 1996). In this case the gen-

eral solution is given by q!¼ N þ b
!þ ðI n � N þN Þ p! for any

p!2<n (Ben-Israel and Greville, 2003; Golub and Van Loan, 1996).
For our purposes, an arbitrary solution is sufficient since any set of
free displacements does not affect the overall mechanical response

and, therefore, wewill adopt the simpler form q!¼ N þ b
!
. From Eq.

(19), we can finally obtain

h!ð0Þ ¼ ½I 2M � expð�B LÞ�þ
ZL
0

expð�B yÞP �1ðyÞε v!dy; (20)

which represents the initial condition corresponding to the peri-
odic solution of Eq. (15). The effective Young's modulus of the
overall structure can be defined by

Eeff ¼
1
ε

X
i¼1

M

tið0Þ: (21)

If we take into account Eq. (6), by summing all equations and

exploiting the symmetry of kðnÞij , we can easily prove that
d
dx

PM
i¼1tiðxÞ ¼ 0 and, therefore, we can calculate the total stress at

any point of the bundle. Hence, in Eq. (21) we calculated the total
stress at x¼0, for the sake of simplicity. In this definition we
consider the effective Young's modulus of a single fiber (with sec-
tion S) equivalent to the M-fibers bundle. It means that if we
consider M identical and homogeneous fibers with Young's
modulus Ef, our definition of the effective modulus yields Eeff¼MEf.
This value exactly corresponds to the Voigt stiffness upper limit.

If we define the vector w!¼ ð1;0;1;0;…ÞT , we have
PM

i¼1tið0Þ ¼
w!T

h!ð0Þ and Eeff ¼ w!T
h!ð0Þ=ε. Then, we have proved that the

overall Young's modulus is given by the bilinear form

Eeff ¼ w!T
U v!; (22)

where
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U ¼ ½I 2M � expð�B LÞ�þ
ZL
0

expð�B yÞP �1ðyÞdy: (23)

This result is always valid, also in the case of a continuously
periodic fiber bundle. Of course, in this case, the couple of matrices
B and P depends on A and it should be found by solving the
Floquet problem, which is a not simple task from both the theo-
retical and computational points of view. In the case of a piece-wise
bundle structure, as described at the beginning of this section, we
can strongly simplify the calculation of Eeff. To begin, we observe

that the integral
R L
0 expð�B yÞP �1ðyÞdy in Eq. (23) corresponds toR L

0 F�1ðyÞdy. Since

F�1ðyÞ ¼

8>>>><
>>>>:

e�A 1y if 0< y< l1
e�A 1l1e�A 2ðy�l1Þ if l1 < y< l1 þ l2
e�A 1l1e�A 2l2e�A 3ðy�l1�l2Þ
if l1 þ l2 < y< l1 þ l2 þ l3
…

; (24)

the integral can be developed as follows

ZL
0

F�1ðyÞdy ¼
Zl1
0

e�A 1ydyþ e�A 1l1
Zl2
0

e�A 2ydy

þ e�A 1l1e�A 2l2
Zl3
0

e�A 3ydyþ…; (25)

and we get the compact expression

ZL
0

F�1ðyÞdy ¼
X
q¼1

S
 Y

r¼1

q�1

ðDÞe�A r lr

!Zlq
0

e�A qydy; (26)

whichwill be used in the following. The symbol (△) means that the
product must be ordered with respect to increasing values of r. We
will also use the symbol (▽) to intend a decreasing order of the
product factors. Now, we introduce a general property useful to

calculate
R lq
0 e�A qydy, appearing in Eq. (26). As a matter of fact, the

result of this integral can bewritten in a simple explicit closed form
only if A q is non singular. In our case, we need an expression valid
also for a singular A q. Hence, we define a matrixC q (4M by 4M), as
follows

C q ¼
��A q I 2M
O 2M O 2M

�
; (27)

where O n is the null matrix of order n. We can state that

eC qlq ¼

0
BBB@ e�A qlq

Zlq
0

e�A qydy

O 2M I 2M

1
CCCA; (28)

for any matrix A q. To give the proof of this property we can

consider the differential system x!_ ¼ C q x
!, with x!2<4M . By

solving the system, it is possible to identify the exponential matrix
in Eq. (28). Anyway, Eq. (28) allows us to calculate the integralR lq
0 e�A qydy (cA q) by evaluating a single matrix exponential eC qlq

and by extracting the corresponding block. Even more importantly,
this procedure permits to directly evaluate the integral in the left
hand side of Eq. (26). Indeed, we can analyse the product of all
exponential terms eC qlq ; if we consider the first two factors, then
we have

eC 1l1eC 2l2

¼

0
BB@ e�A 1l1

Zl1
0

e�A 1ydy

O 2M I 2M

1
CCA
0
BB@ e�A 2l2

Zl2
0

e�A 2ydy

O 2M I 2M

1
CCA

¼

0
BB@ e�A 1l1e�A 2l2 e�A 1 l1

Zl2
0

e�A 2ydyþ
Zl1
0

e�A 1ydy

O 2M I 2M

1
CCA:

(29)

If we continue to multiply all terms, we eventually obtain

Y
q¼1

S

ðDÞeC qlq ¼

0
BB@
Q
q¼1

S
ðDÞe�A qlq

ZL
0

F�1ðyÞdy

O 2M I 2M

1
CCA; (30)

where we used Eq. (26). It means that the product of all exponential
terms eC qlq immediately furnishes, in its second block, the integral
in Eq. (26). Moreover, also the first block in Eq. (30) is important to
evaluate the effective Young's modulus of the heterogeneous

bundle. For a Floquet system d h!
dx ¼ A ðxÞ h!, we have the solution

h!ðxÞ ¼ P ðxÞeB x h!ð0Þ. On the other hand, if A ðxÞ is periodic piece-
wise constant we also have h!ðxÞ ¼ eA plp

…eA 1 l1 h!ð0Þ when
x¼l1þ…þlp (x�L, p�S). By comparing the two solutions for x¼L, and
by using the property P ðLÞ ¼ I 2M, we immediately obtain
eB L ¼ eA SlS

…eA 1l1 . Hence, Eq. (30) can be rewritten as

Y
q¼1

S

ðDÞeC qlq ¼

0
BB@ e�B L

ZL
0

F�1ðyÞdy

O 2M I 2M

1
CCA: (31)

So, in the structure of
QS

q¼1ðDÞeC qlq we have the two main in-
gredients to compute Eeff through Eqs. (22) and (23). We finally
proved the following:

Theorem 1. Given the heterogeneous bundle composed of M fibers
and S segments, described by matrices A q and lengths lq, we can
define

C q ¼
��A q I 2M
O 2M O 2M

�
;
Y
q¼1

S

ðDÞeC qlq ¼
�

D 3

O 2M I 2M

�
: (32)

Then, the effective Young’s modulus is determined by the following
bilinear form

Eeff ¼ w!T
U v!¼ w!T ðI 2M �D Þþ 3v!; (33)

where U ¼ ðI 2M �D Þþ 3, v!¼ ð0;1;0;1;…ÞT and

w!¼ ð1;0;1;0;…ÞT .
This theorem gives the complete theoretical assessment of the

fiber bundle elastic behavior and allows an efficient numerical
computation of the effective Young's modulus for an arbitrary
structure.
3. Energetic considerations

In this Section, we introduce the definitions of the elastic energy
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adsorbed in the fibers of the bundle, and in the matrix controlling
the shear interactions among them. For convenience, we take into
consideration a periodic cell and we calculate the average energy
density of both contributions. The average energy density stored in
the fibers can be defined as

wf ¼
X
i¼1

M ZL
0

tiðxÞεiðxÞ
2L

dx ¼
X
i¼1

M ZL
0

EiðxÞt2i ðxÞ
2L

dx; (34)

where εi ¼ dui=dx and ti ¼ Eiεi. On the other hand, the average
energy density stored in the matrix can be introduced through the
expression

wm ¼ 1
2

X
i¼1

M X
j¼1

M 1
L

ZL
0

1
2
kijðxÞ

�
uiðxÞ � ujðxÞ

�2dx; (35)

where the term 1
2kijðxÞ½uiðxÞ � ujðxÞ�2 represents the spring-like

contribution of each interaction and the factor 1/2 in front of the
sums is necessary to correctly count all the terms (that are
considered twice by the double sum).We recall that in Eqs. (34) and
(35) the piece-wise constant functions Ei(x) and kij(x) represent the
heterogeneity of the periodic cell generated by the different ho-
mogeneous segments, as defined in Section 2. We obtain here
explicit expressions for wf and wm, which are valid for a periodic
heterogeneous fiber bundle.

3.1. Energy density within the fibers

Let us firstly consider the fibers energy contribution and define
the diagonal matrix 3(x)¼diag(1/E1(x),0,1/E2(x),0,…). Then, Eq. (34)
can be rewritten as

wf ¼
1
2L

ZL
0

x
!T

ðxÞE ðxÞ x!ðxÞdx

¼ 1
2L

ZL
0

x
!T

ð0ÞFTðxÞE ðxÞFðxÞ x!ð0Þdx; (36)

wherewe introduced the solution of Eq. (10). Now, we deduce from

Eq. (12) that x
!ð0Þ ¼ h!ð0Þ and from Eqs. (20) and (23) that

h!ð0Þ ¼ εU v!; hence, the energy density of the fibers is

wf ¼
1
2L

ε
2 v!T

UT
ZL
0

FTðxÞE ðxÞFðxÞdxU v!: (37)

We propose nowan efficient procedure to calculate Eq. (37) and,

in particular, the integral G ¼ R L0 FT ðxÞE ðxÞFðxÞdx. If we consider a
piece-wise homogeneous bundle such an integral can be conve-
niently developed as follows

G ¼
ZL
0

FT ðxÞE ðxÞFðxÞdx

¼
Zl1
0

eA
T
1yE 1e

A 1ydyþ eA
T
1 l1
Zl2
0

eA
T
2yE 2e

A 2ydyeA 1l1

þeA
T
1 l1eA

T
2 l2
Zl3
0

eA
T
3yE 3e

A 3ydyeA 2l2eA 1l1
…;

(38)
where 3q represents the diagonal matrix diag(1/E1,0,1/E2,0,…)
composed of the Young's moduli of the q-th segment of the periodic
cell. The general form of G can be written as

G ¼
X
q¼1

S
 Y

r¼1

q�1

ðDÞeA T
r lr

!Zlq
0

eA
T
qyE qeA qydy

0
@Y

p¼1

q�1

ð▽ÞeA plp

1
A;

(39)

where, as before, the symbols (△) and (▽) indicate the order of the
products. We need therefore an efficient technique to evaluate the

integrals of the form
R lq
0 eA

T
qyE qeA qydy for any matrix A q (singular

or non singular). We define a matrix D q (4M by 4M) as follows

D q ¼
�
�A T

q E q
O 2M A q

�
; (40)

and we state that

eD qlq ¼

0
BBB@ e�A T

q lq e�A T
q lq
Zlq
0

eA
T
qyE qeA qydy

O 2M eA qlq

1
CCCA; (41)

for any matrix A q. As before, to prove this property, we may

introduce the differential system x!_ ¼ D q x
!, with x!2<4M . Its so-

lution allows the determination of the exponential matrix in Eq.
(41) (other similar relations have been found byVan Loan, 1978).

We show now that this property is useful to directly determine
the value of G . To this aim, let us analyse the product of all expo-

nential terms eD qlq , performed in decreasing order. Defining T q ¼R lq
0 eA

T
qyE qeA qydy and considering the first two factors, we have

eD 2l2eD 1l1 ¼
�
e�A T

2 l2 e�A T
2 l2T 2

O 2M eA 2l2

��
e�A T

1 l1 e�A T
1 l1T 1

O 2M eA 1l1

�

¼
�
e�A T

2 l2e�A T
1 l1 e�A T

2 l2e�A T
1 l1T 1þe�A T

2 l2T 2e
A 1l1

O 2M eA 2 l2eA 1l1

�
:

(42)

By multiplying all factors, the following compact expression is
eventually obtained

Y
q¼1

S

ð▽ÞeD qlq ¼

0
BBBB@
Q
q¼1

S
ð▽Þe�A T

q lq
Q
q¼1

S
ð▽Þe�A T

q lqG

O 2M
Q
q¼1

S
ð▽ÞeA qlq

1
CCCCA; (43)

where we exploited Eq. (39). This result can be used to extract the
block corresponding to G and it can be inserted in the final

expression for the fibers energy density wf ¼ 1
2Lε

2 v! T
U TG U v!, see

Eq. (37). The whole procedure can be summed up by the following:
Theorem 2. Given the heterogeneous bundle composed of M fibers

and S segments, described by matrices A q, 3q and lengths lq, we can
define

D q ¼
�
�A T

q E q
O 2M A q

�
;
Y
q¼1

S

ð▽ÞeD qlq ¼
�

ℛ S
O 2M W

�
: (44)

Then, the fibers energy density is determined by the following
quadratic form
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wf ¼
1
2L

ε
2 v!T

UTG U v!¼ 1
2L

ε
2 v!T

UTℛ�1S U v!

¼ 1
2L

ε
2 v!T

UTW TS U v!; (45)

where G ¼ ℛ�1S ¼ W TS , v!¼ ð0;1;0;1;…ÞT and
U ¼ ðI 2M �D Þþ 3(one can see Theorem 1 for the determination ofD

and 3). Moreover, the matrix identity ℛ T ¼ W �1 ¼ D is satisfied,
where D is defined in Theorem 1.
3.2. Energy density within the matrix

We analyse now the energy density accumulated in the matrix,
i.e. the energy density concerning the interaction among the fibers.
Accordingly, we elaborate Eq. (35) as follows

wm ¼ 1
2L

X
i¼1

M X
j¼1

M ZL
0

�
uiðxÞkijðxÞuiðxÞ � uiðxÞkijujðxÞ

�
dx

¼ 1
2L

ZL
0

x
!T

ðxÞH ðxÞ x!ðxÞdx: (46)

where the matrixH ðxÞ is defined as follows. For any segment of the
bundle period we define

H n ¼

0
BBBBBBBBBBBBB@

0 0 0 0 … 0 0
0

P
j
kðnÞ1j 0 �kðnÞ12 … 0 �kðnÞ1M

0 0 0 0 … 0 0
0 �kðnÞ21 0

P
j
kðnÞ2j … 0 �kðnÞ2M

0 0 0 0 … 0 0
« « « « « «

0 �kðnÞM1 0 �kðnÞM2 … 0
P
j
kðnÞMj

1
CCCCCCCCCCCCCA
: (47)

Then we can introduce the periodical matrix H ðxÞ ¼ H ðxþ LÞ
being L ¼PS

n¼1ln the period of the structure. In particular, we have
H ðxÞ ¼ H 1 in the first segment (0<x<l1), H ðxÞ ¼ H 2 in the second
segment (l1<x<l1þl2), and so forth. Since Eq. (46) is formally
identical to Eq. (36), the procedure already developed in Section 3.1
can be directly applied to obtain the final result concerning the
interaction energy density for an arbitrary bundle structure. The
final results can be therefore formulated as follows, in perfect
analogy with Theorem 2:

Theorem 3. Given the heterogeneous bundle composed of M fibers
and S segments, described by matrices A q, H q and lengths lq, we can
define

Q q ¼
�
�A T

q H q
O 2M A q

�
;
Y
q¼1

S

ð▽ÞeQ qlq ¼
�

ℛ M
O 2M W

�
: (48)

Then, the matrix energy density (interaction energy) is determined
by the following quadratic form

wm ¼ 1
2L

ε
2 v!T

UTℛ�1MU v!¼ 1
2L

ε
2 v!T

UTW TMU v!; (49)

where v!¼ ð0;1;0;1;…ÞT and U ¼ ðI 2M �D Þþ 3(see Theorem 1 for
the determination of D and ℱ). Also, the matrices ℛ and D are the
same already introduced in Theorem 2.

To conclude the discussion about the energy balance in the fiber
bundle, we prove a general property stating that the energy
accumulated in the homogeneous effective fiber with Young's
modulus Eeff (see Theorem 1) is identical to the sum of two energy
amounts related to fibers (Theorem 2) and matrix (Theorem 3) in
the corresponding heterogeneous bundle. This result can be
formulated as follows:

Theorem 4. Consider a periodically heterogeneous fiber bundle
under an overall strain ε; then the following relation holds true

1
2
ε
2Eeff ¼ wf þwm; (50)

where the three quantities Eeff, wf and wm are given in Eqs. respec-
tively. Equivalently, the effective Young’s modulus of the composite
bundle can be evaluated through the following alternative expressions

Eeff ¼
1
L
v!T

UTℛ�1ðS þM ÞU v!

¼ 1
L
v!T

UTW T ðS þ M ÞU v!;

(51)

where the matrices U, ℛ, W , S and M have been introduced in
Theorems 1, 2 and 3.

This result can be seen as a particular version of the Hill-Mandel
lemma, typically introduced to study standard composite materials
(Qu and Cherkaoui, 2006). In our context, the proof of this property
can be done by considering the total energy density w¼wfþwm for
the periodic bundle and by elaborating its expression as follows

w ¼ 1
2L

X
i¼1

M ZL
0

tiðxÞ
duiðxÞ
dx

dx

þ 1
4L

X
i¼1

M X
j¼1

M ZL
0

kijðxÞ
�
uiðxÞ � ujðxÞ

�2dx

¼ 1
2L

X
i¼1

M

½tiui�L0 �
1
2L

X
i¼1

M ZL
0

dtiðxÞ
dx

uiðxÞdx

þ 1
4L

X
i¼1

M X
j¼1

M ZL
0

kijðxÞ
�
uiðxÞ � ujðxÞ

�2dx; (52)

where we have applied an integration by parts in the first integral
concerning fibers energy density. Now, we can substitute Eq. (6) to
develop the term dti(x)/dx, by obtaining

w ¼ 1
2L

X
i¼1

M

½tiui�L0 þ
1
2L

X
i¼1

M ZL
0

uiðxÞ
X
j¼1

M

kij
�
ujðxÞ � uiðxÞ

�
dx

þ 1
4L

X
i¼1

M X
j¼1

M ZL
0

kijðxÞ
�
uiðxÞ � ujðxÞ

�2dx; (53)

where a direct calculation reveals the sum of the two integrals
(second and third terms) to be zero. Indeed, we can observe
that

P
i;j

kijuiuj �
P
i;j
kiju2i ¼ �1

2
P
i;j

kiju2i � 1
2
P
i;j

kiju2j þ 1
2
P
i;j

2kijuiuj

¼ �1
2
P
i;j

kijðui � ujÞ2. This proves that the integrals cancel out, and

we get the simple expression
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w ¼ 1
2L

X
i¼1

M

½tiui�L0 ¼ 1
2L

X
i¼1

M

½tiðεxþ diÞ�L0; (54)

where we have introduced Eq. (11), describing the displacement
function in a periodic heterogeneous bundle. We can observe that
both functions ti and di are periodic, leading to the relation

½tidi�L0 ¼ tiðLÞdiðLÞ � tið0Þdið0Þ ¼ 0. This proves that

w ¼ 1
2L

X
i¼1

M

½tiεx�L0 ¼ ε

2

X
i¼1

M

tiðLÞ ¼
1
2
ε
2Eeff ; (55)

where we used the relation ti(0)¼ti(L) and Eq. (21), defining the
effective Young's modulus of the periodic structure. This concludes
the proof of Theorem 4.
4. Analysis of a simple bundle structure: optimization of the
shear efficiency

As a simple analytically solvable example, we consider here a
system of two parallel fibers (M¼2), with a periodic cell composed
of two sections (S¼2), as shown in Fig. 3(a). The Young's moduli Et
and Eb define the elasticity of the fibers, while k represents their
interaction coefficient. It is convenient to introduce the quantities
l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð1=Et þ 1=EbÞ
p

and p¼Et/Eb to compact the notations. This
simple structure allow us to perform a complete explicit analysis of
the mechanical behavior. To begin, we can consider the response of
a single cell subjected to different boundary conditions. Then, we
study longer structures (with n cells), and for n/∞ we asymp-
totically reach a periodic system. We will prove that, with an
increasing number n, the effects of the boundary conditions pro-
gressively diminish, and completely disappear for n/∞. Hence,
the results obtained for n/∞must be consistent with the theorem
proved in Sections 2 and 3, pertinent to periodic systems.

To begin the analysis, we consider a single cell (composed of two
segments) subjected to the so-called isometric Helmholtz
conditions	
u1ð0Þ ¼ 0
u2ð0Þ ¼ 0 ;

	
u1ðLÞ ¼ d
u2ðLÞ ¼ d

; (56)

prescribing a given displacement on the right end terminals of the
fibers by clamping the left end terminals at the origin of the
Fig. 3. Panel (a): periodic cell of a simple bundle structure composed ofM¼2 fibers and S¼2
under Helmholtz (H) and Gibbs (G) conditions. For large n, both results converge to the pe
reference frame. The relation x
!ðLÞ ¼ expðA 2[ÞexpðA 1[Þ x

!ð0Þ,
where x

!T
¼ ðt1;u1; t2;u2Þ, combined with Eq. (56) represents a

systems of four equations with the four unknowns t1(0), t2(0), t1(L)

and t2(L) x
!ðLÞ ¼ expðA 2[ÞexpðA 1[Þ x

!ð0Þ(where L¼2[). By solving
this system and by defining the Young's modulus of a single cell
under Helmholtz conditions as the total stress divided by the pre-
scribed strain, i.e. Eeff ;H ¼ ½t1ðLÞ þ t2ðLÞ�L=d, we eventually obtain
the result

Eeff ;H
Eb

¼ 4pð1þ pÞl[
4pl[þ ðp� 1Þ2tanhðl[Þ

: (57)

A dual case concerns a single cell subjected to isotensional Gibbs
conditions

	
u1ð0Þ ¼ 0
u2ð0Þ ¼ 0 ;

	
t1ðLÞ ¼ t
t2ðLÞ ¼ t

; (58)

prescribing a given force applied on the right end terminals of the
fibers by clamping the left end terminals at the origin of the
reference frame. The relation can be combined with Eq. (58), by
yielding a system for the unknowns t1(0), t2(0), u1(L) and u2(L). In
this case, the effective Young's modulus is defined as the total stress
divided by the average strain, Eeff ;G ¼ 4tL=½u1ðLÞ þ u2ðLÞ�, and its
final expression can be written as

Eeff ;G
Eb

¼ 4pð1þ pÞl[
4pl[þ ðp� 1Þ2sinhðl[Þ½3 coshðl[Þ�2�

2 cosh2ðl[Þ�1

: (59)

We observe that, with different boundary conditions, we have
two different effective Young's muduli for the same structure.

Now, with the aim of going towards a periodic structure, we take
into consideration a series of n cells (each composed of two seg-
ments as discussed above), and we apply both the Helmholtz and
the Gibbs conditions to the whole structure. In this case, the total
length is L¼2n[ and the main equation relating the mechanical
quantities on the left and right end-terminals is given by

x
!ðLÞ ¼ ½expðA 2[ÞexpðA 1[Þ�n x

!ð0Þ. The definition of the Helmholtz
and Gibbs conditions is given, as before, in Eqs. (56) and (58),
respectively. Therefore, for the calculation of the effective proper-
ties as function of the number of cells n, we have to compute the
matrix power ½expðA 2[ÞexpðA 1[Þ�n. Fortunately, the matrix
expðA 2[ÞexpðA 1[Þ can be put in Jordan form with a purely
sections. Panel (b): effective Young's modulus (in a.u.) of a structure composed of n cells
riodic case (∞).
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analytical procedure and then we can write Eeff,H(n) and Eeff,G(n) in
closed form. However, the corresponding expressions are rather
cumbersome and we do not present here the detailed results for
the sake of brevity. The interesting point is that both responses for
isometric and isotensional conditions converge, for large n, to the
same result

Eeff ;∞
Eb

¼ 4pð1þ pÞl[
4pl[þ 2ðp� 1Þ2tanh

�
l[
2

� ; (60)

representing the effective Young's modulus of a periodic structure.
It is not difficult to prove that this expression is in perfect agree-
ment with Theorem 1, applied to the present case. This behavior
can be seen in Fig. 3(b), where we used the following parameters:
[¼1, Eb¼1, p¼10 and 40, k¼1 in a.u. and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=p
p

. For both
values of the contrast p one can observe the convergence to the
effective modulus pertinent to the periodic structure. The same
behavior can be deduced from Fig. 4, where the effective Young's
modulus is represented versus the elastic contrast p for several
values of n and for both Helmholtz and Gibbs conditions. It is
interesting to note that if we consider Et¼Eb¼Ef (i.e. p¼1) in Eqs.
(57) (59) and (60) (Voigt model), we obtain the result
Eeff,H¼Eeff,G¼Eeff,∞¼2Ef. This is consistent with the fact that we
defined the effective Young's modulus of the system as the Young's
modulus of a single fiber (with section S) equivalent to theM-fibers
bundle (see Section 2). Therefore, in this case the Voigt stiffness
upper bound corresponds to Emax¼2Ef. The complicated behaviors
represented in Fig. 4 are completely originated by the presence of
the shear interactions among fibers. To begin, the augmentation of
Eeff (H, G or ∞) with increasing x with n fixed can be physically
interpreted as follows. If the contrast between Eb and Et is higher,
then we observe a larger difference between the strain induced in
the corresponding fibers. This strain difference induces a larger
relative displacement between parallel fiber segments, controlled
by k. So, with higher contrast p, we have a stronger effect of the
interactions. This causes an increasing of the effective elastic stiff-
ness (also the interactions contribute to the overall stiffness). On
the other hand, the decreasing of the effective stiffness with larger
values of n (p constant) is related to a different physical mechanism.
With given n and p we have a certain relative displacement be-
tween parallel fibers. Then, if we consider a systemwith nþ1 fibers
and the same p, we have a weak effect of the boundary conditions
Fig. 4. Effective Young's modulus (in a.u.) of the bundle with Helmholtz conditions (a) and G
curves with triangles correspond to n¼1, i.e. to Eqs. (57) and (59) and the black solid curve
on the cells and we eventually observe a smaller relative
displacement between parallel fibers. Therefore, increasing n, we
reduce the effects of the shear interactions. This mechanism finally
attenuates the overall elastic stiffness of the bundle.

The terms Helmholtz and Gibbs conditions come from the
similar topic concerning the elasticity of flexible and semiflexible
polymer chains (Manca et al., 2012a, 2012b, 2013, 2014b). In that
case the different responses obtained for finite chains under
different boundary conditions are due to statistical mechanics ef-
fects (i.e., induced by the temperature). In fact, prescribing different
boundary conditions modifies the structure of the phase space and,
consequently, alters the calculation of average values of quantities
describing the overall elastic response. Only when the thermody-
namic limit is achieved (infinite chains), different conditions lead to
the same mechanical response (equivalence between statistical
ensembles). The situation is conceptually similar for composite
bundles (also without temperature effects). Indeed, in this case, the
different behavior under different boundary conditions is gener-
ated by the relaxation of the internal degrees of freedom (shear
effects among the fibers), which is sensible to the quantities pre-
scribed at boundaries (either displacement or stress). As for poly-
mer chains, when we consider an infinite periodic bundle, the
elastic response is unique, independently of the fixed conditions.
Although, the physical origin of this phenomenon is not exactly the
same, it is interesting to underline the analogy between polymer
chains and composite bundles.

The behavior of the periodic structure can be obtained not only
as limit for n/∞ of the systemwith Helmholtz or Gibbs conditions
(or through Theorem 1), but it can be also analysed as follows. We
consider a single cell with length L¼2[ andwe impose the following
boundary conditions, which are able to mimic the behavior of each
cell in a periodic structure

	
u1ð0Þ ¼ 0
u1ðLÞ ¼ d

;

	
u2ðLÞ � u2ð0Þ ¼ d

t1ðLÞ ¼ t1ð0Þ : (61)

The first two assumptions impose an average strain ε¼d/L to the
first fibre; the third conditionmeans that the total elongation of the
second fibre must be the same of the first one, allowing, however,
possible shear translations between the fibers. Finally, the fourth
hypothesis imposes the periodicity of the stress in the first fiber.
Please note that the periodicity of the stress in the second one is
automatically satisfied since the conservation of the total stress in
different bundle sections is a built-in property of the main
ibbs conditions (b) versus the elastic contrast p for increasing values of n¼ 1, …,10. The
s to n/∞, i.e. to Eq. (60). We used the same parameters as in Fig. 3(b).



F. Manca et al. / European Journal of Mechanics A/Solids 60 (2016) 145e165 155
equations of the system (see Eq. (9)). Anyway, by considering Eq.

(61) combined with x
!ðLÞ ¼ expðA 2[ÞexpðA 1[Þ x

!ð0Þ, and by
defining the effective Young's modulus as Eeff ;∞ ¼ ½t1ðLÞ þ t2ðLÞ�L=d,
we can re-obtain Eq. (60), already proved with the limiting process
or by Theorem 1. More importantly, the knowledge of the boundary
conditions for a single cell of a periodic system allows us to

determine the vector x
!ðxÞ cx2ð0; LÞ. In particular, this result can

be used to determine the average energy density stored in the fi-
bers, eventually obtaining

wf

Eb
¼ 1

2
ε
2l[pð1þ pÞ

2

� 2ðp� 1Þ2T � l[ðp� 1Þ2T 2 þ l[
�
p2 þ 6pþ 1

�
h
2pl[þ ðp� 1Þ2T

i2 ; (62)

where T ¼ tanh
�
l[
2

�
. In addition, we can also calculate the average

energy density stored in the matrix, and we get

wm

Eb
¼ 1

2
ε
2l[pð1þ pÞð1� pÞ2

2
2T þ l[T 2 � l[h
2pl[þ ðp� 1Þ2T

i2 : (63)

It is possible to prove that Eqs. (62) and (63) are in perfect
agreement with Theorems 2 and 3, respectively. Importantly, we
can easily verify, by directly adding the two energetic contributions,
that wf þwm ¼ 1

2ε
2Eeff ;∞, a result representing the energy balance

stated for the general case in Theorem 4. We remark that if we let
Et¼Eb¼Ef (i.e. p¼1) in Eqs. (62) and (63) (Voigt model), we obtain
wf¼Efε

2 and wm¼0. Indeed, if the fibers have the same Young's
modulus the energy contribution within the matrix must vanish
and the total energy is adsorbed by the fibers (12Ef ε

2 for each fiber).
The knowledge of closed form expressions for the effective

Young's modulus, Eq. (60), and the energetic contributions, Eqs.
(62) and (63), allows us to introduce the concept of optimization of
a bundle structure. The idea is that of maximizing the effective
Young's modulus while minimizing the fiber energy density, which
corresponds to attenuate the fiber mechanical solicitations
Fig. 5. Plot of the efficiency function C , Eq. (64), versus
ffiffiffi
k

p
[. Two families of curves

correspond to Eb¼1 (green) and Eb¼10 (red) and they are parametrized by p¼1.5r with
r¼1,…,25. The blue lines concern the case with p/∞, Eq. (65). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)
(compromise between stiffness and toughness). This optimal
behavior can be obtained by introducing the efficiency function

C ¼ ε
2Eeff ;∞
2wf

¼ 1þwm

wf

¼ 1þ ðp� 1Þ2�2T þ l[T 2 � l[
�

2ðp� 1Þ2T � l[ðp� 1Þ2T 2 þ l[
�
p2 þ 6pþ 1

� ;
(64)

to bemaximized. The first line in Eq. (64) (proved through Theorem
4) means that the optimization of C corresponds to maximize the
fraction of energy adsorbed within the matrix or, conversely, to
minimize the fraction of energy adsorbed within the fibers.

To show a specific example, we consider C as function of
ffiffiffi
k

p
[,

by maintaining fixed Eb and p (the elasticity of fibers). Importantly,
we show in Fig. 5 that C always exhibits a maximum, which cor-
responds to the characteristic length scale of the structure
emerging from the optimization of the shear mechanism. Only
when the contrast p approaches infinity, the curve C versus

ffiffiffi
k

p
[

becomes monotonically increasing, without exhibiting any
extremum point. This can be seen by performing the limit for p/∞
of Eq. (64), which gives the following result

C ðp/∞Þ ¼ 2

1þ
ffiffi
k

p
[

2
ffiffiffiffi
Eb

p

2
664 1

tanh

 ffiffi
k

p
[

2
ffiffiffi
Eb

p

!� tanh

 ffiffi
k

p
[

2
ffiffiffiffi
Eb

p
!3775

: (65)

This asymptotic behavior is represented by the blue curves in
Fig. 5. It interesting to observe that for large values of the contrast p
and large values of the length [, the limit C ¼ 2 is approached,
meaning that wm¼wf, i.e. the total energy is equally distributed
between matrix and fibers. This is the theoretical limit of the pro-
cess, which transfers the adsorbed energy from the fibers to the
matrix, thanks to the shear effects. We remark that the definition of
C , combined with Eq. (50), allows to write the two energy con-
tributions in terms of C and w¼wfþwm, by eventually obtaining

wf ¼ 1
C w and wm ¼

�
1� 1

C

�
w. These expressions show how C

controls the distribution of energy between matrix and fibers.
The existence of optimal length scales for this simple structure

suggests to use the same approach also for more complex hetero-
geneous bundles, which would more closely represent biological
structures or composite nanomaterials.

5. Homogenization and optimization of complex structures

In this Section we exploit the general theory presented in Sec-
tions 2 and 3, in order to extend the optimization procedure to
structures with more general heterogeneity. In particular, we study
here the periodic staggered geometry (similar to a brick-and-
mortar structure) and the staircase geometry (similar to a multi-
step structure). These systems can represent both natural biolog-
ical and artificial bioinspired structures. The bundle optimization is
performed by considering the following efficiency function

C ¼ ε
2Eeff
2wf

¼ 1þwm

wf
¼ 1þ v!T

UTℛ�1MU v!
v!T

UTℛ�1S U v!

¼ 1þ v!T
UTW TMU v!

v!T
UTW TS U v!

; (66)



Fig. 6. Staggered periodic geometries: (a) asymmetric structure with sections lengths
(l1,l2,l3,l4) ¼ ð[=3ð1þ xÞ; [=3; [=3ð1� xÞ; [=3Þ, where �1<x<1; (b) symmetric structure
with varying overlapping having sections lengths
(l1,l2,l3,l4) ¼ ð[=2ð1� xÞ; [x; [=2ð1� xÞ; [xÞ, where 0<x<1. In both schemes, Ef and Eg
represent the fibers and gaps Young's moduli, respectively and k is the interaction
coefficient. Dark green segments represent the fibers, orange segments the gap re-
gions, and light green areas the matrix connecting the overlapped fibers. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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taking into account the energetic competition between fibers and
matrix. The main idea is that of finding the most suitable geometry
that is capable of transferring the largest amount of energy from
the fibers to the matrix, thereby enhancing the shear efficiency.
5.1. Staggered geometry

We analyse here in detail the mechanical behavior of a stag-
gered structure, similar to a brick wall. In particular, we take into
consideration two specific geometries, as shown in Fig. 6. While in
the first one we study the asymmetry effects, in the second one we
consider the overlapping effects.

All staggered geometries can be represented with a periodic
fiber bundle having a periodicity cell composed of four sections. In
the first case, shown in Fig. 6(a), we can parametrize the sections
lengths as (l1,l2,l3,l4) ¼ ð[=3ð1þ xÞ; [=3; [=3ð1� xÞ; [=3Þ
(with �1<x<1), where [ represents the real length of the fiber
(Young's modulus Ef) and x represents the asymmetry coefficient.
Indeed, when x/�1, the fibers overlapping is completely shifted
on the right and, when x/þ1, the fibers overlapping is shifted on
the left. In this structure, the gap between the fibers is fixed to the
length [/3 (Young's modulus Eg). In the second case, shown in
Fig. 6(b), in order to analyse the overlapping effects we parametrize
the sections lengths as (l1,l2,l3,l4) ¼ ([/2(1�x),[x,[/2(1�x),[x) (with
0<x<1), where [ represents the fiber length as before, and x mod-
ulates the ratio between overlapping ([=2ð1� xÞ) and gap ([x).

In Figs. 7 and 8 one can find the results for both geometries. In
the first case, as expected, we obtain an effective Young's modulus
Eeff and an efficiency functionC , which are symmetric with respect
to x. Indeed, the configurations with the same shift on the left or on
the right are completely equivalent from the mechanical point of
view. The asymmetry, however, strongly influences the overall
response. As regards the effective Young's modulus, we observe
that Eeff becomes vanishingly small for x/±1. In these case, the
overlapping among the fibers (i.e., the shear interactions) disap-
pears on the left end-terminal of the periodicity cell (x¼�1) or on
the right end-terminal (x¼þ1), generating a very weak bundle
section (Eg≪Ef), strongly degrading the effective stiffness. On the
other hand, for x¼0, the overlapping regions are maximized, hence
increasing the overall Young's modulus Eeff. The analysis of the ef-
ficiency functionC reveals that once fixed x, one can always find an
optimal fiber length [, maximizing C . Moreover, we also remark
that for x near ±1 we need longer fibers in order to compensate the
small overlapping region (on the left if x/�1 or on the right if
x/þ1). For the symmetrical structure with x¼0 we have the
shortest optimal length since both overlapping regions are maxi-
mized. Finally, it is interesting to note that all optimal fiber lengths,
corresponding to different values of x, yield the same value of the
efficiency function C . This point can be interpreted by observing
that varying x we always have a constant total overlapping (2[/3)
and, therefore, by choosing the proper fiber length, we can obtain
the same overall bundle performances.

The behavior of the symmetric structure in Fig. 6(b) with vary-
ing overlapping is different and it can be found in Fig. 8. As for the
effective Young's modulus, if x/0, then we have that Eeff/MEf,
independently of [, and it is the maximum stiffness we can achieve.
Indeed, in this case the gaps disappear and we have, in the limit, a
bundle of homogeneous fibers. Conversely, if x/1, then the over-
lapping regions of the fibers vanish and the overall Young's
modulus becomes negligible (Eg≪Ef). The important point is that,
for any value of x, we can always identify an optimal fiber length
maximizing the efficiency function C . Interestingly enough, the
optimal fiber length is an increasing function of x. This can be
simply explained by observing that for high values of x (with
0<x<1) we reduce the overlapping regions and this loss of stiffness
must be compensated by a longer system. We further observe that,
contrarily to the previous case (see Fig. 7), the value of the effi-
ciency function is not the same for all optimal fiber length. In fact,
for different values of x, we have different sizes of the total over-
lapping region and this directly influences the effective perfor-
mances of the bundle.

We also performed an analysis concerning the number M of fi-
bers within the bundle. In particular, we considered a staggered
structure with sections lengths (l1,l2,l3,l4) ¼ ([/3,[/3,[/3,[/3). It can
be obtained by considering, e.g., the geometry in Fig. 7(a) with x¼0,
or the geometry in Fig. 7(b) with x¼1/3. In Fig. 9 we show both the
effective stiffness with the energetic contributions and the effi-
ciency function to maximize. The effective Young's modulus and
the energetic contributions are presented in panel (a). The same
parameters are shown in panel (b) normalized by M; we observe a
very fast convergence of Eeff/M, 2wf/(ε2M) and 2wm/(ε2M) for large
values of M, as expected. In panel (c), we finally observe the effects
of the number M of fibers on the efficiency function C . We remark
a slight reduction of the optimal fiber length [ in correspondence to
values of M from 2 to ∞. Moreover, as for the normalized effective
Young's modulus, we have a fast convergence of the efficiency
function to its limiting value.

To conclude the analysis of the staggered structurewe also show
some results concerning the effects of the gap Young's modulus on
the efficiency function of the system. As before we considered the
structure with (l1,l2,l3,l4)¼ ([/3,[/3,[/3,[/3) and we plotted C versus
[ in Fig. 10. We note a sensible variation of the optimal length in
terms of Eg and, for vanishingly small values of Eg, we observe a
convergence of the optimal fiber length to a specific finite value.

5.2. Staircase geometry

This Section deals with the periodic staircase geometry,



Fig. 7. Homogenization and optimization of the asymmetric staggered structure shown in Fig. 6(a). The lengths of the sections are (l1,l2,l3,l4) ¼ ð[=3ð1þ xÞ; [=3; [=3ð1� xÞ; [=3Þ
with �1<x<1. The effective Young's modulus and the energy contributions are represented in panel (a) versus [ and parametrized by the asymmetry coefficient x. In panels (b) and
(c) Eeff and [ are shown versus x and [. The symmetry with respect to x¼0 can be observed in both surfaces. Finally, C versus [ is represented in panel (d) for 25 equispaced values of
x in (0,1). We used the parameters Ef¼1, Eg¼1/1000, k¼1 and M¼2 (in a.u.).
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represented in Fig. 11. This configuration can be described as fol-
lows. The spatial period is given by L¼[þg where [ is the fiber
length and g is the gap extension. Starting from the first (bottom)
fiber, the second one is left-shifted by a displacement [�d. Thus,
d represents the overlapping between two adjacent fibers, as
shown in Fig. 11 (light green areas). We repeat this procedure n
times and we obtain the last fiber in the same translational position
of the first one. The resulting structure is shown in Fig. 11 for
n ¼ 2,3,4 and 5. The red frames in this scheme represent the pe-
riodic cells in both the longitudinal and transverse directions. Of
course, to generate this structure, the parameters [, d and g can not
be independent and must fulfill the following constraints. By con-
struction, [þg¼n([�d), which means that [þg

[�d
must be an integer

number. Further, from the relation n ¼ [þg
[�d

, once l and d are fixed,
we have g ¼ ðn� 1Þ[� nd. We assume that, both on the left and on
the right of the gap segment (of length g), we always have two
regions with a given finite overlapping between adjacent fibers. It
implies that d>0, g>0 and [�d�g>0. From g>0 we can prove that
d
[<

n�1
n . Similarly, from [�d�g>0 we obtain that d

[>
n�2
n�1. Therefore,

for the ratio d=[, the admissibility interval is n�2
n�1<

d
[<

n�1
n . To

conclude the structure definition, we also assume that the total
number of fibers is given byM¼nB, where n determines the order of
the staircase geometry and B represents the number of blocks (red
frames in Fig. 11) considered within the bundle.
The properties of the staircase bundle geometry are reported in
Fig. 12, where we show the effective Young's modulus and the ef-
ficiency function for n¼ 2, 3, 4 and 5.We represented the results for
all orders n in the same plot since the admissibility intervals for d/[
do not overlap for different n, and cover the whole interval (0,1) for
n¼1,…,þ∞.

The two limiting cases can be analysed by considering d
[/

n�1
n or

d
[/

n�2
n�1. In the first case we have the overlap [�d�g approaching

zero and, therefore, a vanishingly small effective stiffness (since
Eg≪Ef). In the second case the gap extension g approaches zero,
hence Eeff¼MEf¼nBEf (i.e., a bundle of homogeneous fibers). This
behavior can be seen in Fig. 12(a). In both limiting cases the effi-
ciency function C is negligibly small since the energy accumulated
in the matrix is very small in such conditions. However, one can
always find an optimal fiber length [ for any value of the ratio d/[, as
one can easily deduce from Fig. 12(b).

Fig. 13 displays both the effective stiffness with the corre-
sponding energetic contributions and the efficiency function to
maximize for n ¼ 2, …,8. We considered a staircase structure

with d
[ ¼ 2n2�4nþ1

2nðn�1Þ . This value corresponds to the mean value of the

endpoints of the admissibility interval
�
n�2
n�1;

n�1
n

�
. Moreover, we

take g ¼ ðn� 1Þ[� nd, as before. In panel (b) of Fig. 13, we can
observe the effects of the number n of fibers in a given block



Fig. 8. Homogenization and optimization of the symmetric staggered structure with varying overlapping shown in Fig. 6(b). The lengths of the sections are
(l1,l2,l3,l4) ¼ ð[=2ð1� xÞ; [x; [=2ð1� xÞ; [xÞ with 0<x<1. In panel (a) the effective Young's modulus is shown together with the energy contributions versus the fiber length [ (and
parametrized by the overlapping coefficient x). A three-dimensional representation of Eeff and C can be found in panels (b) and (c), respectively. Finally, C versus [ is represented in
panel (d) for 25 equispaced values of x in (0,1). We used the parameters Ef¼1, Eg¼1/1000, k¼1 and M¼2 (in a.u.).
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(B¼1) on the efficiency function C . We remark a sensible in-
crease of the optimal fiber length [ in correspondence to values
of n from 2 to 8.

A further analysis can be performed for the number B of blocks
within the staircase bundle. As an example, we considered a spe-

cific structure with n¼3, d[ ¼ 2n2�4nþ1
2nðn�1Þ ¼ 7

12 and
g
[ ¼ ðn� 1Þ � n d

[ ¼ 1
4.

In Fig. 14 we show both the normalized effective stiffness with the
corresponding energetic contributions and the efficiency function
to maximize. The effective Young's modulus and the energetic
contributions are presented in panel (a), normalized by M ¼ nB. As
expected, all the quantities Eeff =ðnBÞ, 2wf =ðε2nBÞ and 2wm=ðε2nBÞ
converge rapidly for large values of B. In panel (b), the effects of the
total number of fibers on the efficiency function C are shown. We
remark a rather slight reduction of the optimal fiber length [ in
correspondence to values of B from 1 to 8. Moreover, as for the
normalized effective Young's modulus, we have a fast convergence
of C to its limiting value.

To conclude the analysis of the periodic staircase structure we
also show some results concerning the effects of the gap Young's
modulus on the efficiency function of the system. As before we
considered the structure with n¼3, d/[¼7/12 and g/[¼1/4 and we
plotted C versus [ in Fig. 15. We note a sensible variation of the
optimal length in terms of Eg and, for vanishingly small values of Eg,
we observe a convergence of the optimal fiber length to a specific
finite value.
6. Comparison with real biological structures

In this Section, the optimization procedure based on Eq. (66) is
directly applied to four biological systems: sarcomere, collagen,
abalone nacre and spider silk. For these structures we evaluate both
the characteristic length scales of the periodic cell, and the overlap
regions among fibers. The theoretical results are then compared
with available experimental data. We remark that the interaction
among fibers sensibly depends on their cross-sectional geometry.
In particular, in natural systems we can mostly find cylindrical or
parallelepipedal fibers. As a matter of fact, while the unit cell of
sarcomere and collagen can be simplified by considering actin,
myosin and titin (for sarcomere), and tropocollagen triple helix (for
collagen) as cylindrical filaments, the architecture of nacre shells
and spider silks presents parallelepipedal fibers (aragonite platelets
in the first case and beta-sheets in the second one). Of course, these
geometrical simplifications do not take into account the real
complexity of biological systems. For instance, the consideration of
a single interaction coefficient k smears out the refined effects of
the hydrogen bonds and the Van der Waals interactions between
the macromolecules of the bundle. However, this approximation is
typically adopted to study bundles of biological origin and several
results based on this assumption have been successfully compared
with numerical simulations and experiments (Buehler, 2006, 2008;
Chen et al., 2009; Wei et al., 2012). The dependence of the inter-
action coefficient k on the shape of fibers and the shear modulus m
of the matrix can be studied as follows. Since the sliding among



Fig. 9. Analysis of the staggered structure (l1,l2,l3,l4) ¼ ð[=3; [=3; [=3; [=3Þ versus the number M of fibers. Panel (a): effective modulus and energetic contributions as function of [ for
M¼2,…,10. Panel (b): the same quantities are divided by M. These normalized values show a fast convergence for M/∞. Panel (c): zoom of C versus [ for M2f3;2n;n ¼ 2;…;10g.
Also in this case, a fast convergence can be observed with a slight modification of the optimal fiber length. We used the parameters Ef¼1, Eg¼1/1000 and k¼1 (in a.u.).

Fig. 10. Analysis of the effects of the gap Young's modulus Eg on the efficiency function
C of the staggered structure defined by (l1,l2,l3,l4) ¼ ð[=3; [=3; [=3; [=3Þ (we used k¼1 in
a.u.). The function C is plotted versus [ for 20 equispaced values of Eg in the range
10�2-10�4.

Fig. 11. Staircase geometry with [>0, d>0, g>0 and [�d�g>0. The periodic structures
are defined by the relations n ¼ [þg

[�d
and g ¼ ðn� 1Þ[� nd. Then, the condition

n�2
n�1<

d
[<

n�1
n must be always verified. In panel (a), (b), (c) and (d) the geometries for

n ¼ 2,3,4 and 5 are shown. The quantities Ef, Eg and k represent the fiber Young's
modulus, the gap Young's modulus and the interaction coefficient.
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fibers represents an anti-plane shear elastic problem, we can easily
exploit the analogy with electrostatics to obtain k¼k(m) for two
adjacent fibers. The interaction coefficient for a pair of infinite-
length parallel cylindrical fibers can be eventually obtained as
(Cox, 1952)
k ¼ m

r2ln

0
@ d

2r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4r2 � 1
q 1

A
x

m

r2ln d
r

; (67)

where r is the fibers radius and d is the distance between the
centres. The approximation in Eq. (67) is valid for d[r. On the



Fig. 12. Effective Young's modulus Eeff [panel (a)] and efficiency function C [panel (b)]
for the periodic staircase structures as function of [ and d/[ with n ¼ 2,3,4 and 5 (see
Fig. 11). For each value of n, we have n�2

n�1<
d
[<

n�1
n (non-overlapping intervals). We

observe an optimal fiber length [ for any admissible value of d/[. We used the pa-
rameters Ef¼1, Eg¼1/100, k¼1 and B¼1 (in a.u.).

Fig. 13. Analysis of the effects of n on the periodic staircase structure. Panel (a): effective You
value of [ we fixed d

[ ¼ 2n2�4nþ1
2nðn�1Þ , representing the mean value of the endpoints of the admis

100, k¼1 and B¼1 (in a.u.).

Fig. 14. Analysis of the effects of B on the periodic staircase structure (for n¼3). We imposed
(a): normalized values Eeff/(nB), 2wf =ðε2nBÞ and 2wm=ðε2nBÞ versus the fiber length [. Pan
M¼nB/∞. We used the parameters Ef¼1, Eg¼1/100 and k¼1 (in a.u.).
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other hand, the interaction coefficient for two infinite-length par-
allel parallelepipedal fibers is given by (Wei et al., 2012)

k ¼ m

rd
; (68)

where r is the fiber thickness and d is the distance between two
adjacent sides. Note that, since these relations are obtained for a
couple of fibers, they become approximated when used for a sys-
tem of fibers withM>2. In the following calculations we accept this
approximation and we maintain k constant independently of the
number of fibers.

6.1. Sarcomere

Firstly, we apply the proposed technique to find the optimal
overlap length scale of contiguous actin and myosin-titin fibers in a
sarcomere of muscle tissue. The sarcomere is composed of thin
actin filaments (with a radius rA~3.5 nm) and thick myosin fila-
ments (rM~7.5 nm) connected with titins (rT~0.5 nm) (Geoffrey,
2000), as shown in Fig. 16(a). The sarcomere length ranges from
1.32 to 3.20mm (Thomas and Richard, 2001; Hamrell and Hultgren,
1992; Dimery, 1985; Weijs et al., 1983). Chemical and physical in-
teractions between actin and myosin filaments cause the sarco-
mere length to change (sliding filament theory). This is possible
because of a variable overlapping between actin and myosin-titin
fibers (Kawai and Brandt, 1980; Ford et al., 1981). However, we
ng's modulus and energetic contributions. Panel (b): C versus [ for n ¼ 2, …,8. For any
sibility interval

�
n�2
n�1;

n�1
n

�
, and g ¼ ðn� 1Þ[� nd. We used the parameters Ef¼1, Eg¼1/

d/[¼7/12 (mean value of the endpoints of the admissibility interval) and g/[¼1/4. Panel
el (b): C versus [ for B¼1,…,8. Both Eeff =ðnBÞ and C show a convergent behavior for



Fig. 15. Analysis of the effects of the gaps Young's modulus on the periodic staircase
structure with n¼3 and B¼1. Since n¼3, we imposed d/[¼7/12 (mean value of the
endpoints of the admissibility interval) and g/[¼1/4. For vanishingly small values of Eg,
we observe a convergence of the optimal fiber length to a finite value.

Fig. 16. Panel (a) and (b): representation of the sarcomere and collagen fibril structures. Pan
efficiency function C exhibiting the maximum point in correspondence to the specific ove
Table 1. Shaded areas represent the range of variation of the optimal overlapping lengths.
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underline that here we consider the passive response of the
sarcomere, i.e., its elasticity measured without active phenomena.
The myosin and titin Young's moduli have been experimentally
determined as EMf � 10 GPa (Kojima et al., 1994) and ETf � 0:7 GPa

(Abolbashari and Ameli, 2012), respectively. Experiments also
probed the Young's modulus of a single actin filament to be
EAf � 1:8 GPa (Kojima et al., 1994). Their interaction is supposed

here to be controlled by the shear modulus of F-actin gel, which has
been estimated to be m � 10 kPa (Satcher and Forbes, 1996; Jacot
et al., 2010). For obtaining the optimal overlap length d between
actin and myosin-titin filaments, we substituted these parameters
in our model, considering M ¼ 10 fibers (the results remain sub-
stantially unaltered if M[10, as shown in Fig. 9). In this case,
d represents the overlap region among filaments, while g is the
length of the regionwhere filaments do not interact (see Fig. 16(a)).
The periodic cell is represented in Fig. 16(c). In this case, fibers have
four different Young's moduli, EAf ; E

M
f ; ETf ; Eg, representing the

elastic moduli of actin, myosin, titin, and H-zone (gap), respectively.
The first three elastic moduli have been fixed equal to the experi-
mental values previously reported, while the elastic moduli of the
H-zone has been fixed to Eg ¼ 10 Pa, for representing an ideally
empty region. The interaction among filaments is represented by an
el (c) and (d): schematics of the periodic cell adopted in the analysis. Panel (e) and (f):
rlapping length scales d* (or d�c ). The ratio g/d (or g/dc) varies in the range specified in



Table 1
Physical and geometrical parameters adopted for modeling the biological architectures and obtained optimal length scales.

Structure Ef (GPa) Eg (GPa) m (GPa) g/d (or g/dc) d* (or d�c ) (mm) L* (mm)

Sarcomere 0.7�10 1�10�8 10�5 0.003�0.13 0.85�1.30 1.70�2.77
Collagen 5 1 3.4�10�3 1�2 17.8�28.8�10�3 318�334�10�3

Nacre 106 1�10�6 1.4 0.3�1�10�7 0.656�1.72 1.31�3.44
Spider Silk 22.6 5�10�2 4.6 0.9�1�10�3 1.15�2.2�10�3 2.3�4.4�10�3
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elastic matrix with the shear modulus m of F-actin gel. Moreover,
we remark that Eq. (67) is valid only for two parallel cilindrical fi-
bers with identical radius r. Consequently, we considered fibers
having the same average radius: for actin and myosin r was set
equal to ðrA þ rMÞ=2 ¼ 5:5m m. With these values, we obtain an
optimal overlap length d� ranging from 0.85 to 1:30m m. Fig. 16 (e)
reports these results, showing the range of variation of d� for five
equispaced values of the ratio g=d in the interval ð0:003;0:13Þ (this
range being deduced from electron micrograph (Kossmann and
Huxley, 1961)). These optimal overlaps correspond to a total
sarcomere length L� ¼ 2d� þ g ¼ 1:70� 2:77m m. This is in very
good agreement with experimental results (Thomas and Richard,
2001; Hamrell and Hultgren, 1992; Dimery, 1985; Weijs et al.,
1983). All the parameters used in the model and the obtained
lengths are summarized in Table 1.
Fig. 17. Panel (a) and (b): representation of the abalone nacre and spider silk structures. Pan
and (e): efficiency function C exhibiting the maximum point in correspondence to the spe
Shaded areas represent the range of variation of the optimal overlapping lengths.
6.2. Collagen

A second application of the model is consecrated to collagen-I
fibrils, with the aim of finding the optimal overlap length scale of
contiguous tropocollagen molecules. In particular, we consider
non-mineralized collagen fibrils, which are typically composed of
an organic phase of 90% type-I collagen and 10% non-collagenous
proteins (NCP). Tropocollagen molecules have a triple a-helical
structure made up of 3 different amino-acids (Ramachandran and
Kartha, 1955) having a radius of � 1:5 nm (Orgel et al., 2001) and
length [ � 300 nm (Gautieri et al., 2011), as shown in Fig. 16(b). This
staircase geometry exhibits a distance between two fibers of� 0:24
nm and molecules are organized in very long periodic assemblages
called fibrils (Landis et al., 1993). The structure is supported by the
aldol cross-links between molecules. The D-periodic gap/overlap
spacing is characterized by an overlap length dc � 27 nm and by a
el (c): schematic of the periodic cell adopted in the analysis of both systems. Panel (d)
cific overlapping length scales d*. The ratio g/d varies in the range specified in Table 1.
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gap length g � 40 nm (Hodge and Schmitt, 1960). In terms of the
geometry defined in Section 5.2, we have that d ¼ [� dc � gx233
nm and, therefore, the order of the periodic staircase collagen
structure is n ¼ [þg

[�d
¼ 5. Stretching experiments report the Young's

modulus of a single collagen molecule in the range Ef � 0:35� 12
GPa (Sun et al., 2002), while the non-collagenous proteins have an
elastic modulus Eg � 1 GPa (Nikolov and Raabe, 2008). The inter-
action among molecules measured via micromechanical experi-
ments reported the shear modulus of aldol cross-links m � 3:4 MPa
(Yang et al., 2008). Substituting these values in our model, and
using the periodic cell represented in Fig. 16(d) with M ¼ 10 fibers
(B ¼ 2), we obtain an optimal overlap length d�c ranging from� 17.8
to � 28.8 nm, which is again in very good agreement with exper-
imental findings by electron microscopic tomography (Landis et al.,
1993). Fig. 16(f) reports these results, showing the range of varia-
tion of d�c obtained with five different values of the ratio g=d�c in the
interval (1,2). The optimal overlaps correspond to an optimal length
of the unit-cell L� ¼ 318� 334 nm (see Table 1 for details).
6.3. Abalone nacre

As a third case, we analyse the structure of the red abalone nacre
to obtain the optimal overlap length among aragonite platelets,
which leads to the best load sharing between fibers and matrix. In
Fig. 17 (a) the microstructure of nacre is shown. The aragonite
platelets (thickness � 0:5m m) and the organic matrix (thickness �
25 nm) are assembled in the typical brick and mortar (staggered)
geometry (Barthelat et al., 2006). The longitudinal distance be-
tween platelets is g � 25 nm, as measured by transmission electron
microscopy, scanning electron microscopy, and atomic force mi-
croscopy observations (Barthelat et al., 2006; Lin and Meyers,
2005). Stretching experiments reported the Young's modulus of a
single aragonite platelet Ef � 106 GPa (Tang et al., 2007). Along the
short edges, the aragonite platelets are not in contact with any
organic matrix (Lin and Meyers, 2005; Tang et al., 2007), thus the
Young's modulus in the gap region Eg is negligible with respect to
Ef (Bertoldi et al., 2008). The interaction among platelets is
considered via the shear modulus of the organic matrix, which has
been measured to be m � 1:4 GPa (Jackson et al., 1988). With these
values, and the periodic cell represented in Fig. 17(c) with M ¼ 10
fibers, we obtain an optimal overlap length d� ranging from� 0.656
to � 1.72 mm. This is in quite good agreement with microscopic
characterizations that found an overlap length of the red abalone
nacre to be of � 1.6 mm (Espinosa et al., 2011). Fig. 17(d) reports
these results for five different values of the ratio g=d in the interval
(0.3, 1)�10�7. The optimal overlaps correspond to an optimal
length of the unit-cell L� ¼ 1:31� 3:44m m (see Table 1 for details).
6.4. Spider silk

The last example concerns the optimal overlap length among
beta-sheets in spider silk structures. In Fig. 17(b) themicrostructure
of the spider silk is shown. It is composed of crystalline blocks of
alanine and glycine, arranged in parallel beta-sheets (thickness � 1
nm) and a matrix of amorphous-like helical structures (thickness �
0:3 nm), composed essentially by glycine. This platelet-matrix
structure is held together by a network of hydrogen-bond cross-
links (Van Beek et al., 2002). As for the abalone nacre, the geometry
can be generally described with the brick and mortar staggered
assemblage (Wei et al., 2012). The extremely small length scale of
this structure makes experiments very difficult to be performed.
Thus, the Young's modulus of a single beta sheet could be only
estimated by means of large-scale molecular dynamics simulations
that predicted Ef � 22:6 GPa (Keten et al., 2010). Similarly, the
interaction among beta-sheets is mediated by the shear modulus of
cross-links, which assumes the calculated value m � 4:6 GPa (Keten
et al., 2010). Along the edge extremities, beta-sheets are linked
together with a semi-amorphous phase, for which the Young's
modulus has been fixed to Eg � 50MPa. These values, considered in
the same periodic cell used for nacre with M ¼ 10 fibers, gave an
optimal overlap length d� ranging from � 1.15 to � 2.2 nm and a
corresponding unit-cell length of 2:3� 4:4 nm, which is in agree-
ment with experimental observations in which the length of beta-
sheets was measured in the range 2� 8 nm (Penel et al., 2003).
Fig. 17(e) reports these results for five different values of the ratio
g=d in the interval (0.9,1)�10�3 (see Table 1 for details).

7. Summary and conclusion

In this work, we developed a Floquet-based homogenization
and optimization theory for the elastic behavior of periodic het-
erogeneous fiber bundles with arbitrary geometry. We considered
longitudinal-periodic structures with a given number of hetero-
geneous fibers subject to arbitrary mutual interactions. This “shear-
lag” arrangement can be found in several biological structures in
which hard fibers are embedded in a soft matrix with a regular
geometry. Our Floquet-based approach is able to analyse the overall
stiffness and the energy distribution between fibers and matrix. In
particular, we obtained closed-form expressions for the effective
Young's modulus Eeff and the average energy densities in the fibers
(wf ) and in the matrix (wm), respectively. The knowledge of the
relative energetic contributions of fibers and matrix is necessary to
introduce an efficiency function C , which must be maximized for
obtaining optimal bundle structures. The underlying idea is that of
transferring, as much as possible, the elastic energy stored in the
system from the fibers (hard material subject to brittle fracture) to
the matrix (soft material with high fracture toughness). In this
respect, we defined the efficiency function as the ratio between the
average energy accumulated in the fibers and the average energy
within the matrix. We then showed that this function always ex-
hibits a maximum in correspondence of a specific length scale,
characterizing the geometry of the natural bundle structure. It is
important to underline that our optimality criterion, based on en-
ergetic arguments, is coherent with the general criteria for the
elastic or inelastic crack growth. Interestingly, the theory can be
applied both to natural and artificial composite systems.

Finally, through our optimal criterion, we obtained the charac-
teristic length scales of the periodic cell for a number of bio-
structures, such as nacre shells, muscle sarcomeres, collagen fibrils
and spider silks. This length scale corresponds to the structure that
allows to maximize the load transfer to the matrix, thereby mini-
mizing the possibility of fracture within the fibers. For all the
investigated structures, the recovered length scales are in very good
agreement with available experimental data.
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