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Microelectronique et de Nanotechnologie (IEMN CNRS UMR8520), F-59652
Villeneuve d’Ascq, France
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Abstract. The theory of open quantum systems plays a fundamental role in
several scientific and technological disciplines, from quantum computing and
information science to molecular electronics and quantum thermodynamics.
Despite its widespread relevance, a rigorous formulation of quantum dissipa-
tion in conjunction with thermal noise remains a topic of active research. In this
work, we establish a formal correspondence between classical stochastic thermo-
dynamics, in particular the Fokker–Planck and Klein–Kramers equations, and
the quantum master equation. Building on prior studies of multiplicative noise
in classical stochastic differential equations, we demonstrate that thermal noise at
the quantum level manifests as a multidimensional geometric stochastic process.
By applying canonical quantization, we introduce a novel Hermitian dissipation
operator that serves as a quantum analogue of classical viscous friction. This
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operator allows for a well-defined expression of heat exchange between a sys-
tem and its environment, enabling the formulation of an alternative quantum
equipartition theorem. Our framework ensures a precise energy balance that
aligns with the first law of thermodynamics and an entropy balance consistent
with the second law. The theoretical formalism is applied to two prototypical
quantum systems, the harmonic oscillator and a particle in an infinite poten-
tial well, for which it provides new insights into nonequilibrium thermodynamics
at the quantum scale. Our results advance the understanding of dissipation in
quantum systems and establish a foundation for future studies on stochastic
thermodynamics in the quantum domain.

Keywords: quantum dissipative systems, quantum thermalization,
rigorous results in statistical mechanics, stochastic thermodynamics
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1. Introduction

The study of open quantum systems emerged from the realization that quantum sys-
tems rarely exist in perfect isolation. Instead, they are often coupled to external envir-
onments, which introduce noise and dissipation. The interaction of a system with its
surroundings causes energy exchange and decoherence, influencing its behavior. One of
the earliest approaches, introduced in the 1940s, incorporated nonconservative forces
into quantum mechanics within Schrödinger’s framework, ultimately leading to the
renowned Caldirola-Kanai equation [1, 2]. This approach is based on the fact that
the presence of nonconservative forces in otherwise Hamiltonian systems can be stud-
ied through fully Hamiltonian systems by means of a nonlinear time transformation
(this is a method introduced by Levi-Civita) [1, 2]. Despite facing significant criticism,
this approach was shown to be consistent with the physics of open systems, paving the
way for the development of this new direction in quantum theory [3, 4]. On this basis,
quantum dissipation has been investigated extensively [5–7].

In the following years, the field advanced with the introduction of the quantum
master equation, which describes the evolution of an open system’s density matrix [8–
11]. One of the first examples is given by the Redfield master equation, which describes
the time evolution of a quantum system weakly coupled to the environment [8]. It
was used in nuclear magnetic resonance spectroscopy (NMR), but it does not always
guarantee a positive time evolution of the density matrix [12]. These studies opened the
way to various approaches based on the path integral formulation, the foundations of
quantum thermodynamics, and quantum Brownian motion [13–21].

Simultaneously, starting in the 1970s, a more sophisticated line of research aimed
at finding the most complete mathematical formulation to describe the evolution of
the density matrix of an open system. This effort culminated in the development
of the Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) equation, which characterizes
the generator of a quantum dynamical semigroup [22–26]. This result represents a
Markovian evolution that refines the approximations introduced earlier by the Redfield
equation [8], and provided a significant boost to the rigorous advancement of quantum
thermodynamics [27–36]. These theories led to a deeper understanding of how coherence
is lost in quantum systems and the role of the environment in quantum measurements
[37–39]. As the field matured, researchers developed more refined models to describe
quantum equipartition theorems [40–44], and quantum fluctuation theorems [45–48].
Recently, a critical review of the assumptions and limitations of Lindblad’s quantum
master equation has been carried out [49].

The theory of open quantum systems has established itself as a fundamental frame-
work in various scientific and technological domains. Its applications span nuclear mag-
netic resonance [50, 51], optical pumping [52], masers [53, 54], and lasers [55, 56], as well
as quantum computing [57–60], quantum information [61, 62] and molecular electronics
[63, 64]. Moreover, it provides critical insights into emerging fields such as quantum
biology [65–68], including photosynthesis [69–71], and plays a pivotal role in the study
of quantum thermodynamic devices [72] and the understanding of the arrow of time in
the transition between classical and quantum thermodynamics [73–75]. Additionally, the
framework of open quantum systems has profound implications in emerging fields such
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as quantum metrology and sensing, where controlled decoherence enhances precision in
devices like atomic clocks and quantum interferometers [76–78]. It also plays a critical
role in optomechanics, enabling the study of light-matter interactions at the quantum
level with applications in gravitational wave detection [79, 80]. Moreover, open quantum
systems are integral in understanding the dynamics of complex out-of-equilibrium sys-
tems, such as those observed in nanoscale materials and structures [81–84].

It is interesting to compare the quantum approaches with parallel developments in
classical stochastic thermodynamics. In this line of research, building on Langevin’s
foundational work [85], the Fokker–Planck equation was initially formulated for a gen-
eric stochastic system [86, 87], while the Klein–Kramers equation was developed for a
mechanical system studied in phase space [88, 89]. Stochastic thermodynamics in its true
form was later introduced with the definition of heat for a single random trajectory [90,
91], leading to a microscopic formulation of the first law. Subsequently, the concept of
entropy was also defined for individual system trajectories [92–94], allowing the second
law to be associated with Langevin’s stochastic approach. Today, the theory of stochastic
processes based on Langevin and Fokker–Planck equations is well-established and widely
applied across various fields of physics, chemistry, and engineering [95–99]. Moreover,
the laws of thermodynamics derived from a microscopic stochastic foundation have
been extensively studied and applied to numerous physical systems [100–105], including
holonomic underdamped and overdamped systems [106–109].

In this work, we aim to explore in detail the correspondences between the clas-
sical Fokker–Planck or Klein–Kramers equations and the quantum master equation.
To achieve this, we first examine the concept of thermal noise in quantum mechanics,
building on our previous studies, where we investigated the effects of multiplicative
noise in stochastic differential equations [110–113]. Specifically, we demonstrate how
thermal noise manifests itself at the quantum level as a multidimensional geometric
stochastic process, extending some of the results obtained in [111]. We then introduce
quantum dissipation by leveraging the analogy with classical equations, specifically
applying canonical quantization, which replaces Poisson brackets with commutators
[114, 115]. The search for analogies between the evolution equations of classical and
quantum open systems is not new, and several studies have explored this direction
[117–120]. The original contribution of our work is the definition of a Hermitian dissip-
ation or friction operator, which corresponds to a physical observable and replaces the
classical momentum in describing the viscous friction typical of the Langevin approach.
When expressed in the energy basis of the system, this operator closely resembles the
momentum operator, making the physical interpretation of the proposed model more
intuitive. The fact that this operator is Hermitian also allows for the construction of
a mathematically well-defined expression for the heat exchanged between the system
and the external environment, providing a clear physical interpretation. This, in turn,
enables the formulation of an alternative quantum equipartition theorem compared to
those proposed in the existing literature [40–44]. The explicit form of the heat exchanged
between the system and the environment allows for an energy balance that precisely
corresponds to the first law of thermodynamics. Similarly, we can develop an entropy
balance which also leads to the second law. In the latter, we can identify the entropy
flow rate, associated with heat transfer between the system and the environment, and
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the entropy production rate, which corresponds to the irreversibility of the thermo-
dynamic relaxation process. The entropy production is always positive to satisfy the
second law [27–31, 33]. This law is also discussed in terms of the free energy, a quant-
ity that always decreases during the evolution toward thermodynamic equilibrium. We
present two alternative integral expressions for the Hermitian friction operator, both
valid regardless of the chosen basis, along with an explicit form in the energy basis.

Finally, we have implemented the mathematical apparatus to describe the nonequi-
librium dynamics of both the harmonic oscillator and a particle in an infinite potential
well, providing a comprehensive understanding of the thermodynamic behavior of these
ubiquitously used model systems.

2. Classical approach to stochastic thermodynamics

In order to develop our approach to the noisy quantum dynamics in parallel to the
notions of classical stochastic thermodynamics, we begin by recalling the key results
in this domain. We consider a classical system composed of N particles with masses
mi, described by coordinates r⃗i, velocities v⃗i = d

dt r⃗i, and linear momenta p⃗i =mi v⃗i (i =

1, . . .,N). Newton’s equations of motion are given by F⃗i =mi a⃗i , where F⃗i is the total
force acting on the particle, and a⃗i = d

dt v⃗i is the acceleration vector. The total kinetic

energy of the system K 0 can be written as K0 =
∑N

i=1
mi

2 v⃗i · v⃗i.
We suppose that the total force F⃗i includes the following contributions: (i) a conser-

vative force field describing the system structure, (ii) an external force field representing
the work done on the system, (iii) a friction force mimicking the energy transfer from
the particles to the thermal bath, and (iv) a noise term mimicking the energy transfer
from the bath to the system. The friction and noise forces (iii) and (iv) represent the
so-called Langevin thermal bath [85]. We then postulate that

F⃗i = −∂V0

∂r⃗i
+ f⃗i (t)−miβv⃗i +

√
Dmin⃗i (t) , (1)

where β is the friction coefficient (per unit mass) and D is the diffusion coefficient
(per unit mass). As usual, we assume the following hypotheses on the noises: n⃗i(t) ∈ R3

are Gaussian stochastic processes with expectation value E{n⃗i(t)} = 0, and correlation
E{n⃗i(t1)⊗ n⃗j(t2)} = 2δijI3δ(t1 − t2). Here, δij is the Kronecker delta, δ(.) is the Dirac
delta function, ⊗ is the tensor product of vectors, and I 3 is the 3× 3 identity matrix
[95–97]. This formulation is consistent with the canonical distribution in equilibrium,
and with the first and second laws of thermodynamics during the out-of-equilibrium
evolution, as we briefly discussed below. The system dynamics can also be stated in
terms of the Hamilton equations

˙⃗ri =
1

mi
p⃗i, ˙⃗pi = −∂V0

∂r⃗i
+ f⃗i (t)−βp⃗i +

√
Dmin⃗i (t) . (2)

From a mathematical point of view, equation (2) represents a stochastic differential
problem with additive noise [98, 99]. We can now apply the Fokker–Planck method-
ology, which is briefly presented here for an arbitrary interpretation of the stochastic
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calculus. Although this distinction is strictly speaking not relevant here since the clas-
sical Hamilton equations have an additive noise, we will see that the corresponding
quantum equations have multiplicative noise, where this distinction will be essential
[95–97]. We consider the stochastic differential system

dxi
dt

= hi (x⃗, t) +
m∑
j=1

gij (x⃗, t)nj (t) , (3)

with n equations and m noise terms (∀i = 1, . . . ,n,∀j = 1, . . . ,m). It assumes a precise
meaning only after declaring the adopted interpretation of the stochastic calculus. In
order to achieve this, we must specify the parameter α, with 0 ⩽ α⩽ 1, that defines the
position of the point at which we calculate any integrated function in the small intervals
of the adopted Riemann sum. The Gaussian noises nj(t) (∀j = 1, . . . ,m) satisfy the
properties E{nj(t)} = 0 and E{ni(t1)nj(t2)} = 2δijδ(t1 − t2). The introduced stochastic
differential equation corresponds to the following evolution equation for the probability
density W (x⃗, t) (the Fokker–Planck equation) [96, 97]

∂W (x⃗, t)

∂t
= −

n∑
i=1

∂

∂xi
[hiW (x⃗, t)]−

n∑
i=1

∂

∂xi

2α

 n∑
k=1

m∑
j=1

gkj
∂gij
∂xk

W (x⃗, t)


+

n∑
i=1

m∑
j=1

∂2

∂xi∂xj

{[
m∑
k=1

gikgjk

]
W (x⃗, t)

}
, (4)

where the first term represents the drift, the second is the noise induced drift (which
depends on α) and the third the diffusion (characterizing the effect of the noise).
This expression includes the Itô (α= 0) [121], the Stratonovich (α= 1/2) [122] and
the Hänggi-Klimontovich (α= 1) [123, 124] as particular cases (see [125, 126]). It is
interesting to observe that the theory can be generalized to take into consideration the
possible cross-correlation of the noises [127, 128].

Eventually, we can write the Fokker–Planck [86, 87] (or Klein–Kramers [88, 89])
equation associated with equation (2) in the following form

∂W

∂t
= −

N∑
i=1

p⃗i
mi

· ∂W
∂r⃗i

+
N∑
i=1

∂V

∂r⃗i
· ∂W
∂p⃗i

+ 3NβW +β
N∑
i=1

p⃗i ·
∂W

∂p⃗i
+D

N∑
i=1

mi
∂2W

∂p⃗i 2
, (5)

where W =W (r⃗1, . . ., r⃗N , p⃗1, . . ., p⃗N , t), and we introduced the effective potential energy

V = V0 −
∑N

i=1 f⃗i · r⃗i. The derivative ∂2W
∂p⃗i 2 represents the Laplacian operator with respect

the three components of p⃗i. A more interesting form for the following developments can
be found by introducing the Poisson brackets as follows [129]

∂W

∂t
= {H ,W}+β

N∑
i=1

({xi,pxiW}+ {yi,pyiW}+ {zi,pziW})

+D
N∑
i=1

mi ({xi,{xi,W}}+ {yi,{yi,W}}+ {zi,{zi,W}}) , (6)
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where r⃗i = (xi,yi,zi), p⃗i = (pxi,pyi,pzi), and we defined the Hamiltonian function as

H =K0 +V =K0 +V0 −
∑N

i=1 f⃗i · r⃗i = H0 −
∑N

i=1 f⃗i · r⃗i, where H0 =K0 +V0. Here, the
three terms of drift (Liouville), friction and noise can be easily recognized.

The asymptotic behavior of equation (6) for large times is characterized by the

canonical or Gibbs distribution [130]. Indeed, if the forces f⃗i are constant in time and
the integral defining the classical partition function

Zcl =

ˆ
A

ˆ
R3N

e−
β
D

H (q⃗,p⃗)dq⃗dp⃗ (7)

is convergent (with q⃗ = (r⃗1, . . ., r⃗N ) ∈ A ⊂ R3N and p⃗= (p⃗1, . . ., p⃗N ) ∈ R3N ), then the
asymptotic solution of equation (6) is given by the Gibbs distribution in phase space

Weq (q⃗, p⃗) =
1

Zcl
e−

β
D

H (q⃗,p⃗). (8)

This can be easily proved by substitution. This asymptotic solution allows the identific-
ation of the diffusion constant through the expression D = kBTβ, referred to as classical
Einstein fluctuation-dissipation relation [96, 97].

We define the internal energy E of the system as the average value (with respect
of the probability density defined by equation (6)) of the sum of kinetic energy and
potential energy E = E{K0 +V0} and we calculate the rate dE

dt as follows

dE

dt
=

N∑
i=1

f⃗i ·E{v⃗i}+ 2β

(
3

2
NkBT −E{K0}

)
=

dE{L}
dt

+
dE{Q}

dt
. (9)

This expression represents the first law of thermodynamics, from which we can identify

the rate of average work dE{L}
dt done on the system with the average power

∑N
i=1 f⃗i ·

E{v⃗i}, and the remaining term with the rate of average heat dE{Q}
dt entering the system.

This identification is consistent with the Sekimoto definition of heat for a stochastic
trajectory [90, 91]. We observe that the heat flux is zero when the classical equipartition
of energy is satisfied. At equilibrium in fact each of the 3N quadratic terms of the kinetic
energy takes on the value kBT

2 .
In order to substantiate the previous explicit expressions of the heat rate, we can

obtain the second law of thermodynamics by introducing the Gibbs entropy of the
system as

S = −kBE{logW} = −kB

ˆ
R3N

ˆ
A

W logWdq⃗dp⃗. (10)

This expression means that the microscopic (non-averaged) entropy along a given system
trajectory is defined as −kB logW , consistently with [92–94]. The evolution equation can
be rewritten as

∂W

∂t
= {H ,W}−

N∑
i=1

∂J⃗i
∂p⃗i

, (11)
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where J⃗i = −βWp⃗i− kBTβmi
∂W
∂p⃗i

. We note that the derivative ∂J⃗i
∂p⃗i

represents a diver-

gence with respect to the components of p⃗i. These premises lead to the entropy rate in
the form

dS

dt
=

1

T

dE{Q}
dt

+
1

βT

ˆ
R3N

ˆ
A

1

W

N∑
i=1

J⃗i · J⃗i
mi

dq⃗dp⃗. (12)

We observe that the second term (entropy production) is always non-negative since it is
constituted by a quadratic expression [100–105, 107]. Therefore, we obtain the second
law of thermodynamics in the classical form

dS

dt
⩾ 1

T

dE{Q}
dt

, (13)

where the equality is satisfied only for quasi-static transformations, evolving not far
from the thermodynamic equilibrium (for further details, see [107]). It is interesting to
note that this thermodynamic structure is preserved even when we treat a holonomic
system with arbitrary mechanical constraints [106, 107]. This scheme can be general-
ized to introduce the overdamped approximation [106–108], and the case with multiple
reservoirs [109].

In the continuation of the article we will develop a similar procedure for a quantum
system in contact with a thermal bath. We begin by studying thermal noise at the
quantum level in the next section.

3. Thermal noise in quantum mechanics

3.1. A stochastic Hamiltonian

Let us now consider a quantum system that is subjected only to the action of stochastic

forces. The noise forces f⃗si =
√
Dmin⃗i(t), included in equation (1), can be associated

with a potential energy Vsi = −
√
Dmin⃗i(t) · r⃗i, such that f⃗si = −∂Vsi

∂r⃗i
(here, the sub-

script s means stochastic, and the subscript i indicates the particle number). We

assume that there are no external forces applied (f⃗i = 0, ∀i) and no dissipative mech-
anisms present, and introduce the Hamiltonian H0 =K0 +V0. We then study the sys-
tem described by the stochastic Hamiltonian Hs = H0 −

∑N
i=1

√
Dmin⃗i(t) · r⃗i. We intro-

duce the stochastic vector n⃗= (n⃗1, . . ., n⃗N ) ∈ R3N , and the quantities A1 = −
√
Dm1x1,

A2 = −
√
Dm1y1, A3 = −

√
Dm1z1, A4 = −

√
Dm2x2, . . ., A3N = −

√
DmNzN . Therefore,

the stochastic Hamiltonian can be written as

Hs = H0 +
3N∑
k=1

Aknk. (14)

We consider now the Schrödinger equation describing this stochastic system

HsΨ = ih̄
∂Ψ

∂t
, (15)
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and we introduce an orthonormal basis
{
φn(q⃗) : R3N → C

}
in the Hilbert space of the

wave-functions Ψ(q⃗, t), equipped with scalar product denoted by the symbol ⟨·|·⟩. We
have that ⟨φn|φm⟩ =

´
φ*
nφmdq⃗ = δnm, and an arbitrary wave-function can be expan-

ded as Ψ(q⃗, t) = an(t)φn(q⃗) (we adopt the Einstein summation notation for the ele-
ments of the basis), with coordinates an = ⟨φn|Ψ⟩ ∈ C. By substituting Ψ = anφn in
equation (15), and performing the scalar product by φm , we get

⟨φm|Hsφn⟩an = ih̄
dam
dt

, (16)

or, equivalently,

dam
dt

=
1

ih̄
⟨φm|H0φn⟩an +

1

ih̄

3N∑
k=1

⟨φm|Akφn⟩annk, (17)

where the operators Ak have been previously defined. It is clear from this equation that
in this case the noises act multiplicatively on the system. In appendix A, we prove the
following general property: given the stochastic differential equation

dy⃗

dt
=

C +
m∑
j=1

Djnj (t)

 y⃗, (18)

we can determine the expectation value E{y⃗} of the vector y⃗ ∈ Cn with the ordinary
differential equation

dE{y⃗}
dt

=

C + 2α
m∑
j=1

D2
j

E{y⃗} , (19)

where α is the discretization parameter introduced in equation (4). Here, C and Dj

are arbitrary complex matrices n× n, and the real noises nj(t) satisfy the properties
described above. This result generalizes equation (13) of [111] for the scalar geometric
Brownian motion to the case of the multidimensional geometric Brownian motion (and
complex variables). If we identify the vector y⃗ with the vector of the coordinates am in
equation (17), this property eventually leads to

dE{am}
dt

=
1

ih̄
⟨φm|H0φn⟩E{an}−

2α

h̄2

3N∑
k=1

⟨φm|Akφs⟩⟨φs|Akφn⟩E{an} . (20)

It means that the expectation value (with respect to the thermal noise) of the wave-
function should satisfy the equation

∂E{Ψ}
∂t

=
1

ih̄
H0E{Ψ}− 2α

h̄2

3N∑
k=1

A2
kE{Ψ} , (21)
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where H0, Ak (and then A2
k) are Hermitian operators. The evolution of the wave-function

norm is described by

d

dt
⟨E{Ψ}|E{Ψ}⟩ =

〈
∂E{Ψ}
∂t

∣∣∣∣E{Ψ}
〉

+

〈
E{Ψ}

∣∣∣∣∂E{Ψ}
∂t

〉
=

〈
1

ih̄
H0E{Ψ}− 2α

h̄2

3N∑
k=1

A2
kE{Ψ}

∣∣∣∣∣E{Ψ}

〉

+

〈
E{Ψ}

∣∣∣∣∣ 1

ih̄
H0E{Ψ}− 2α

h̄2

3N∑
k=1

A2
kE{Ψ}

〉
. (22)

By using the Hermitian character of H0 and A2
k, we get

d

dt
⟨E{Ψ}|E{Ψ}⟩ = −4α

h̄2

3N∑
k=1

〈
E{Ψ}

∣∣∣A2
kE{Ψ}

〉
= −4α

h̄2

3N∑
k=1

⟨AkE{Ψ}|AkE{Ψ}⟩

= −4α

h̄2

3N∑
k=1

∥AkE{Ψ}∥2 ⩽ 0. (23)

The norm of the averaged wave-function is therefore not conserved during the system
evolution (except for the Itô case with α= 0, which preserves the norm trivially as it
eliminates the effects of noise). This result is important since it explains that we cannot
use the Schrödinger equation with stochastic Hamiltonians to achieve our aim, because
the state of the system cannot remain pure. This means that we must describe the
evolution of a mixed state and this must be done through the density operator and the
corresponding Liouville–von Neumann equation [114, 115].

3.2. Dynamics of the density operator

A mixed state is described by M wave-functions Ψ1, . . .,ΨM , associated with the cor-
responding probabilities p1, . . .,pM , with

∑M
j=1 pj = 1. The density operator is there-

fore defined as ρ(q⃗, q⃗ ′, t) =
∑M

j=1 pjΨj(q⃗, t)Ψ
*
j(q⃗

′, t). The expectation value of an observ-

able f is then calculated as E{f} =
∑M

j=1 pj⟨Ψj|fΨj⟩ =
´
fρ|q⃗ ′=q⃗dq⃗, where f repres-

ents the operator acting only on the variables q⃗. If we adopt the orthonormal basis{
φn(q⃗) : R3N → C

}
, we have that Ψj = akjφk, with akj = ⟨φk|Ψj⟩. Hence, the expectation

value of f can be written as E{f} =
´∑M

j=1 pjakjfφka
*
hjφ

*
hdq⃗ = ρkhfhk = Tr(ρf), where

we identified the representations ρkh =
∑M

j=1 pjakja
*
hj, and fhk =

´
φ*
hfφkdq⃗ = ⟨φh|f φk⟩.

The density matrix ρkh satisfies certain properties that will have to be fulfilled during
the time evolution [114, 115]:

(i) its trace is unitary, indeed Trρ= ρkk =
∑M

j=1 pjakja
*
kj =

∑M
j=1 pj⟨Ψj|Ψj⟩ = 1;

(ii) the diagonal elements are non-negative since we can write ρkk =
∑M

j=1 pjakja
*
kj =∑M

j=1 pj|⟨φk|Ψj⟩|2 ⩾ 0 (without the sum over k);

(iii) the density matrix is Hermitian, in fact we have that ρkh =
∑M

j=1 pjakja
*
hj, and then

ρ*
hk =

∑M
j=1 pja

*
hjakj = ρkh, or ρT* = ρ (T means ‘transposed’);
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(iv) the density matrix is positive-definite since vT*ρv = v*
kρkhvh =

∑M
j=1 pjv

*
kakjvha

*
hj =∑M

j=1 pj(vka
*
kj)

*(vha
*
hj) =

∑M
j=1 pj|vka*

kj|2 > 0.

For a system defined by the Hamiltonian Hs the time evolution of the density matrix
is described by the Liouville–von Neumann equation [114, 115]

dρ

dt
=

1

ih̄
[Hs,ρ] , (24)

where [A,B] =AB−BA is the commutator of A and B. This equation describes the
evolution of a mixed state, taking into consideration the Schrödinger equation for each
state Ψj. If we consider the stochastic Hamiltonian in equation (14), we get

dρ

dt
=

1

ih̄
[H0,ρ] +

1

ih̄

3N∑
k=1

[Ak,ρ]nk. (25)

This approach is somewhat analogous to that developed in [116]. This stochastic
equation for the density matrix has a form similar to equation (18), but it describes the
dynamics of a matrix and not of a vector. Therefore, we need to introduce a transform-
ation to rewrite it with an unknown vector. We define first the Kronecker product of
two matrices A and B through the block matrix

A⊗B =


a11B a12B a13B · · ·
a21B a22B a23B · · ·
a31B a32B a33B · · ·

...
...

...
. . .

 . (26)

This operation is non-commutative and is useful to convert equations like equation (25)
to the standard vector representation. To do this, we also need to define the vectorization
of a matrix. This operation converts a matrix A into a column vector Â by juxtaposing
the consecutive rows of the matrix and transposing the result

A=


a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...

. . .

⇒ Â= [a11a12a13 . . .a21a22a23 . . .a31a32a33 . . .]
T . (27)

The important relation between the Kronecker product and vectorization is given by
the following properties

A=BC ⇒ Â= (B⊗ I) Ĉ =
(
I ⊗CT

)
B̂, (28)

Z =ABC ⇒ Ẑ = (A⊗ I)
(
I ⊗CT

)
B̂, (29)

where I is the identity matrix. These properties allow us to state that the vectorization
ρ̂ of ρ is described by the following equation

dρ̂

dt
=

1

ih̄

(
H0 ⊗ I − I ⊗H T

0

)
ρ̂+

1

ih̄

3N∑
k=1

(
Ak⊗ I − I ⊗AT

k

)
nkρ̂, (30)
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which is exactly of the form given in equation (18). Therefore, we can obtain the evol-
ution of the expectation value E{ρ̂} through equation (19). This yields the following
result

dE{ρ̂}
dt

=
1

ih̄

(
H0 ⊗ I − I ⊗H T

0

)
E{ρ̂}− 2α

h̄2

3N∑
k=1

(
Ak ⊗ I − I ⊗AT

k

)2
E{ρ̂} . (31)

Using again the properties of the Kronecker product and the vectorization process, we
can rewrite the equation in the matrix formalism as follows

dE{ρ}
dt

=
1

ih̄
[H0,E{ρ}]− 2α

h̄2

3N∑
k=1

[Ak, [Ak,E{ρ}]] . (32)

We can also remember the definition of the operators Ak, and thus write the explicit
form of this equation

dE{ρ}
dt

=
1

ih̄
[H0,E{ρ}]− 2αD

h̄2

N∑
k=1

mk

(
[xk, [xk,E{ρ}]] + [yk, [yk,E{ρ}]] + [zk, [zk,E{ρ}]]

)
. (33)

We emphasize that the quantum terms concerning the thermal noise are closely analog-
ous to those obtained in classical mechanics, see the third line of equation (6). Indeed,
performing the formal substitution {·, ·} → 1

i h̄ [·, ·] (Poisson brackets → commutators:
canonical quantization), the noise terms become like those in equation (33). The pres-
ence of the constant 2α will be discussed below, and is concerned with the stochastic
interpretation adopted. In conclusion, equation (33) describes the evolution of a mixed
state for a quantum system with stochastic terms. We want to emphasize that this
equation was obtained rigorously and that the analogy with the classical case was only
observed a posteriori. It is important to note that the expectation value symbol used in
E{ρ} refers to the average with respect to thermal noise, and should not be confused
with the quantum average of an observable, which now becomes E{f} = Tr(E{ρ}f).
In E{f}, the expectation value symbol refers of course to both quantum indeterminacy
and thermal noise.

To achieve proper thermodynamic behavior, we must add a dissipation mechanism
to the thermal fluctuations just introduced. In fact, the energy of the system E =
Tr(H0E{ρ}) with only the noise terms would always be increasing as seen from the
following direct evaluation. In a first step, we have

dE

dt
=

dTr(H0E{ρ})

dt
= Tr

(
H0

dE{ρ}
dt

)
= −2αD

h̄2

N∑
k=1

mkTr(H0 [xk, [xk,E{ρ}]]) + . . .

= −2αD

h̄2

N∑
k=1

mkTr([H0,xk] [xk,E{ρ}]) + . . ., (34)

where the ellipsis represents the y and z terms. Here, we have used the definition of the
commutator and the cyclic property of the trace operation. In a second step, we now
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remember that [H0,xk] = −ih̄pxk/mk (see below for details), and get

dE

dt
= i

2αD

h̄

N∑
k=1

Tr(pxk [xk,E{ρ}]) + . . .= i
2αD

h̄

N∑
k=1

Tr([pxk,xk]E{ρ}) + . . .

= 2αD
N∑
k=1

Tr(E{ρ}) + . . .= 6NαD, (35)

where we used the canonical commutator [pxk,xk] = −ih̄. This result shows that the
energy increases linearly over time if we include thermal fluctuations alone. To main-
tain energy finite we must then add dissipation terms, equivalent of Langevin’s classic
thermal bath. This will be described in the next section.

4. Dissipation in quantum mechanics

In order to introduce a dissipation mechanism—friction—into the previously obtained
equation, we exploit the analogy with the classical approach. Following this prin-
ciple, we develop the quantum counterpart of the second line of equation (6), by
transforming the terms pxkW , pykW , and pzkW into Hermitian operators. Since the
product of two Hermitian operators is not necessarily Hermitian, but their symmet-
rization is always Hermitian, we substitute them with the quantum symmetrizations
1
2(ΘxkE{ρ}+E{ρ}Θxk),

1
2(ΘykE{ρ}+E{ρ}Θyk), and 1

2(ΘzkE{ρ}+E{ρ}Θzk), where
Θxk , Θyk , and Θzk are Hermitian operators to be determined (∀k = 1..N), taking the
role of classical momenta. By adding the friction terms to equation (33), we obtain the
complete equation

dE{ρ}
dt

=
1

ih̄
[H0,E{ρ}]− 2αD

h̄2

N∑
k=1

mk

(
[xk, [xk,E{ρ}]] + [yk, [yk,E{ρ}]] + [zk, [zk,E{ρ}]]

)

+
β

2ih̄

N∑
k=1

(
[xk,ΘxkE{ρ}+E{ρ}Θxk] + [yk,ΘykE{ρ}+E{ρ}Θyk]

+[zk,ΘzkE{ρ}+E{ρ}Θzk]

)
, (36)

where we now have to study the structure of the friction operators Θxk , Θyk , and
Θzk , ∀k = 1..N , and the fluctuation-dissipation relation linking the diffusion constant
D with the friction coefficient β. For the following developments, it is useful to rewrite
the previous equation in the more compact form

dE{ρ}
dt

=
1

ih̄
[H0,E{ρ}]− 2αD

h̄2

N∑
k=1

mk

( ∑
s=x,y,z

[rsk, [rsk,E{ρ}]]

)

+
β

2ih̄

N∑
k=1

( ∑
s=x,y,z

[rsk,ΘskE{ρ}+E{ρ}Θsk]

)
, (37)
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where we defined r⃗k = (xk,yk,zk) = (rxk,ryk,rzk). We have now to find the Hermitian
friction operators Θsk , s= x,y,z, k = 1, . . .,N , in such a way that the asymptotic beha-
vior of the equation is described by the canonical quantum distribution

lim
t→∞

E{ρ} = E{ρ}eq =
1

Zqu
e
− H0
kBT , (38)

where Zqu is the quantum partition function

Zqu = Tr

(
e
− H0
kBT

)
. (39)

We will see how this assumption leads to friction operators similar to momentum oper-
ators. An interesting alternative solution has been proposed in the literature and is
based on the substitution pskW → 1

2(g†skE{ρ}+E{ρ}gsk), where non-Hermitian friction
operators g sk are considered (the symbol † means ‘adjoint operator’) [118–120]. This
choice leads to some simplifications in the calculations but one cannot associate friction
operators with a true physical observable.

In our case, we impose the asymptotic quantum canonical distribution to
equation (37), and we obtain the relation

i
4αDmk

βh̄

[
rsk,E{ρ}eq

]
= ΘskE{ρ}eq +E{ρ}eqΘsk, (40)

or, equivalently,

i
4αDmk

βh̄

[
rsk, e

− H0
kBT

]
= Θske

− H0
kBT + e

− H0
kBT Θsk, (41)

for s= x,y,z, and k = 1, . . .,N . From a mathematical point of view, this equation in Θsk

is a matrix equation of the form AX +XA= C, which is sometimes called Sylvester or
Lyapunov equation, see e.g. [131–133]. We prove in appendix B that this equation has
the unique solution

X = −
ˆ +∞

0

eAξCeAξdξ, (42)

if A has all eigenvalues with negative real part. For solving our equation, we let X = Θsk,

A= −e
− H0
kBT , and C = −i4αDmk

β h̄

[
rsk, e

− H0
kBT

]
. These definitions ensure that the eigenvalues

of A are with strictly negative real part. Hence, we can write the explicit solution of
equation (41) as

Θsk = i
4αDmk

βh̄

ˆ +∞

0

e−ξ e
− H0
kBT

[
rsk, e

− H0
kBT

]
e−ξ e

− H0
kBT dξ, (43)

where we find a double exponential matrix. Although this expression seems rather com-
plicated, it leads to a particularly interesting result when projected onto the energy
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basis of the Hamiltonian operator. If we assume that the spectrum of the system is dis-
crete and non-degenerate, we then have that H0φn(q⃗) = Enφn(q⃗), with ⟨φn|φm⟩ = δnm.

In this basis, the operator e
− H0
kBT is diagonal with elements e

− En
kBT . To simplify the nota-

tion, we introduce the quantity en = e
− En
kBT > 0. Therefore the central matrix [rsk, e

− H0
kBT ]

is composed of the following elements[
rsk, e

− H0
kBT

]
pq

= rsk,pℓeℓδℓq − epδpjrsk,jq = rsk,pq (eq − ep) . (44)

The structure of the friction operator in equation (43) assumes the form

Θsk,ℓj = i
4αDmk

βh̄

ˆ +∞

0

e−eℓξδℓprsk,pq (eq − ep)e−ejξδqjdξ

= i
4αDmk

βh̄

ˆ +∞

0

e−eℓξrsk,ℓj (ej − eℓ)e−ejξdξ = i
4αDmk

βh̄
rsk,ℓj

ej − eℓ
ej + eℓ

. (45)

To further simplify this expression, we prove a simple relation between the position
coefficients rsk,ℓj = ⟨φℓ|rskφj⟩ and the momentum coefficients psk,ℓj = −ih̄⟨φℓ| ∂

∂rsk
φj⟩. We

start by considering the canonical commutator [rsk,psk] = ih̄, and then we get [rsk,p
2
sk] =

rskp
2
sk− p2

skrsk + pskrskpsk− pskrskpsk = [rsk,psk]psk + psk[rsk,psk] = 2ih̄psk. Hence, we can
write the commutator [rsk,H0] = [rsk,K0 +V0] = 1

2mk
[rsk,p

2
sk] = i h̄

mk
psk. Projecting the

latter relationship onto the energy basis of the system, we obtain rsk,ℓqH0,qj −
H0,ℓprsk,pj = i h̄

mk
psk,ℓj, or equivalently rsk,ℓqEqδqj −Eℓδℓprsk,pj = i h̄

mk
psk,ℓj, leading to the

result rsk,ℓjEj −Eℓrsk,ℓj = i h̄
mk
psk,ℓj. Finally, we have proved the direct link between posi-

tion and momentum rsk,ℓj = i h̄
mk

psk,ℓj

Ej−Eℓ
. Substituting the latter relationship and the prop-

erty
ej−eℓ
ej+eℓ

= tanh
(
Eℓ−Ej
2kBT

)
into equation (45), we get

Θsk,ℓj =
2αD

kBTβ
psk,ℓj

tanh
(
Eℓ−Ej
2kBT

)
Eℓ−Ej
2kBT

. (46)

To impose the maximal similarity between Θsk and psk we can assume the fluctuation-
dissipation relation

D =
kBTβ

2α
. (47)

This means that we can construct the quantum relaxation with any kind of stochastic
interpretation, 0< α⩽ 1, except the Itô interpretation with α= 0, which cancels the
effects of noise in the multidimensional geometric Brownian process, as mentioned
before. As a special case, we observe that with the Stratonovich interpretation, α= 1/2,
we restore the Einstein fluctuation-dissipation relation D = kBTβ, discussed in the clas-
sical formalism. Once equation (47) is assumed, the friction operators take the final
form

Θsk,ℓj = psk,ℓj

tanh
(
Eℓ−Ej
2kBT

)
Eℓ−Ej
2kBT

. (48)
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This result shows that in quantum relaxation viscous friction is not proportional to
the momentum of the particles but to a new operator that resembles momentum but
depends on the energy levels of the system and the temperature itself. As we will see
below, this difference is related to the fact that quantum equipartition is different from
classical equipartition. As a final result, once equation (47) is assumed, we have the
complete evolution of the density matrix governed by the equation

dE{ρ}
dt

=
1

ih̄
[H0,E{ρ}]− kBTβ

h̄2

N∑
k=1

mk

( ∑
s=x,y,z

[rsk, [rsk,E{ρ}]]

)

+
β

2ih̄

N∑
k=1

( ∑
s=x,y,z

[rsk,ΘskE{ρ}+E{ρ}Θsk]

)
, (49)

where the friction coefficient β controls the rate of relaxation toward quantum thermo-
dynamic equilibrium. Let us again emphasize that equation (49) is strictly analogous
to equation (6) once we adopt the canonical quantization by replacing Poisson brackets
with commutators. The quantum novelty is that new friction operators Θsk must be
introduced. Their final form in an arbitrary basis is given by equation (43) combined
with equation (47), and results in

Θsk = i
2mkkBT

h̄

ˆ +∞

0

e−ξ e
− H0
kBT

[
rsk, e

− H0
kBT

]
e−ξ e

− H0
kBT dξ. (50)

Another different integral form for the friction operator, always in an arbitrary basis,
is obtained in appendix C. It reads as

Θsk =
2

π

ˆ +∞

−∞
e

+i
H0
kBT

η
pske

−iH0
kBT

η
log
[
coth

(π
2
|η|
)]

dη. (51)

This expression shows again that the friction operator is strongly related to the
momentum operator, and it yields again equation (48) when the energy basis is adopted.
Moreover, the following expansion is also proved in appendix C

Θsk = psk−
1

12(kBT )2 [H0, [H0,psk]] +
1

120(kBT )4 [H0, [H0, [H0, [H0,psk]]]] . . ., (52)

where all coefficients of the development are written in terms of Bernoulli numbers. We
see that when the thermal energy kBT is high enough (that is, much larger than the
energy-level separation) the system approaches the classical behavior and in fact Θsk →
psk. Recall that the Caldeira–Leggett model is obtained from ours by assuming that
Θsk = psk [13–15]. This means, looking at equation (52), that this model is approximate
and holds only for sufficiently high temperatures.

We obtained the representation of the friction operator on the energy basis only
for a discrete, nondegenerate spectrum. Nevertheless, equations (50)–(52) are valid in
any case since they are purely operator relations. In particular, they are also valid in
the continuous spectrum case. For example, for free particles the Hamiltonian function
coincides with the kinetic energy and thus it is simply obtained from these relations that
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Θsk = psk (in fact H0 commutes with psk in this case). However, it is important to note
that the continuous spectrum is typically observed in non-confined systems for which
there is divergence of the partition function, and thus the canonical asymptotic distri-
bution is actually not reached. The case of a degenerate energy spectrum is discussed
in the appendix D for completeness.

The physical origin of our model coincides with that of the classical Langevin
equation. This model describes the dynamics of a particle immersed in a thermal bath
by decomposing the forces acting on it into a deterministic and a stochastic compon-
ent. The deterministic force typically includes conservative interactions, and a linear
friction term that accounts for the dissipative effect of the surrounding medium. The
stochastic component represents the fluctuating influence of the thermal bath, modeled
as a random force with zero mean. A key physical assumption is that the thermal bath
consists of a large number of microscopic degrees of freedom in thermal equilibrium,
which interact weakly and rapidly with the particle [10]. This separation of timescales
justifies modeling the random force as a Gaussian white noise, characterized by a delta-
correlated autocorrelation function. The assumption of delta-correlation—implying no
memory—gives rise to the Markovian hypothesis, whereby the future evolution of the
system depends only on its current state, not its past history [96, 97]. This Markovian
behavior is valid when the relaxation time of the bath is much shorter than that of the
particle. As a result, the bath remains effectively unperturbed by the dynamics of the
particle, and its influence can be captured statistically via the fluctuation-dissipation
theorem, which relates the noise amplitude to the friction coefficient and temperature.
This framework yields a stochastic differential equation—the Langevin equation—that
captures the mesoscopic dynamics of the system while coarse-graining the microscopic
details of the bath. The emergence of irreversibility in the Langevin description stems
from this coarse-graining over the bath degrees of freedom. While the full microscopic
dynamics of the combined system (particle + bath) are time-reversible and governed by
Hamiltonian or Newtonian mechanics, the elimination of the bath variables introduces
an effective asymmetry in time. Friction leads to energy dissipation, while the stochastic
term models thermal agitation without recovering the detailed information lost to the
bath. This asymmetry manifests macroscopically as entropy production and defines the
arrow of time in nonequilibrium processes, despite the underlying time-reversible laws at
the microscopic scale [73–75]. The quantum Caldeira–Leggett equation is based exactly
on the same physical assumptions of the Langevin model [13–15], and in fact it can be
obtained directly by applying the canonical quantization to the Fokker–Planck equation
(keeping the momentum operator as the friction operator). The development of quantum
models via canonical quantization of the Fokker–Planck equation has recently emerged
as a successful approach to circumvent the need for explicitly modeling the thermal bath,
as required in the original formulations by Langevin or Caldeira–Leggett [118–120].
An alternative approach to introduce friction is based on the Green–Kubo formalism,
relating the effective friction coefficient to microscopic dynamics via time-correlation
functions. Specifically, the friction is expressed as the time integral of the autocorrel-
ation of the fluctuating force exerted by the thermal bath [134, 135]. This approach
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provides a first-principles derivation of dissipative behavior, linking friction to equilib-
rium fluctuations through linear response theory. This approach is more complex though
more refined. It is important to remark that the Langevin equation automatically con-
verges to the classical canonical distribution whereas the Caldeira–Leggett equation has
asymptotic thermodynamic behavior that does not converge to the quantum canonical
distribution. For this reason in this work the quantum friction operator does not coin-
cide with the momentum operator. This modification to the original Caldeira–Leggett
model allows us to obtain the correct thermodynamic behavior, as we describe below.
We will directly show the comparison between Caldeira–Leggett approach and ours to
clarify this point.

Before studying the development of the quantum stochastic thermodynamics, let us
observe that equation (49) has the exact form of a master equation and meets its basic
constraints [9, 52, 117]. Indeed, equation (49) can be written in the form

dϱij
dt

= Lijrsϱrs, (53)

where Lijrs is the complete ...quantum Langevin relaxation superoperator and we
defined ϱ= E{ρ}. The evolution does not change the trace of the density mat-
rix and therefore

∑
iLiirs = 0. This relation can be easily verified for our master

equation. Moreover, the density matrix of the system must be Hermitian at all times.
Consequently, L *

ijrs = Ljirs, and this constraint is also verified by our equation. The fol-
lowing two constraints concern the positive definiteness of the density matrix. The diag-
onal matrix elements must be non-negative and therefore Liiii ⩽ 0. If we suppose that

ϱii = 1 and all other components are zero, then the equation
dϱij
dt = Lijrsϱrs implies that

dϱii
dt = Liiii, and since ϱii is already at its maximum value, it can only remain constant

or decrease, whence Liiii ⩽ 0. Moreover, we must have that Ljjii ⩾ 0 (j ̸= i). Indeed, if

ϱii = 1 and all other components are zero, then we have
dϱjj
dt = Ljjii (j ̸= i), and since

ϱjj = 0 is already at its minimum value, it can only remain constant or increase, which
proves that Ljjii ⩾ 0. Both constraints Liiii ⩽ 0, and Ljjii ⩾ 0 (j ̸= i) can be verified for
our evolution equation.

5. Quantum stochastic thermodynamics

We now consider the previously obtained evolution equation where we add the effect of
external forces in order to be able to represent work done on the system. Specifically, we

introduce the force f⃗k = (fxk,fyk,fzk), applied to the kth particle. The effect of these

forces is described by the potential energy −
∑N

k=1 f⃗k · r⃗k, and therefore we can write

dϱ

dt
=

1

ih̄
[H0,ϱ]− 1

ih̄

N∑
k=1

∑
s=x,y,z

fsk [rsk,ϱ]− kBTβ

h̄2

N∑
k=1

mk

( ∑
s=x,y,z

[rsk, [rsk,ϱ]]

)

+
β

2ih̄

N∑
k=1

( ∑
s=x,y,z

[rsk,Θskϱ+ ϱΘsk]

)
. (54)
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In studying quantum thermodynamics we have simplified the notation and introduced
ϱ= E{ρ}. The applied forces should be considered as perturbations to the system. This

means that when f⃗k = 0,∀k = 1, . . .,N , we have that limt→∞ϱ= ϱeq = 1
Zqu

e
− H0
kBT . Based

on this evolution equation for the density matrix, we can obtain expressions of the first
and second laws of thermodynamics.

5.1. First law of thermodynamics

To develop the first law of the thermodynamics, we introduce the internal energy E of
the system, defined as the average value of the Hamiltonian operator, i.e. E = Tr(H0ϱ).
The time variation of this internal energy can be developed as follows

dE

dt
=

dTr(H0ϱ)

dt
= Tr

(
H0

dϱ

dt

)
. (55)

We need to substitute here the terms coming from equation (54). The classical
Liouvillian term leads to

Tr(H0 [H0,ϱ]) = Tr
(
H 2

0 ϱ−H0ϱH0

)
= 0, (56)

because of the cyclic property of the trace. Concerning the effect of the forces, we
need to develop Tr(H0 [rsk,ϱ]) = Tr(H0rskϱ−H0ϱrsk) = Tr([H0,rsk]ϱ), where we used
again the cyclic property of the trace. We can now use the previously obtained relation
[rsk,H0] = i h̄

mk
psk, and we get

Tr(H0 [rsk,ϱ]) = − ih̄

mk
Tr(pskϱ) = −ih̄E{vsk} , (57)

where vsk = psk/mk is the particle velocity component (s= x,y,z, k = 1, . . .,N). An
arbitrary noise term delivers the contribution

Tr(H0 [rsk, [rsk,ϱ]]) = Tr([H0,rsk] [rsk,ϱ]) = − ih̄

mk
Tr(psk [rsk,ϱ])

= − ih̄

mk
Tr([psk,rsk]ϱ) = − h̄2

mk
. (58)

Moreover, the friction contribution corresponds to the term

Tr(H0 [rsk,Θskϱ+ ϱΘsk]) = Tr([H0,rsk] (Θskϱ+ ϱΘsk)) = − ih̄

mk
Tr(psk (Θskϱ+ ϱΘsk))

= − ih̄

mk
E{pskΘsk + Θskpsk} . (59)

Summing up all contributions, we obtain the following result

dE

dt
=

N∑
k=1

∑
s=x,y,z

fskE{vsk}+ 2β

[
3

2
NkBT −

N∑
k=1

∑
s=x,y,z

1

2mk
E
{
pskΘsk + Θskpsk

2

}]
, (60)
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or equivalently

dE

dt
=

N∑
k=1

f⃗k ·E{v⃗k}+ 2β

[
3

2
NkBT −

N∑
k=1

1

2mk
E

{
p⃗k · Θ⃗k + Θ⃗k · p⃗k

2

}]

=
dE{L}

dt
+

dE{Q}
dt

. (61)

This represents the first law of thermodynamics, where we can identify the rate of

average work dE{L}
dt done on the system with the average power

∑N
k=1 f⃗k ·E{v⃗k} of the

external forces. This term is identical to the one obtained in the classical analysis of the
problem.

The second term in equation (61) represents the average heat rate dE{Q}
dt entering

the system. The term 1
2mk

E
{
p⃗k·Θ⃗k+Θ⃗k·p⃗k

2

}
represents a kind of modified average kinetic

energy of the particle, where we observe a quadratic form (symmetrized) composed of
the momentum of the particle and its friction operator. It is the quantum counterpart of
the classical kinetic term 1

2mk
E{p⃗k · p⃗k}. It is important to note that when the modified

kinetic energy of the system is smaller than 3
2NkBT then heat enters the system, and

when the modified kinetic energy is larger than 3
2NkBT then heat leaves the system.

This exactly represents the concept of relaxation toward thermodynamic equilibrium. It
is also seen how the friction coefficient β governs the rate of convergence to equilibrium
that is, the rate at which equipartition is attained.

Our expression of heat flow entering the system allows us to obtain an interesting
form of the quantum equipartition theorem. Indeed, assuming we are in the case with
no applied forces, when the thermal equilibrium is reached we have that dE

dt = 0, and
thus we get the relation

1

2mk
E

{
p⃗k · Θ⃗k + Θ⃗k · p⃗k

2

}
=

3

2
kBT , (62)

where the average value must be determined with the asymptotic canonical distribution

ϱeq = 1
Zqu

e
− H0
kBT (and where the subscript k is not summed). By considering a single

component we can write

1

2mk
E
{
pskΘsk + Θskpsk

2

}
=
kBT

2
, (63)

where s and k are not summed. The latter relation represents the quantum equipartition
theorem written for a single quadratic term of the modified kinetic energy. This result
has now been obtained from the asymptotic behavior of the evolution equation of the
density matrix. It can be also proved independently of the evolution equation of the
density matrix as follows. Assuming that we are at equilibrium, we search for a proof
of equation (63) when projected onto the energy basis of the system. In this situation,
it takes the following explicit form

1

2mkZqu
Tr

{
pskΘsk + Θskpsk

2
e
− H0
kBT

}
=
kBT

2
, (64)
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or, equivalently,

1

2mk

∑
r

∑
t

psk,rtpsk,tr

tanh
(
Et−Er
2kBT

)
Et−Er
2kBT

e
− Ei
kBT

Zqu
=
kBT

2
, (65)

where we explicitly indicated the sums over r and t (since s and k are not summed).

Here, as before, we can introduce the quantity en = e
− En
kBT > 0, and we can then write

1

2mk

∑
r

∑
t

(
psk,rtpsk,tr

er−et
et+er
Et−Er
2kBT

)
er∑
k ek

=
kBT

2
. (66)

The quantity in the round bracket, which we refer to as crt , represents a symmet-
ric matrix, thus satisfying crt = ctr. Hence, we have that

∑
r

∑
t crter =

∑
t

∑
r ctret =∑

r

∑
t crtet. This allows us to say that

∑
r

∑
t crter = 1

2(
∑

r

∑
t crter +

∑
r

∑
t crtet), and

therefore equation (66) simplifies to

kBT

2mk

∑
r

∑
t

(
psk,rtpsk,tr

Et−Er

)
(er− et)

1∑
k ek

=
kBT

2
. (67)

Now, the first quantity in round bracket is a skew-symmetric matrix drt = −dtr, and then
we have that

∑
r

∑
tdrter =

∑
t

∑
r dtret = −

∑
r

∑
tdrtet. So, the expression is further

simplified as

kBT

mk

∑
r

∑
t

(
psk,rtpsk,tr

Et−Er

)
er∑
k ek

=
kBT

2
. (68)

To complete the demonstration, we verify that the relationship
∑

t
psk,rtpsk,tr

Et−Er = mk

2 is

true for any value of r. We previously proved that rsk,rt = i h̄
mk

psk,rt

Et−Er , when we adopt

the energy representation. The skew-symmetric matrix drt =
psk,rtpsk,tr

Et−Er can be therefore
rewritten as drt = mk

i h̄ rsk,rtpsk,tr. Since this matrix is skew-symmetric, we also have that
drt = −mk

i h̄ rsk,trpsk,rt. Then we can write drt = mk

2i h̄(rsk,rtpsk,tr− rsk,trpsk,rt). Now, from the
canonical commutator [rsk,psk] = ih̄, we have that

∑
t(rsk,rtpsk,tℓ− psk,rtrsk,tℓ) = ih̄δrℓ,

which means
∑

t(rsk,rtpsk,tr− psk,rtrsk,tr) = ih̄, ∀r. Hence, we can write
∑

tdrt = mk

2 , ∀r.
We have finally proved that

∑
t
psk,rtpsk,tr

Et−Er = mk

2 is true for any value of r. Therefore,

equation (68) is demonstrated and the quantum equipartition theorem is re-obtained
with a calculation developed directly at equilibrium, without using the density matrix
evolution equation. Importantly, this direct demonstration proves the equipartition of
energy for each individual quadratic term, as shown in equation (63).

To summarize, we can say that in quantum mechanics the expectation value of each
quadratic term of the energy at equilibrium is not equal to 1

2kBT , but each modified

quadratic term (with the friction operator) takes on exactly the value 1
2kBT .
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5.2. Second law of thermodynamics

In this section we develop a balance equation for the von Neumann entropy of the
system defined as follows

S = −kBTr(ϱ lnϱ) = −kBE(lnϱ) . (69)

Let us first justify mathematically the possibility of calculating the logarithm of the
density matrix ϱ. Since ϱ is Hermitian and positive definite, we have the spectral
decomposition ϱ= P *TDP , where D is diagonal with positive elements (the eigenval-
ues pi of ϱ), and P is unitary (P−1 = P *T ). We define a diagonal matrix L, whose
elements are given by the quantities lnpi. It means that D = eL. We have therefore

that ϱ= P *TDP = P *T eLP = eP
*TLP , and we can define the logarithm of the density

matrix as lnϱ= P *TLP . This procedure makes it possible to determine in principle the
logarithm of the density matrix at each instant of time.

Consequently, we can now calculate the time derivative of entropy

dS

dt
= −kBTr

(
dϱ

dt
lnϱ+ ϱ

d

dt
lnϱ

)
. (70)

We observe that d
dt lnϱ= ϱ−1 dϱ

dt = dϱ
dtϱ

−1 only if ϱ and dϱ
dt commute. This is not true

in general for the density matrix, so we must proceed differently. There are general
formulae for calculating the derivative of the logarithm of a matrix, however we prefer
to use the following direct technique. Since ϱ= P *TDP , and lnϱ= P *TLP , we have
ϱ lnϱ= P *TDPP *TLP = P *TDLP . Therefore, we can write

S = −kBTr(ϱ lnϱ) = −kB

∑
i

pi lnpi, (71)

where
∑

i pi = 1 since Tr(ϱ) = 1. This expression shows the direct relationship between
the von Neumann quantum entropy defined in equation (69) and the Shannon entropy,
introduced and largely used in information theory. Moreover, this relation allows us
to determine the entropy time derivative by considering the eigenvalues of the density
matrix. We get

dS

dt
= −kBT

∑
i

(
dpi
dt

lnpi +
dpi
dt

)
= −kB

∑
i

dpi
dt

lnpi, (72)

since
∑

i
dpi
dt = 0, being

∑
i pi = 1. We prove now that this expression exactly coincides

with the first term in equation (70), and therefore the second term is zero. To do this,
we develop the following calculation

−kBTr

(
dϱ

dt
lnϱ

)
= −kBTr

[(
Ṗ *TDP +P *T ḊP +P *TDṖ

)
P *TLP

]
= −kBTr

[
PṖ *TDL+ ṖP *TLD+ ḊL

]
, (73)

where we used the cyclic property of the trace and the fact that P *TP = PP *T = I. Now,
LD =DL since D and L are diagonal matrices, and d

dt(PP
*T ) = PṖ *T + ṖP *T = 0 since
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P *TP = PP *T = I. Hence, we obtain that equation (73) is given by −kB

∑
i

dpi
dt lnpi. It

means that the first term in equation (70) coincides with equation (72). To conclude,
the time derivative of the quantum entropy can be written as

dS

dt
= −kBTr

(
dϱ

dt
lnϱ

)
= −kB

∑
i

dpi
dt

lnpi. (74)

We also have the auxiliary result which states that Tr
(
ϱ d

dt lnϱ
)

= 0.
We can now develop the entropy balance by considering the density matrix evolution

given in equation (54). The Hamiltonian contribution leads to the following term

Tr([H0,ϱ] lnϱ) = Tr(H0ϱ lnϱ− ϱH0 lnϱ) = Tr(H0 [ϱ, lnϱ]) = 0, (75)

where we applied the cyclic property of the trace, and recalled that ϱ commutes with
lnϱ. The contribution of external forces is also zero, in fact

Tr([rsk,ϱ] lnϱ) = Tr(rskϱ lnϱ− ϱrsk lnϱ) = Tr(rsk [ϱ, lnϱ]) = 0. (76)

To complete the entropy balance, we rewrite equation (54) in the compact form

dϱ

dt
=

1

ih̄
[H0,ϱ] + A ϱ+ Rϱ= L ϱ, (77)

where A ϱ represents the term with the external force, Rϱ the friction and noise con-
tributions (the quantum Langevin bath), and L ϱ the sum of all terms in the evolution
equation. The symbols A , R, and L must be interpreted as superoperators acting on
the density matrix. Since the Hamiltonian and external force contributions are zero in
the entropic balance, we can write that

dS

dt
= −kBTr(Rϱ lnϱ) . (78)

Similarly, the average heat rate defined in previous section can be written as

dE{Q}
dt

= Tr(RϱH0) = kBTTr

(
Rϱ

H0

kBT

)
. (79)

Therefore, we can write the second law of the thermodynamics as

dS

dt
=

1

T

dE{Q}
dt

+
dSp

dt
, (80)

where

dSp

dt
= −kBTr

[
Rϱ

(
lnϱ+

H0

kBT

)]
. (81)

The term 1
T

dE{Q}
dt represents the entropy flow, that is, the amount of entropy entering

the system due to heat exchange. In other words, it represents the disorder carried by
heat. It can be positive or negative depending on whether the heat flow is incoming or
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outgoing. The term dSp

dt , on the other hand, represents the production of entropy, that
is the entropic increase due to the irreversibility of the thermodynamic transformation.
It must always be positive for consistency with classical thermodynamics.

The entropy production can be further simplified as follows. Starting with the expres-

sion of the asymptotic canonical distribution ϱeq = 1
Zqu

e
− H0
kBT , we can calculate its logar-

ithm as lnϱeq = (ln 1
Zqu

)I − H0

kBT
. This expression can be easily proved by taking the expo-

nential exp
[
(ln 1

Zqu
)I − H0

kBT

]
, and by observing that I and H0 commute. Indeed, we find

that exp
[
(ln 1

Zqu
)I − H0

kBT

]
= exp

[
(ln 1

Zqu
)I
]

exp(− H0

kBT
) = ϱeq, proving what is required.

Then, in equation (81) we can substitute H0

kBT
= − lnϱeq + (ln 1

Zqu
)I. It is observed that

the term (ln 1
Zqu

)I cannot contribute to the entropy production since Tr[Rϱ] = 0, due

to trace preservation during time evolution. These considerations finally lead to the
following form of entropy production

dSp

dt
= kBTr[Rϱ(lnϱeq − lnϱ)] . (82)

We consider now the system without externally applied force, which is described by the
evolution equation dϱ

dt = 1
i h̄ [H0,ϱ] + Rϱ= L ϱ. From equation (82), we can also obtain

the alternative form

dSp

dt
= kBTr[L ϱ(lnϱeq − lnϱ)] . (83)

Indeed, we can replace the relaxation operator R with L since we have that
Tr([H0,ϱ] lnϱeq) = Tr([H0,ϱ] lnϱ) = 0. Importantly, it has been shown that quantum
equations for the evolution of the density matrix that are in the form of the clas-
sical Fokker–Planck equation involve rates of entropy production which are always non-
negative during the relaxation toward equilibrium [119, 120]. Thus, we can write

dSp

dt
⩾ 0, (84)

corresponding to the second law of thermodynamics. It will be also proved numerically
with some specific examples in a following section. We remark that the non-negativity of
the quantum entropic production is discussed in several works, with different approaches
and methodologies [27–31, 33].

To show a further connection with non-equilibrium thermodynamics, we also intro-
duce the Helmholtz free energy F = E −TS , and we study its evolution. We recall
the internal energy definition E = Tr(H0ϱ), the entropy definition S = −kBTr(ϱ lnϱ),
and then we get the expression F = Tr(H0ϱ) + kBTTr(ϱ lnϱ). We now remember the
previously discussed relation H0 = −kBT lnϱeq + kBT (ln 1

Zqu
)I, and we obtain

F = kBTTr(ϱ lnϱ− ϱ lnϱeq)− kBT lnZqu. (85)

This expression gives the time evolution of the free energy in terms of the density matrix
during the relaxation process toward equilibrium. It is immediately seen that when
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equilibrium is reached, the free energy takes on the asymptotic value F = −kBT lnZqu,
which corresponds to the well-known expression of equilibrium statistical mechanics.
Furthermore, the first part of equation (85), evolving over time, can be identified with
the relative entropy of ϱ with respect to ϱeq . We can indeed write

F = kBTS (ϱ|ϱeq)− kBT lnZqu, (86)

where we introduced the quantum relative entropy of ϱ1 with respect to ϱ2 as

S (ϱ1|ϱ2) ≡ Tr[ϱ1 lnϱ1 − ϱ1 lnϱ2] . (87)

It represents a distance measure between the states described by the two density
matrices ϱ1 and ϱ2 [136]. We remember that Klein’s inequality affirms that the quantum
relative entropy S (ϱ1|ϱ2) is non-negative, and it is zero if and only if ϱ1 = ϱ2 [137]. It
means that S (ϱ|ϱeq) ⩾ 0, and we immediately see that free energy always takes values
larger than its equilibrium value

F ⩾−kBT lnZqu. (88)

On the other hand, we can also observe that the free energy always decreases as time
increases. Indeed

dF

dt
= kBTTr

(
dϱ

dt
lnϱ− dϱ

dt
lnϱeq

)
, (89)

where we used the property stating that Tr
(
ϱ d

dt lnϱ
)

= 0, for any density matrix ϱ. Since
dϱ
dt = L ϱ, comparing with equation (83), we obtain the important relationship

dF

dt
= − 1

T

dSp

dt
. (90)

Since dSp

dt ⩾ 0, we find that dF
dt ⩽ 0, which means that free energy always decreases

toward its value corresponding to thermodynamic equilibrium. Indeed, we know from
non-equilibrium thermodynamics that a negative value of free energy change is a neces-
sary condition for a process to be spontaneous (irreversibility). We finally demon-
strated the perfect consistency between our quantum expressions and macroscopic non-
equilibrium thermodynamics.

6. The secular approximation

We develop here an approximation for the dynamic equation of the density matrix valid
in the case of energy representation. First, we observe that under this assumption the
evolution equation can be written as

dϱnm
dt

=
1

ih̄
(En−Em)ϱnm + Rnmijϱij, (91)
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where, for simplicity, we do not consider the effects of external forces (see equation (77),
with A = 0). The relaxation operator can be obtained as

Rnmij = −δmj
∑
q

Γ+
nqqi + Γ+

jmni + Γ−
jmni− δni

∑
p

Γ−
jppm, (92)

where

Γ−
abcd =

kBTβ

h̄2

N∑
k=1

mk

∑
s=x,y,z

rsk,abrsk,cd
e
Ea−Eb
2kBT

cosh
(
Ea−Eb
2kBT

) , (93)

Γ+
abcd =

kBTβ

h̄2

N∑
k=1

mk

∑
s=x,y,z

rsk,abrsk,cd
e
Ed−Ec
2kBT

cosh
(
Ed−Ec
2kBT

) . (94)

This exact explicit form makes it easy to verify the basic constraints mentioned at the
end of section 4 concerning the consistency of time evolution with the properties of the
density matrix [9, 52, 117]. It also allows us to introduce the secular approximation
based on decoupling the elements on the main diagonal, i.e. the populations ϱnn , from
the so-called coherences ϱnm, n ̸=m. In this approximation, it is also assumed that the
equation of the generic coherence depends only on the coherence itself, thus resulting
in a scalar ordinary differential equation. For these coherences, we obtain

dϱnm
dt

=
1

ih̄
(En−Em)ϱnm− γnmϱnm (with n ̸=m) , (95)

with

γnm = −Rnmnm =
∑
q

Γ+
nqqn−Γ+

mmnn−Γ−
mmnn +

∑
p

Γ−
mppm, (96)

where n ̸=m. These equations represent the phenomenon of decoherence, i.e. ϱnm → 0
(with n ̸=m) for t→∞. The density matrix is in fact diagonal for long times on the
energy basis. For the populations on the main diagonal, we get

dϱnn
dt

=
∑
i ̸=n

Wniϱii−

∑
q ̸=n

Wqn

ϱnn, (97)

where

Wni = Γ+
inni + Γ−

inni =
kBTβ

h̄2

N∑
k=1

mk

∑
s=x,y,z

|rsk,ni|2
e
Ei−En
2kBT

cosh
(
Ei−En
2kBT

) , (98)

which are real and positive by construction. The coefficients W ni are the probabilities of
transition from the state i to the state n per unit time, in the Markov approximation.
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Therefore, equation (97) represents a Pauli master equation, and equation (98) the
corresponding Fermi’s golden rule [9, 138, 139]. The detailed balance

Wni

Win
=

e
− En
kBT

e
− Ei
kBT

=
ϱeq,nn
ϱeq,ii

(99)

is always verified and ensures the asymptotic convergence to the canonical distribution
[140]. We try to reconstruct the expressions of heat and entropic production in the
secular approximation. The average heat rate can be obtained as

dE{Q}
dt

= Tr(RϱH0) =
∑
n

(Rϱ)nnEn, (100)

and since dϱnn
dt = (Rϱ)nn, from equation (97) we get

dE{Q}
dt

=
∑
n

[∑
i ̸=n

Wniϱii−

(∑
i ̸=n

Win

)
ϱnn

]
En =

∑
n

∑
i̸=n

(WniϱiiEn−WinϱnnEn) .

(101)

Under the assumption that the density matrix is approximately diagonal with the ele-
ments described by the Pauli master equation, the definition of the entropy rate in
equation (74) continues to hold with pi = ϱii. Therefore, we can write

dS

dt
= −kB

∑
n

dϱnn
dt

lnϱnn = −kB

∑
n

[∑
i ̸=n

Wniϱii−

(∑
i̸=n

Win

)
ϱnn

]
lnϱnn

= −kB

∑
n

∑
i ̸=n

(Wniϱii lnϱnn−Winϱnn lnϱnn) . (102)

Summing up, the entropy production rate can be obtained as

dSp

dt
=

dS

dt
− 1

T

dE{Q}
dt

, (103)

where we can use equations (101) and (102). Now, considering that ϱeq,nn = 1
Zqu

e
− En
kBT , we

get En = −kBT lnZqu − kBT lnϱeq,nn. If we introduce this expression into equation (101),
we eventually obtain the entropic production in the form

dSp

dt
= kB

∑
n

∑
i ̸=n

(Wniϱii−Winϱnn) ln
ϱeq,nn
ϱnn

. (104)

This quantity can be rewritten as

dSp

dt
=

1

2
kB

∑
n

∑
i ̸=n

(Wniϱii−Winϱnn) ln
ϱeq,nn
ϱnn

+
1

2
kB

∑
n

∑
i̸=n

(Winϱnn−Wniϱii) ln
ϱeq,ii
ϱii

,

(105)
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where in the second part we simply swapped the dummy index names. We can now
change the signs to the terms in the second row, getting

dSp

dt
=

1

2
kB

∑
n

∑
i ̸=n

(Wniϱii−Winϱnn) ln
ϱeq,nn
ϱnn

+
1

2
kB

∑
n

∑
i̸=n

(Wniϱii−Winϱnn) ln
ϱii
ϱeq,ii

=
1

2
kB

∑
n

∑
i ̸=n

(Wniϱii−Winϱnn) ln
ϱiiϱeq,nn
ϱnnϱeq,ii

. (106)

To conclude, we use the detailed balance stated in equation (99), and we get final form

dSp

dt
=

1

2
kB

∑
n

∑
i ̸=n

(Wniϱii−Winϱnn) ln
Wniϱii
Winϱnn

. (107)

Importantly, this is the classical Schnakenberg form for the entropy production rate
associated with a Pauli master equation [100]. We then demonstrated the consistency
of the secular approximation with this entropic production expression, widely used
in systems described by a master equation [141]. We remark that the Schnakenberg
formula is always nonnegative since the term Wniϱii−Winϱnn has the same sign of the
term ln Wniϱii

Winϱnn
. The entropy production rate remains therefore nonnegative also within

the secular approximation.

7. Applications

In the following, we describe the implementation and the results obtained for the evol-
ution equation of the density matrix for two specific well studied instances: the har-
monic oscillator and the infinite potential well; both cases are of theoretical and applied
interest (e.g. for photons, phonons or quantum dots). They are described by the follow-
ing Hamiltonian operator

H0 =
p2

2m
+V (x) , (108)

where m is the mass of the particle and V (x ) is the corresponding potential.

7.1. The harmonic oscillator

In the case of the harmonic oscillator, we have V (x) = 1
2mω

2x2 where ω =
√
k/m is

the classical angular frequency and k is the elastic constant. We study the relaxation
to thermal equilibrium when the harmonic oscillator is embedded in a thermal bath.
We recall that the quantum harmonic oscillator is characterized by the energy levels
H0φn = Enφn with

En = h̄ω

(
n+

1

2

)
, n⩾ 0, (109)
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and by the eigenfunctions

φn (x) =
1√

2nn!

(mω
π h̄

)1/4

e−
mω
2h̄
x2

Hn

(√
mω

h̄
x

)
, (110)

where Hn(z) are the Hermite polynomials. We can calculate the matrices associated to
the operators x and p as xnm = ⟨φn(x)|xφm(x)⟩ and pnm = −ih̄⟨φn(x)| d

dxφm(x)⟩, and we
eventually obtain the results

xnm =

√
h̄

2mω

(
δn+1,m

√
n+ 1 + δn,m+1

√
n
)

, (111)

and

pnm = −i
√
mωh̄

2

(
δn+1,m

√
n+ 1− δn,m+1

√
n
)

, (112)

for n⩾ 0 and m⩾ 0.
In the case of the harmonic oscillator, the friction operator defined in equation (48)

is simply obtained as

Θnm = pnm
tanh

(
h̄ω

2kBT

)
h̄ω

2kBT

, (113)

and this means that in this particular case Θ is given by a constant multiplying the
operator p. These premises allow us to write the evolution of the density matrix in the
form

dϱ

dt
=

1

ih̄
[H0,ϱ]− kBTβ

h̄2
[x, [x,ϱ]] +

β

2ih̄

tanh
(

h̄ω
2kBT

)
h̄ω

2kBT

[x,pϱ+ ϱp] . (114)

We projected that equation onto the energy basis and solved it numerically to observe
the thermodynamics of the system during its relaxation towards thermal equilibrium.
The results are displayed in figure 1, where we plotted the evolution of main quantities
over time for different initial conditions, taking a 16× 16 density matrix as a practical
example of implementation. As an initial condition we considered a mixed state com-
posed of the weighted energy eigenfunctions with probability pk = N/kf , for chosen
values of the parameter f, and N a normalizing factor of the 16×16 density matrix
in the energy representation. The initial density matrix takes the form ϱkk(0) = N/kf ,
ϱkh(0) = 0 if h ̸= k. For large values of f, the probabilities rapidly become negligible as k
increases, and thus only low-energy states are populated; for large values of f, the initial
energy will be fairly low. For small values of f, on the other hand, the probabilities
decrease more slowly with k, and even high-energy states can be appreciably populated.
Hence, for small values of f, the initial energy can be quite high. Recall that the asymp-

totic mean energy at thermal equilibrium is given by 1
2 h̄ω+ h̄ω/(e

h̄ω
kBT − 1). Here we have

https://doi.org/10.1088/1742-5468/adf4bd 29

https://doi.org/10.1088/1742-5468/adf4bd


Explicit noise and dissipation operators for quantum stochastic thermodynamics

J.S
tat.

M
ech.(2025)

083102

Figure 1. Results for the quantum harmonic oscillator in contact with a thermal
bath. In each column are represented the plots corresponding to an initial dens-
ity matrix (16×16) given by ϱkk(0) = N/kf , with f = 1,2,3,4 (N is a nor-
malizing factor). In the first row, we show the total energy E , the potential
energy 1

2mω
2E
{
x2
}

, the kinetic energy 1
2mE

{
p2
}

, and the modified kinetic energy
1

2mE
{
pΘ+Θp

2

}
. We observe that the total energy converges to 1

2 h̄ω+ h̄ω/(e
h̄ω
kBT − 1),

the potential and kinetic contributions converge to 1
4 h̄ω+ 1

2 h̄ω/(e
h̄ω
kBT − 1), and the

modified kinetic energy to 1
2kBT , proving the quantum equipartition theorem. In

the second row, one can find the behavior of the total entropy rate dS
dt , the entropy

flow rate 1
T

dE{Q}
dt , and the entropy production rate dSp

dt , which is always positive. In
the third row, we plot the entropy S , and the Helmholtz free energy F . We remark
that F is always decreasing and converges to −kBT lnZqu. Finally, in the fourth
row, we show the following quantities: the coherence measure C =N∥ϱwmd(t)∥2,
where ϱwmd is ϱ with all diagonal elements turned to zero (without main diag-
onal), and where ∥ · ∥2 is the spectral norm; P is the purity measure defined as
Tr(ϱ2) (takes the value 1 if and only if the state is pure); finally, d is the distance
between ϱ and ϱeq , defined as d(t) = ∥ϱ(t)− ϱeq∥2. Dashed lines correspond to the
Caldeira–Leggett model. We adopted the parameters h̄= 1, kB = 1, T = 1, β= 0.3,
ω= 1, and m = 1 in arbitrary units. We calculated 1000 times the exponential of a
256×256 matrix with a time step π/200.
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used the introduced combination of states to obtain two initial conditions in which the
initial energy is higher than the thermal equilibrium energy, and two initial conditions
in which the initial energy is lower than the thermal equilibrium energy. The first two
cases (with f = 1,2) are shown in the first two columns of figure 1, and the other two
(with f = 3,4) in the next two columns.

In the panels of the first row, we observe the evolution of the energy contributions.
The total energy decreases towards equilibrium in the first two cases and increases in the
following two, consistent with the initial conditions adopted. It is well seen that both
kinetic and potential contributions converge to the same value corresponding to half

of the total equilibrium energy 1
2 h̄ω+ h̄ω/(e

h̄ω
kBT − 1). In fact they are both quadratic

terms of the Hamiltonian operator. They do not, however, converge to the classical
equipartition value kBT

2 , since this principle is no longer strictly verified in the quantum

domain. But it can instead be observed that the modified kinetic energy 1
2mE

{
pΘ+Θp

2

}
does indeed converge to the value kBT

2 restoring the validity of the equipartition theorem,

with an extended meaning: the difference between kBT
2 and 1

2mE
{
pΘ+Θp

2

}
during the

relaxation describes the heat entering or leaving the system.
In the first two columns of figure 1 the total energy decreases because of the outgoing

heat and in the other two the energy increases because of the incoming heat. These heat
flows generate an entropy flow rate (displacement of disorder) that can be negative or
positive. This can be seen in the panels of the second row of figure 1, where the entropy
flow rate is negative in the first two cases and positive in the other two. The total
entropy rate can also have a sign that depends on the initial conditions and the state
of progress of the relaxation process. Regardless of the signs of the entropy flow rate
and the total entropy rate, it is important to note that the entropy production rate is
always positive, in accordance with the second law of thermodynamics. This term, in
fact, corresponds to the irreversibility and spontaneity of the process rather than the
direction of heat flow.

In the third row of the figure, we depict the evolution of the total entropy S and
the Helmholtz free energy F as functions of time. While the total entropy may increase
or decrease depending on thermal fluxes, the Helmholtz free energy always decreases,
eventually reaching its equilibrium value −kBT lnZqu = 1

2 h̄ω+ kBT ln[1− exp(− h̄ω
kBT

)].
This decrease characterizes spontaneous processes, consistently with the second law
of thermodynamics.

In the last column of figure 1, we present several quantities that characterize the
evolution of the density matrix. Firstly, we consider a measure of coherence, which
quantifies the magnitude of the off-diagonal terms in the density matrix. It is defined
as C =N∥ϱwmd(t)∥2 (with N = 16 in this example) where ϱwmd is ϱ with all diagonal
elements turned to zero (without main diagonal), and where ∥ · ∥2 is the spectral norm.
This measure thus describes the decoherence process as the dynamics progresses towards
thermodynamic equilibrium. Note that the system periodically reaches a state without
coherence terms (i.e. characterized by a diagonal density matrix), while complete deco-
herence is achieved only asymptotically due to thermal fluctuations. Furthermore, even
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at points where coherence is absent, the state is never truly pure, as evidenced by the
evolution of P = Tr(ϱ2), which represents the purity of the state (P = 1 if and only if the
state is pure, while P < 1 for any mixed state). It can be observed that the initial state
is closer to being pure when f is large (rightmost column), as only a few energy states
are occupied. Consequently, purity may either increase or decrease during the evolution
towards equilibrium, depending on the initial conditions. Finally, we have represented
a quantity that measures the distance d(t) = ∥ϱ(t)− ϱeq∥2 of the density matrix from
its equilibrium value. This quantity is always decreasing, and its decay is comparable
to that of coherence.

We introduce a comparison between our model and the Caldeira–Leggett model [13–
15]. Developed in the early 1980s, it was designed to provide a microscopic description
of quantum dissipation by coupling a system linearly to a bath of harmonic oscillators
that represent its environment. This framework enabled the study of quantum Brownian
motion. While the model qualitatively captures dissipative dynamics, it presents signi-
ficant challenges when describing equilibrium statistical properties. In particular, the
reduced density matrix of the system does not generally yield the canonical Boltzmann
distribution expected from statistical mechanics. This incompatibility becomes espe-
cially pronounced in the strong-coupling or low-temperature regimes, where system-
bath correlations are non-negligible. Consequently, the thermodynamic consistency of
the model can break down, and naive application of equilibrium concepts may lead to
incorrect predictions. For the harmonic oscillator, the Caldeira–Leggett model assumes
the form

dϱ

dt
=

1

ih̄
[H0,ϱ]− kBTβ

h̄2
[x, [x,ϱ]] +

β

2ih̄
[x,pϱ+ ϱp] . (115)

Compared with our model, the only difference is that the term tanh( h̄ω
2kBT

)/ h̄ω
2kBT

does
not appear. The results for this model can be observed in figure 1 and correspond to
the dashed lines. The main point, which highlights the thermodynamic incompatibility,
is described by the plots in the first line where we see that the total energy of the
system does not asymptotically converge to the expected value, which corresponds to
1
2 h̄ω+ h̄ω/(e

h̄ω
kBT − 1). Although the other curves have a qualitative behavior similar to

that of our model, the deviation of the asymptotic regime from the correct one makes the
Caldeira-Leggett model inconsistent with equilibrium quantum statistical mechanics.
This point further justifies the introduction of our approach, based on the canonical
quantization of the Fokker–Planck equation, which allows us to correct this drawback
and obtain the correct quantum thermodynamics.

It is important to add some comments concerning the numerical solution of the
master equations. If we consider a system with N levels or states, the master equation
corresponds to a system of differential equations with N 2 unknowns. Since the system is
linear, it is described by matrices (or superoperators) having dimensions N 2 ×N 2. The
transition from the original master equation to the extended version with N 2 unknowns
takes place via the introduction of Liouville superoperators, obtained through Kronecker
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products [36]. This is the method adopted in our simulations. Unfortunately, this tech-
nique involves extremely large matrices for systems that require a large number of states.
However, for most physical systems the overall Liouvillian superoperator is sparse, and
therefore the number of operations and memory cost associated with its construction
and elaboration is reasonably practicable even for certain classes of multi-body sys-
tems. Of course, there are specific efficient methods for particular systems. The cov-
ariance matrix approaches are primarily used for Gaussian systems, such as quadratic
fermionic/bosonic Hamiltonians, often in the context of Lindblad master equations. For
these systems, it is possible to derive equations of motion for the covariance matrix,
describing the overall dynamics [142, 143]. However, these techniques can not applic-
able to strongly interacting, non-Gaussian systems. Moreover, the Bethe ansatz methods
have been developed to solve integrable models in many-body quantum physics (e.g.
Heisenberg spin chains), and extended to non-equilibrium master equations, especially
in interacting particle systems. These techniques use the integrability of the system to
construct exact eigenstates of the non-Hermitian superoperator governing the master
equation [144, 145]. These approaches are only mentioned for completeness but go bey-
ond what is developed in this paper. Moreover, they are often applied to systems where
it is not interesting to observe asymptotic behavior for long times, which is instead the
main focus of our work.

7.2. The infinite potential well

For the infinite potential well the potential energy is defined as V (x) = 0 if 0< x < L,
and V (x) → +∞ if x < 0 or x >L. The energy levels for this infinite potential well are
given by

En =
π2h̄2n2

2mL2
, n⩾ 1, (116)

and they are associated with the eigenfunctions

φn (x) =

√
2

L
sin
(nπx
L

)
, (117)

satisfying the eigenvalue equation H0φn = Enφn. As before, we can evaluate the
matrices associated to the operators x and p as xnm = ⟨φn(x)|xφm(x)⟩ and pnm =
−ih̄⟨φn(x)| d

dxφm(x)⟩. The resulting expressions are

xnm =
4nmL

π2

(−1)m cos(nπ)− 1

(m2 −n2)2 (1− δnm) +
L

2
δnm, (118)

and

pnm = −ih̄2nm

L

(−1)m cos(nπ)− 1

m2 −n2
(1− δnm) , (119)

for n⩾ 1 and m⩾ 1. The matrix mechanics of the infinite square well is discussed in
[146, 147].
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For the infinite potential well the potential energy is defined as V (x) = 0 if 0< x < L,
and V (x) → +∞ if x < 0 or x >L. The friction operator defined in equation (48) is
obtained as

Θnm = pnm
tanh

[
π2 h̄2

4mL2kBT

(
n2 −m2

)]
π2 h̄2

4mL2kBT
(n2 −m2)

. (120)

These explicit calculations allow us to write the evolution of the density matrix in the
form

dϱ

dt
=

1

ih̄
[H0,ϱ]− kBTβ

h̄2
[x, [x,ϱ]] +

β

2ih̄
[x,Θϱ+ ϱΘ]. (121)

As before, we projected that equation onto the energy basis and solved it numerically
to observe the thermodynamics during the relaxation toward thermal equilibrium. The
results can be found in figure 2, where we plotted the evolution of main quantities
over time for different initial conditions. As before, we adopted two initial conditions
corresponding to an initial energy larger than the equilibrium energy (first two columns),
and two initial conditions with energy smaller than its equilibrium value (following two
columns). It can be seen from the graphs in the first row that the total energy converges
to the thermodynamic value E = 1

Zqu

∑+∞
n=1En exp(− En

kBT
), where Zqu =

∑+∞
n=1 exp(− En

kBT
).

In this case the kinetic and potential contributions do not converge to the same limit
because the potential term is not quadratic. The former converges toward 1

2mE
{
p2
}

and the latter towards E − 1
2mE

{
p2
}

, where the average value is calculated through
the canonical distribution. In addition, the modified kinetic energy converges towards
1
2kBT , numerically proving the new version of the energy equipartition. In the second
row of plots we see that the entropy flow rate is negative or positive depending on
whether the heat is outgoing or incoming. The total entropy rate can also be positive
or negative depending on the direction of heat flow. But entropy production is seen to
be always positive since it is related to the irreversibility of the relaxation process. In
the third line we show the evolution of entropy and Helmholtz free energy: the total
entropy can increase or decrease while the free energy always decreases until it reaches
the equilibrium value −kBT lnZqu. In the fourth and final row of figure 2, we show the
evolution of the coherence measure, of the purity measure and of the distance from
the canonical distribution. It is observed that while starting from a diagonal density
matrix the coherence first increases and then decreases going towards thermodynamic
equilibrium. The purity increases or decreases depending on the initial condition, as
already observed for the harmonic oscillator. Finally, the distance of the density matrix
from the canonical distribution is monotonically decreasing with time.
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Figure 2. Results for the quantum infinite potential well in contact with a thermal
bath. In each column are represented the plots corresponding to an initial dens-
ity matrix (15×15) given by ϱkk(0) = N/kf , with f = 1.5,3,4.5,6 (N is a nor-
malizing factor). In the first row, we show the total energy E , the potential
energy E − 1

2mE
{
p2
}

, the kinetic energy 1
2mE

{
p2
}

, and the modified kinetic energy
1

2mE
{
pΘ+Θp

2

}
. We observe that the modified kinetic energy converges to 1

2kBT ,

proving the quantum equipartition theorem. In the second row, one can find the

behavior of the total entropy rate dS
dt , the entropy flow rate 1

T
dE{Q}

dt , and the entropy

production rate dSp

dt , which is always positive. In the third row, we plot the entropy
S , and the Helmholtz free energy F . We remark that F is always decreasing and
converges to −kBT lnZqu. Finally in the fourth row, we show the following quantit-
ies: the coherence measure C =N∥ϱwmd(t)∥2, where ϱwmd is ϱ with all diagonal ele-
ments turned to zero (without main diagonal), and where ∥ · ∥2 is the spectral norm;
P is the purity measure defined as Tr(ϱ2) (takes the value 1 if and only if the state
is pure); finally, d is the distance between ϱ and ϱeq , defined as d(t) = ∥ϱ(t)− ϱeq∥2.
We adopted the parameters h̄= 1, kB = 1, T = 1, β= 1, L= 2, and m = 3 in arbit-
rary units. We calculated 1000 times the exponential of a 225×225 matrix with a
time step 0.007.
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8. Conclusions

In this work, we have exploited the formal connections between classical stochastic
thermodynamics and quantum open systems, with a particular focus on the inter-
play between thermal noise and dissipation. We initially proved that thermal noise
in quantum mechanics is not compatible with the Schrödinger equation since the state
cannot be pure. We then introduced the mixed states via the density matrix described
by the Liouville–von Neumann equation. The quantum effects of thermal noise are
proved to be equivalent to those of a multi-dimensional geometric Brownian process.
This enabled the introduction of appropriate terms describing thermal fluctuations into
the master equation and they are closely resembling to those classically obtained. By
further leveraging analogies with classical equations, we introduced a novel Hermitian
dissipation operator, which enables a reasonable quantum description of friction. This
operator provides a clear physical interpretation of dissipation within quantum systems.

The new friction operator allows for a physically clear definition of heat exchange
and therefore leads to the introduction of quantum thermodynamics. Indeed, we demon-
strated that the proposed framework allows for a well-defined formulation of the first
and second laws of thermodynamics in the quantum regime. An alternative quantum
equipartition theorem, derived from our approach, offers a new perspective on the distri-
bution of energy in open quantum systems, distinguishing it from classical equipartition
results. In classical equipartition, each quadratic energy term corresponds at equilib-
rium to an energy contribution equal to kBT

2 . This is not true in quantum mechanics,
and so one must change either the definition of kinetic energy, or the equilibrium value
kBT

2 . While various works in the literature have investigated the new value to substitute

in place of kBT
2 , here we have modified the definition of kinetic energy so as to respect

the classical value. This can be done precisely because of the mathematical form of the
new friction operator. This result allows us to provide a new contribution to the many
studies of quantum equipartition found in the recent literature [40–44].

Our formalism ensures that energy dissipation and entropy production adhere to
fundamental thermodynamic principles, reinforcing the consistency between quantum
and classical descriptions of non-equilibrium processes. In particular, the entropy pro-
duction rate is always positive, confirming the validity of the second law. The proposed
model therefore represents a useful approximation describing the quantum Brownian
motion of an arbitrary system. It is particularly useful for modelling mesoscopic systems
with an intermediate behaviour between classical and quantum regimes. Additionally,
our results highlight the intricate role of quantum fluctuations in shaping the thermo-
dynamic behavior of quantum systems, which has implications for the stability and
control of quantum states in practical applications.

As a first, simple validation of our theoretical framework, we applied it to two funda-
mental quantum systems: the harmonic oscillator and a particle in an infinite potential
well. Our numerical analyses confirmed the expected relaxation dynamics and ther-
modynamic behavior, including the irreversible approach to thermal equilibrium. The
results underscore the robustness of our formulation in capturing the essential features
of quantum dissipation and stochastic dynamics. Furthermore, the application of our
model to these well-defined quantum systems provides a benchmark for testing future
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developments in quantum thermodynamics, particularly in scenarios where quantum
irreversibility and decoherence effects become relevant. We also discussed a comparison
with the Caldeira–Leggett model.

Beyond its immediate applications, this work provides a foundation for further
research in quantum thermodynamics, stochastic quantum processes, and the devel-
opment of quantum technologies. Future studies could extend this framework to more
complex quantum systems, including many-body interactions and strongly correlated
environments. Additionally, the incorporation of non-Markovian effects into our model
could yield deeper insights into quantum thermodynamics and its applications in emer-
ging quantum technologies. Understanding the interplay between dissipation and deco-
herence is crucial for advancing quantum computing, quantum sensing, and the design
of novel quantum devices that operate far from equilibrium.

Our results also contribute to the ongoing efforts to establish a unified description
of non-equilibrium processes in both classical and quantum domains. The introduction
of a Hermitian dissipation operator opens new possibilities for refining the theoretical
underpinnings of quantum thermodynamics, with potential implications for quantum
nanotechnologies. Moreover, our findings pave the way for experimental verification, as
the proposed framework can be tested in controlled quantum systems such as trapped
ions, superconducting qubits, and ultracold atomic gases. Future experimental studies
could provide valuable feedback for refining theoretical models, ultimately bridging the
gap between abstract quantum thermodynamics and its real-world implementations.

Appendix A. Multi-dimensional geometric Brownian motion

We consider a stochastic differential equation

dy⃗

dt
=

C +
m∑
j=1

Djnj (t)

 y⃗, (A.1)

where y⃗ ∈ Cn, C and Dj are arbitrary complex matrices n× n, and the real Gaussian
noises nj(t) (∀j = 1, . . . ,m) satisfy the properties E{nj(t)} = 0, and E{ni(t1)nj(t2)} =
2δijδ(t1 − t2). We need to determine the average value E{y⃗} of the vector y⃗ ∈ Cn. In
order to use the Fokker–Planck equation stated in equation (4), we need to move from
complex to real variables. To begin, we consider a simple map z⃗ =Aw⃗ : Cn → Cn, where
A is an arbitrary complex matrix n× n. If A=R+ iM , with R and M real matrices
n× n, the decomplexification procedure can be written as(

Re z⃗
Im z⃗

)
=

(
R −M
M R

)(
Re w⃗
Im w⃗

)
= Ã

(
Re w⃗
Im w⃗

)
, (A.2)

where Ã is a real matrix 2n× 2n. We verify that this operation does not substantially
change the spectrum of the matrix. We introduce the matrix U and its complex con-
jugate as

U =
1√
2

(
In iIn
iIn In

)
⇒ U * =

1√
2

(
In −iIn

−iIn In

)
, (A.3)
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where In is the identity matrix of order n. It is possible to verify that UU * = I2n, or
equivalently U−1 = U *. Now we can also verify that

UÃU * = U

(
R −M
M R

)
U * =

(
R+ iM 0

0 R− iM

)
, (A.4)

and similarly

U

(
R−λIn −M
M R−λIn

)
U * =

(
R+ iM −λIn 0

0 R− iM −λIn

)
. (A.5)

By taking the determinant of both sides, we get

det
(
Ã−λI2n

)
= det(R+ iM −λIn)det(R− iM −λIn) . (A.6)

It means that the eigenvalues of Ã are the eigenvalues of A=R+ iM combined with
those of A* =R− iM . In other words, if λ is an eigenvalue of A=R+ iM , then λ and
λ* are eigenvalues of Ã. That said, we can decomplexify equation (A.1) by introducing

x⃗=

(
Re y⃗
Im y⃗

)
∈ R2n, and we get

dx⃗

dt
=

C̃ +
m∑
j=1

D̃jnj (t)

 x⃗, (A.7)

where the operator ∼ is defined in equation (A.2). We can now use the Fokker–Planck

equation stated in equation (4), by first defining hi = C̃ikxk, and gij = D̃j,ikxk (with
sums over k). This Fokker–Planck equation assumes the form

∂W

∂t
= − ∂

∂xi

[(
C̃ikxk + 2αD̃j,ksD̃j,ikxs

)
W

]
+

∂2

∂xi ∂xj

[(
D̃k,itxtD̃k,jpxp

)
W

]
, (A.8)

and allows us to determine the evolution of E{xq} =
´
R2n xqWdx⃗. We find the time

derivative as

dE{xq}
dt

=

ˆ
R2n

xq
∂W

∂t
dx⃗=

ˆ
R2n

−xq
∂

∂xi

[(
C̃ikxk + 2αD̃j,ksD̃j,ikxs

)
W

]
dx⃗

+

ˆ
R2n

xq
∂2

∂xi ∂xj

[(
D̃k,itxtD̃k,jpxp

)
W

]
dx⃗

=

ˆ
R2n

δqi
[(
C̃ikxk + 2αD̃j,ksD̃j,ikxs

)
W

]
dx⃗= C̃qkE{xk}+ 2αD̃j,ksD̃j,qkE{xs} , (A.9)

where we used the property
´
R2n ϕ

∂ψ
∂xi

dx⃗= −
´
R2nψ

∂ϕ
∂xi

dx⃗, valid when the functions ϕ and
ψ are sufficiently regular at infinity. It means that

dE{x⃗}
dt

=

C̃ + 2α
m∑
j=1

D̃2
j

E{x⃗} . (A.10)
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Coming back to the complex notation we finally obtain the ordinary differential
equation

dE{y⃗}
dt

=

C + 2α
m∑
j=1

D2
j

E{y⃗} , (A.11)

which is the result used in the main text. A similar approach can be found in [110].

Appendix B. Solution of the Lyapunov equation

We consider a matrix equation of the form

AX +XB = C, (B.1)

where A, B, C, and X are complex matrices n× n. We can use the property given in
equation (28), and we get(

A⊗ I − I ⊗BT
)
X̂ = Ĉ ∈ Cn2

. (B.2)

This equation can be used for numerical applications when the matrix A⊗ I − I ⊗BT

(n2 × n2) is nonsingular. We search therefore for the n2 eigenvalues of the matrix A⊗
I − I ⊗BT to detect when equation (B.1) or equation (B.2) has only one solution. We

suppose that Û ∈ Cn2
is an eigenvector of A⊗ I − I ⊗BT with eigenvalue γ. We then

have (
A⊗ I − I ⊗BT

)
Û = γÛ , (B.3)

which is equivalent to

AU +UB = γU . (B.4)

Let v ∈ Cn now be an eigenvector of B with eigenvalue µ, i.e. Bv = µv. We can write

AUv+UBv = γUv⇒AUv+µUv = γUv, (B.5)

which corresponds to

A(Uv) = (γ−µ)Uv. (B.6)

This equation states that γ−µ is an eigenvalue, say λ, of A. So, we obtain that λ=
γ−µ, or γ = λ+µ. Finally, we can state that the eigenvalues γ of A⊗ I − I ⊗BT are
given by all the possible sums λ+µ of the eigenvalues of A and B. We finally proved
that the matrix problem in equation (B.1), or equation (B.2), has a single solution if
and only if all possible sums of the eigenvalues of matrices A and B are different from
zero. We consider now the differential problem

Ẋ =AX +XB, (B.7)
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where A, B, C, and X are complex matrices n× n. It can be rewritten in vectorized
form as

˙̂
X =

(
A⊗ I − I ⊗BT

)
X̂ ∈ Cn2

, (B.8)

with solution

X̂ (t) = exp
[(
A⊗ I − I ⊗BT

)
(t− t0)

]
X̂ (t0) . (B.9)

For the the property proved above, limt→∞ X̂(t) = 0 if and only if Re(λi +µj)< 0 for
all i and j, where λi and µj are the eigenvalues of A and B, respectively. Coming back
to the matrix notation, we obtain the solution in the form

X (t) = eA(t−t0)X (t0)eB(t−t0), (B.10)

which can be proved observing that

Ẋ (t) =AeA(t−t0)X (t0)eB(t−t0) + eA(t−t0)X (t0)eB(t−t0)B =AX +XB. (B.11)

From previous results, we deduce that X(t) = eA(t−t0)X(t0)e
B(t−t0) → 0, when t→∞, if

and only if Re(λi +µj)< 0 for all i and j. If we are in the condition in which X(t) → 0
when t→∞, we can write

ˆ +∞

t0

Ẋ (t)dt=A

ˆ +∞

t0

X (t)dt+

ˆ +∞

t0

X (t)dtB, (B.12)

or

−X (t0) =A

ˆ +∞

t0

X (t)dt+

ˆ +∞

t0

X (t)dtB. (B.13)

If X(t0) = C, and t0 = 0, we get

−C =A

ˆ +∞

0

eAtCeBtdt+

ˆ +∞

0

eAtCeBtdtB. (B.14)

We have therefore proved that the equation AX +XB = C has only one solution
given by

X = −
ˆ +∞

0

eAtCeBtdt, (B.15)

when Re(λi +µj)< 0 for all i and j. In particular, the equation AX +XA= C has only
one solution given by

X = −
ˆ +∞

0

eAtCeAtdt, (B.16)

when Re(λi)< 0 for all i.
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Appendix C. Alternative integral form of the friction operator

We start by equation (41) combined with equation (47), resulting in

i
2mkkBT

h̄

[
rsk, e

− H0
kBT

]
= Θske

− H0
kBT + e

− H0
kBT Θsk, (C.1)

and we define the following Heisenberg operators

r̃sk (t) = e+
iH0t
h̄ rske

− iH0t
h̄ , Θ̃sk (t) = e+

iH0t
h̄ Θske

− iH0t
h̄ , p̃sk (t) = e+

iH0t
h̄ pske

− iH0t
h̄ . (C.2)

Therefore, equation (C.1) can be rewritten as

γk

(
r̃sk− e

− H0
kBT r̃ske

+
H0
kBT

)
= Θ̃sk + e

− H0
kBT Θ̃ske

+
H0
kBT , (C.3)

where γk = i2mkkBT
h̄ . We consider now the matrix expression f(λ) = eλABe−λA, where A

and B are constant matrices and λ is a scalar parameter. We note that this quantity

is the solution of the differential problem df(λ)
dλ = [A,f(λ)], with the initial condition

f(0) =B, see equation (B.10). We can prove the following Baker-Hausdorff formula

eABe−A =B+ [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (C.4)

Indeed, we can develop f(λ) = eλABe−λA in power series as f(λ) =
∑+∞

k=0
f (k)(0)
k! λk, and we

can obtain the derivatives by starting from f(0) =B, and df(λ)
dλ = [A,f(λ)]. Iteratively,

we obtain that d2f(λ)
dλ2 = [A, [A,f(λ)]], and similar expressions for higher orders. Then,

we have f(0) =B, df(0)
dλ = [A,B], d2f(0)

dλ2 = [A, [A,B]], and so on. When we substitute
λ= 1 in the power series, we obtain equation (C.4). This result can be used in both
left and right hand sides of equation (C.3), where we can also introduce the relations
d
dt r̃sk = 1

i h̄ [r̃sk,H0], and d
dtΘ̃sk = 1

i h̄ [Θ̃sk,H0], typical of the Heisenberg picture. So doing,
the Baker-Hausdorff series become Taylor expansions, and we get

Θ̃sk (t) + Θ̃sk

(
t+ i

h̄

kBT

)
= γk

[
r̃sk (t)− r̃sk

(
t+ i

h̄

kBT

)]
, (C.5)

where we have implied an analytic continuation from real to complex times. We can
now introduce the Fourier transform of a function g(t) as F {g}(ω) =

´ +∞
−∞ g(t)e−iωtdt.

By Fourier transforming equation (C.5), we obtain

F
{

Θ̃sk

}
(ω)
(

1 + e
− ωh̄
kBT

)
= γkF {r̃sk}(ω)

(
1− e

− ωh̄
kBT

)
, (C.6)

from which we get

F
{

Θ̃sk

}
(ω) = γkF {r̃sk}(ω)

1− e
− ωh̄
kBT

1 + e
− ωh̄
kBT

= γkF {r̃sk}(ω)tanh

(
ωh̄

2kBT

)
. (C.7)
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By using the definition of γk , this equation can be rewritten as

F
{

Θ̃sk

}
(ω) = iωmF {r̃sk}(ω)

tanh
(

ω h̄
2kBT

)
ω h̄

2kBT

= F {p̃sk}(ω)
tanh

(
ω h̄

2kBT

)
ω h̄

2kBT

, (C.8)

where we used the relation d
dt r̃sk = 1

i h̄ [r̃sk,H0] = 1
m p̃sk, corresponding to

iωmF {r̃sk}(ω) = F {p̃sk}(ω) in the transformed domain. By applying the Fourier
anti-transform and moving from the Heisenberg to the Schrödinger picture, we obtain

Θsk =
1

2π
e−

iH0t
h̄

ˆ +∞

−∞
F {p̃sk}(ω)

tanh
(

ω h̄
2kBT

)
ω h̄

2kBT

eiωtdωe+
iH0t
h̄ , (C.9)

where

F {p̃sk}(ω) =

ˆ +∞

−∞
e+

iH0τ
h̄ pske

− iH0τ
h̄ e−iωτdτ . (C.10)

We can substitute equation (C.10) into equation (C.9), and we get

Θsk =
1

2π

ˆ +∞

−∞

ˆ +∞

−∞
e+

iH0ξ
h̄ pske

− iH0ξ
h̄ e−iωξ

tanh
(

ω h̄
2kBT

)
ω h̄

2kBT

dξdω, (C.11)

where we adopted the substitution ξ = τ − t. We can now change the order of integration
and exploit the following Fourier transform/anti-transform pair (see [148], equation
(612.1))

ˆ +∞

−∞

tanh(δω)

δω
e−iωξdω =

2

δ
log

[
coth

(
π|ξ|
4δ

)]
, (C.12)

1

2π

ˆ +∞

−∞

2

δ
log

[
coth

(
π|ξ|
4δ

)]
eiωξdξ =

tanh(δω)

δω
. (C.13)

We assume δ = h̄
2kBT

, and we obtain from equation (C.11), through equation (C.12), the
relation

Θsk =
2kBT

πh̄

ˆ +∞

−∞
e+

iH0ξ
h̄ pske

− iH0ξ
h̄ log

[
coth

(
πkBT |ξ|

2h̄

)]
dξ. (C.14)

We then apply the change of variable ξ = h̄
kBT

η, and we finally prove equation (51)

of the main text. It is seen using equation (C.13) that when the energy base is
adopted, we find equation (48) again. It is also interesting to note that for free
particles H0 =K0 (there is only kinetic energy), and thus it is easily obtained via
equation (C.13), with ω→ 0, that Θsk = psk. To conclude, we develop an interest-
ing series expansion for Θsk. To do this, we apply the Baker-Hausdorff formula
to equation (51). We define the symbol [H0,psk]n through the recursive relation
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[H0,psk]0 = psk, and [H0,psk]n+1 = [H0, [H0,psk]n]. Then we have [H0,psk]1 = [H0,psk],
[H0,psk]2 = [H0, [H0,psk]], [H0,psk]3 = [H0, [H0, [H0,psk]]], and so on. Hence, we get

Θsk =
2

π

+∞∑
n=0

in

n! (kBT )n
[H0,psk]n In, (C.15)

where

In =

ˆ +∞

−∞
ηn log

[
coth

(π
2
|η|
)]

dη, n⩾ 0. (C.16)

We observe that In = 0 is n is odd, and therefore we calculate the values of I2n, n⩾ 0.
We consider equation (C.13) with δ = 1/2, and we find

1

π

ˆ +∞

−∞
log

[
coth

(
π|η|

2

)]
eiωηdη =

tanh
(

1
2ω
)

ω
. (C.17)

Here, we substitute the classical power series for the exponential eiωη =
∑+∞

k=0
1
k!(iωη)k,

and the following power series for the hyperbolic tangent

tanhx=
+∞∑
n=1

22n
(
22n− 1

)
B2nx

2n−1

(2n)!
, |x|< π

2
, (C.18)

where Bk are the Bernoulli numbers. By equalizing the coefficients of the power series,
it is easily found that

I2n = 2π (−1)n
22n+2 − 1

(2n+ 1)(2n+ 2)
B2n+2, (C.19)

for n⩾ 0 (moreover, I2n−1 = 0 for n⩾ 1). By substituting this result in equation (C.15),
we get

Θsk = 4
+∞∑
n=0

1

(kBT )2n [H0,psk]2n
22n+2 − 1

(2n+ 2)!
B2n+2. (C.20)

Since B2 = 1/6, B4 = −1/30, and B6 = 1/42, we have the expansion given in
equation (52) of the main text.

Appendix D. Friction operator with degenerate energy spectra

We suppose to consider a system with a degenerate discrete spectrum, described by the
eigenvalues/eigenvectors equation H0φnk = Enφnk, where n is the principal quantum
number enumerating the distinct energy levels, and k represents the degeneration.
Thus, for each value of n there are multiple eigenfunctions identified by the k index.
Every eigenspace can be orthogonalized, and thus we can write ⟨φnk|φmh⟩ = δnmδkh.
Such a degenerate discrete basis can be used to represent any element of the Hilbert
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space of wave functions. Indeed, given the element Ψ, we can write the development
Ψ = ankφnk (we adopt the Einstein summation notation for both n and k), with coordin-
ates ank = ⟨φnk|Ψ⟩ ∈ C. If we have a linear operator τ =AΨ, where τ belongs to the
same Hilbert space as Ψ, we can write τ =Aankφnk = ankAφnk. Hence, the coordinates
of τ can be obtained as τmh = ⟨φmh|τ⟩ = ⟨φmh|Aφnk⟩ank. Each operator A can be there-
fore represented in the degenerate basis by means of the object Amh,nk = ⟨φmh|Aφnk⟩
with four indices. It is true for coordinate operators, momentum operators and also
for the density matrix. We search for the representation of the friction operator in this
degenerate case. We start by observing that the representation of the Hamiltonian oper-
ator is found as H0,mh,nk = ⟨φmh|H0φnk⟩ = ⟨φmh|Enφnk⟩ = En⟨φmh|φnk⟩ = Enδnmδkh. In

the same basis, the exponential operator e
− H0
kBT can be represented by means of the

expression

(
e
− H0
kBT

)
mh,nk

= e
− En
kBT δnmδkh. As before, to simplify the notation, we intro-

duce the quantity en = e
− En
kBT > 0. Therefore we can write that

(
e
− H0
kBT

)
mh,nk

= enδnmδkh.

Moreover, we also obtain the useful representation

(
e−ξ e

− H0
kBT

)
mh,xy

= e−ξ emδmxδhy. The

central operator in equation (50), [rst, e
− H0
kBT ], is composed of the following elements

[
rst, e

− H0
kBT

]
xy,ij

= rst,xy,ab

(
e
− H0
kBT

)
ab,ij

−
(

e
− H0
kBT

)
xy,ab

rst,ab,ij

= rst,xy,abeaδaiδbj − exδxaδybrst,ab,ij

= rst,xy,ijei− exrst,xy,ij = (ei− ex)rst,xy,ij, (D.1)

and therefore the representation of the friction operator assumes the form

Θst,mh,nk = i
2mtkBT

h̄

ˆ +∞

0

(
e−ξ e

− H0
kBT

)
mh,xy

[
rst, e

− H0
kBT

]
xy,ij

(
e−ξ e

− H0
kBT

)
ij,nk

dξ

= i
2mtkBT

h̄

ˆ +∞

0

e−ξ emδmxδhy (ei− ex)rst,xy,ije
−ξ eiδinδjkdξ

= i
2mtkBT

h̄

ˆ +∞

0

e−ξ em (en− em)rst,mh,nke
−ξ endξ

= i
2mtkBT

h̄

en− em
en + em

rst,mh,nk. (D.2)

This expression represents the friction operator on an arbitrary degenerate basis and
can be used for developing and solving the master equation in the degenerate case we
are describing. Recall that in such a case all operators will have four indices and thus
also the principal unknown given by the density matrix.
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[77] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Quantum metrology with nonclassical

states of atomic ensembles Rev. Mod. Phys. 90 035005
[78] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S 2018 Quantum-

enhanced measurements without entanglement Rev. Mod. Phys. 90 035006
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