
International Journal of Engineering Science 98 (2016) 14–35

Contents lists available at ScienceDirect

International Journal of Engineering Science

journal homepage: www.elsevier.com/locate/ijengsci

Nonlinear effective behavior of a dispersion of randomly

oriented coated ellipsoids with arbitrary temporal dispersion

Stefano Giordano∗

Joint International Laboratory LIA LEMAC/LICS, Institute of Electronics, Microelectronic and Nanotechnology (UMR CNRS 8520), ComUE Lille

Nord de France, Ecole Centrale de Lille, Avenue Poincaré, BP 60069, 59652 Villeneuve d’Ascq Cedex, France

a r t i c l e i n f o

Article history:

Received 27 May 2015

Revised 21 July 2015

Accepted 22 July 2015

Available online 12 August 2015

Keywords:

Random composite materials

Coated ellipsoidal particles

Homogenization

Hereditary constitutive equations

Temporal dispersion

a b s t r a c t

This work deals with the determination of the linear and nonlinear effective properties of an

heterogeneous material composed of a dispersion of coated ellipsoidal particles (core–shell

structure). The particles are considered randomly oriented and positioned within the ma-

trix. Moreover, all constitutive equations (matrix, cores, shells) exhibit an hereditary behavior,

leading to an arbitrary temporal dispersion. While matrix and shell are considered linear, the

particles core shows an additional third-order nonlinearity. We develop an effective medium

theory, which allows us to calculate the linear and nonlinear response in terms of the mi-

crostructure features. In particular, we can investigate the effects of the inter-phase on the

overall behavior, in combination with the randomness of the orientations and with the linear

and nonlinear hereditary phenomena. The results may find relevant applications in material

science and, more specifically, in nonlinear optics, bulk plasmonics and metamaterials.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The elaboration of effective medium theories and homogenization procedures, useful to calculate the overall properties of

heterogeneous materials, is an important topic with relevant applications in materials science and nano-technology. Indeed,

several techniques have been successfully developed to analyse the electric, magnetic, thermal and elastic response of composite

systems and complex structures (Milton, 2004; Torquato, 2002; Sahimi, 2003a; Sahimi, 2003b; Tartar, 2009; Kanaun & Levin,

2008a; Kanaun & Levin, 2008b; Sihvola, 1999).

From the historical point of view, Maxwell (1881) investigations represent the first analysis of the conductivity of a par-

ticulate systems composed of a dilute dispersion of spheres in a different matrix (see also the works of Maxwell-Garnett

(1904), van Beek (1967) and Meredith (1959)). At a later stage, the dispersions of ellipsoids were considered by Fricke

(1953) in order to model specific biological tissues. Furthermore, in order to study higher volume fractions of the dispersed

phase, the differential method (Bruggeman, 1935; Norris, 1985; Giordano, 2003; Markov, Levin, Mousatov, & Kazatchenko,

2012; Markov, Mousatov, Kazatchenko, & Markova, 2014) and the multipole technique (Günther & Heinrich, 1965; Giordano,

2005a) have been introduced. Further developments have been elaborated by Myles, Peracchio, and Chiu (2014) and Myles,

Peracchio, and Chiu (2015). Also, efficient numerical methods combined with theoretical analyses have been used by Kanaun

(2010) and Kanaun (2011) to investigate the properties of heterogeneous structures. From the point of view of the
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mechanical homogenization theories, the classical starting point is the Eshelby (1957) property describing the elastic fields gener-

ated by an ellipsoidal inhomogeneity. This result has been largely used to obtain the elastic properties of particulate composites

(Giordano, 2005b; Kachanov & Sevostianov, 2005), multi-grained materials (Kröner, 1978; Giordano, 2007) and multi-cracked

systems (Kachanov, 1994; Giordano & Colombo, 2007; Kanaun & Levin, 2009; Kanaun & Markov, 2014).

An interesting approach, based on the equivalent inclusion method, i.e. on the original Eshelby (1957) idea, has been devel-

oped in the framework of the steady-state thermal conduction (Hatta & Taya, 1985; Hatta & Taya, 1986a; Hatta & Taya, 1986b).

Moreover, the physical characterization of several complex materials has been performed by means of the so-called depolariza-

tion tensor (Weiglhofer, Lakhtakia, & Michel, 1997; Lakhtakia & Weiglhofer, 2000; Mackay, 2011), which represents the analogous

of the Eshelby tensor, applied to the electromagnetic or transport properties. More recently, a fully anisotropic analysis has been

conducted for ellipsoidal particles (Giordano & Palla, 2008) and for parallel or random dispersions of cracks in conductive systems

(Giordano & Palla, 2012). Also, anisotropic multi-layered systems have been thoroughly analysed through the homogenization

methodology and several analytical exact results have been found for the magneto-electro-elastic coupling (Kim, 2011; Giordano,

2014; Giordano et al., 2014).

The nonlinear case has been largely analysed since it concerns properties of great importance for describing real situations.

Indeed, such investigations find relevant applications in nonlinear optics (Mills, 1991; Goncharenko, Popelnukh, & Venger, 2002;

Goncharenko, 2004; Goncharenko, 2007; Boyd, 2008), in the intrinsic optical bistability (Bergman, Levy, & Stroud, 1994; Pinchuk,

2003), in the second and third harmonic generation (Hui, Cheung, & Stroud, 1998), in the recently developed nonlinear plas-

monics (Kauranen & Zayats, 2012; Furtado & Gómez-Malagón, 2014) and in metamaterials (Lapine, Shadrivov, & Kivshar, 2014).

Homogenization techniques have been therefore proposed for populations of nonlinear particles embedded in a linear matrix

(Lakhtakia & Weiglhofer, 2000; Giordano & Rocchia, 2005; Giordano & Rocchia, 2006). The mechanical characterization of non-

linear nanocomposites has been considered as well, see e.g. the works by Colombo and Giordano (2011), by Guerder, Giordano,

Bou Matar, and Vasseur (2015) and references therein.

A crucial point that should be carefully considered in any effective medium theory concerns the presence of imperfect

interfaces between the constituents of composite materials. Indeed, in many real cases of technological interest (especially

at the nanoscale), the specific properties of real interfaces play a important role in determining the effective transport prop-

erties, being e.g. at the origin of the scale effects. In related literature two interface models have been proposed and largely

used for describing two different limiting situations. The first zero thickness model is called low conducting interface and it is

based on the so-called Kapitza (1964) resistance. Conversely, the second model, called high conducting interface, concerns the

case of an interphase of very high conductivity with vanishing thickness. Several investigations have been devoted to under-

stand the response of heterogeneous materials with low conducting interfaces (Benveniste & Miloh, 1986; Benveniste, 1987;

Hasselman & Johnson, 1987; Torquato & Rintoul, 1995; Lipton & Vernescu, 1996; Nan, Birringer, Clarke, & Gleiter, 1997;

Hashin, 2001; Duan & Karihaloo, 2007; Le Quang, He, & Bonnet, 2011; Le Quang, Pham, Bonnet, & He, 2013) or with high conduct-

ing interfaces (Torquato & Rintoul, 1995; Duan & Karihaloo, 2007; Le Quang, Bonnet, & He, 2010; Le Quang et al., 2013; Lipton,

1997; Miloh & Benveniste, 1999). Recent results concern the integration of the low and high interface paradigms in more general

models based on the T and � lattice structures (Pavanello, Manca, Palla, & Giordano, 2012; Pavanello & Giordano, 2013), theories

for composites with curvilinearly anisotropic coated inclusions (Benveniste, 2013), the prediction of transport behaviors in ag-

gregates with soft interfacial layers (Xu, Chen, Chen, & Jiang, 2014) and the interphase description within the two-temperature

model (Giordano & Manca, 2014).

In this work we develop an homogenization theory able to combine three specific aspects, separately considered in several

of the above discussed investigations, namely: (i) the randomness of the orientations in a population of ellipsoidal particles

embedded in a given matrix; (ii) the presence of a coating (or finite-thickness inter-phase or shell) between the core of

each particle and the matrix (it can model all the intermediate cases between the low and the high conducting interface

models); (iii) the specific constitutive equations of matrix, shells and cores, exhibiting an hereditary behavior leading to

an arbitrary temporal dispersion; while matrix and shell are considered linear, the particles core shows an additional

third-order nonlinearity. The entire development is presented for the dielectric behavior of the involved materials (described

by their permittivities and nonlinear susceptibilities). However, it is well known that the solutions can be used to describe

similar situations concerning the magnetic behavior of the composite material and the transport properties

(diffusion, electric and thermal conduction), as well.

2. Problem statement

In this Section we introduce the structure analysed in this paper and, in particular, the constitutive equations adopted to

describe the involved materials. The geometry is represented in Fig. 1, where one can find a dispersion of randomly oriented

coated particles. The coated assemblage is characterized by two confocal ellipsoids, hence generating an internal core and a dif-

ferent external shell for each particle. Then, all particles are embedded in a third material, the matrix of the composite structure.

This heterogeneous microstructure, as discussed in the Introduction, is largely used in material science and, more specifically, in

nonlinear optics, bulk plasmonics and metamaterials. In the following, we define the constitutive equations of the three phases.

In particular, we will consider matrix and shell described by a linear isotropic response which includes a temporal dispersion,

as follows
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Fig. 1. Dispersion of randomly oriented composite particles embedded in a different homogeneous matrix.
→
D (

→
x , t) =

∫ +∞

0

g(τ )
→
E (

→
x , t − τ)dτ, (1)

where g(τ ) is a known function representing the hereditary effects between the electric field and the electric displacement

vectors (Landau, Pitaevskii, & Lifshitz, 1984; Boyd, 2008). If we are interested in the sinusoidal steady state described by

monochromatic fields, we impose
→
E (

→
x , t) = Re{→̇

E (
→
x ,ω)eiωt}, where

→̇
E (

→
x ,ω) is the phasor vector corresponding to the fre-

quency ω. Accordingly, we will have a displacement vector given by the similar expression
→
D (

→
x , t) = Re{→̇

D(
→
x ,ω)eiωt}. The

two field and displacement phasors are therefore connected through the important relationship

→̇
D(

→
x ,ω) = ε̇(ω)

→̇
E (

→
x ,ω), (2)

where ε̇(ω) represents the (causal or one-sided) Fourier transform of g(τ )

ε̇(ω) =
∫ +∞

0

g(τ )e−iωτ dτ . (3)

This form of constitutive equation will be adopted for the shell and the matrix. It means that they will be described by the

complex valued permittivities ε̇2(ω) and ε̇1(ω), respectively (corresponding to different hereditary kernels g2(τ ) and g1(τ )).

Concerning the core of the particles, we will adopt again an isotropic response with temporal dispersion but we introduce a

further nonlinear behavior (Kerr-like), as follows

→
Dc(

→
x , t) =

∫ +∞

0

f (τ )
→
E c(

→
x , t − τ)dτ +

∫ +∞

0

∫ +∞

0

ϑ(τ1, τ2) ‖ →
E c(

→
x , t − τ1)‖2→

E c(
→
x , t − τ2)dτ1dτ2, (4)

where f (τ ) describes a linear hereditary term, as previously discussed, and ϑ(τ1, τ2) represents the most general isotropic

nonlinear response, expanded up to the third order in the electric field. Since we are interested in an isotropic response,

the second order term of nonlinearity has been omitted. Moreover, always for the isotropy hypothesis, the hereditary

mechanism is based on two time lags τ1 and τ2, related to ‖ →
E c(

→
x , t − τ1)‖2

and
→
E c(

→
x , t − τ2), respectively. The complete

response described by Eq. (4) is very complicated and, in particular, characterizes the third harmonic generation, creating

a complex spectrum for the involved fields. However, we are here interested in the sinusoidal steady state at frequency

ω. Therefore, we can consider an electric field
→
E c(

→
x , t) = Re{→̇

E c(
→
x ,ω)eiωt} as input of Eq. (4). Accordingly, we may determine

the exact response for the electric displacement. In this result, we retain all terms at frequency ω and we neglect the others.

After a very long but straightforward calculation, we can prove that the phasor of the electric displacement
→̇
Dc(

→
x ,ω) at fre-

quency ω can be written as

→̇
Dc(

→
x ,ω) = ε̇3(ω)

→̇
E c(

→
x ,ω) + 1

2
χ̇(0,ω)

[→̇
E c(

→
x ,ω) · →̇

E

∗
c(

→
x ,ω)

]→̇
E c(

→
x ,ω)

+1

4
χ̇ (2ω,ω)

[→̇
E c(

→
x ,ω) · →̇

E c(
→
x ,ω)

]→̇
E

∗
c(

→
x ,ω), (5)

where

ε̇3(ω) =
∫ +∞

0

f (τ )e−iωτ dτ, (6)

similarly to Eq. (3), and

χ̇(ω1,ω2) =
∫ +∞

0

∫ +∞

0

ϑ(τ1, τ2)e−i(ω1τ1+ω2τ2)dτ1dτ2 (7)
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is the two-dimensional Fourier transform of the function ϑ(τ1, τ2). We remark that Eq. (5) is not mathematically equivalent to

Eq. (4) since it only represents the behavior of the first harmonic at frequency ω. The presence of the couple of the third order

terms [
→̇
E c(

→
x ,ω) · →̇

E

∗
c(

→
x ,ω)]

→̇
E c(

→
x ,ω) and [

→̇
E c(

→
x ,ω) · →̇

E c(
→
x ,ω)]

→̇
E

∗
c(

→
x ,ω) is a classical result for hereditary nonlinear consti-

tutive equations, well known in nonlinear optics (Landau et al., 1984; Mills, 1991; Boyd, 2008). Therefore, in terms of phasors,

we have a nonlinear relation between
→̇
E c(

→
x ,ω) and

→̇
Dc(

→
x ,ω) that can be summed up through an electric field dependent

permittivity tensor defined by

˙̂ε3,tot(ω) = ε̇3(ω) + 1

2
χ̇1(ω)

→̇
E c(

→
x ,ω) · →̇

E

∗
c(

→
x ,ω)Î + 1

4
χ̇2(ω)

→̇
E

∗
c(

→
x ,ω) ⊗ →̇

E c(
→
x ,ω), (8)

where, for convenience, we introduced χ̇1(ω) = χ̇(0, ω) and χ̇2(ω) = χ̇ (2ω,ω), representing two frequency-dependent non-

linear susceptibilities. In Eq. (8) we used the tensor product of vectors defined as follows: if Ĉ =→
A ⊗ →

B , then we have

Ti j = AiB j .

A particular case, important for many practical applications, concerns the situation where the two time lags τ1 and τ2 are

coincident in Eq. (4). It means that the ϑ(τ1, τ2) = δ(τ1 − τ2)λ(τ1) and Eq. (4) assumes the simplified form

→
Dc(

→
x , t) =

∫ +∞

0

f (τ )
→
E c(

→
x , t − τ)dτ

+
∫ +∞

0

λ(τ) ‖ →
E c(

→
x , t − τ)‖2→

E c(
→
x , t − τ)dτ . (9)

It is not difficult to prove that, in this case, we have χ̇ (0,ω) = χ̇(2ω,ω) or, equivalently, χ̇1(ω) = χ̇2(ω). Hence, we can write

the frequency-dependent permittivity tensor as follows

˙̂ε3,tot(ω) = ε̇3(ω) + χ̇1(ω)

[
1

2

→̇
E c(

→
x ,ω) · →̇

E

∗
c(

→
x ,ω)Î + 1

4

→̇
E

∗
c(

→
x ,ω) ⊗ →̇

E c(
→
x ,ω)

]
, (10)

where a single susceptibility χ̇1(ω) is able to describe the whole response at frequency ω.

It is interesting to observe that, although the dispersion behavior of the particle cores is isotropic, the equivalent permittivity

tensor in the frequency domain is effectively anisotropic, with the general form given in Eq. (8). This point explains why we will

consider an anisotropic core in the first part of the present paper.

3. The coated ellipsoid geometry

We consider here a single coated ellipsoidal particle composed of core and shell embedded in a matrix (see Fig. 2 for details).

To begin, we suppose that the three materials are linear without temporal dispersion and we assume an arbitrary anisotropy

for the core (with permittivity tensor ε̂3), while shell and matrix are considered isotropic (with scalar permittivity ε2 and ε1,

respectively). The ellipsoidal interfaces are supposed to be confocal, so that we can write the equation

3∑
i=1

x2
i

a2
s,i

+ ξ
= 1, (11)

where ξ = 0 corresponds to the interface between shell and matrix and ξ = ξc < 0 corresponds to the interface between core

and shell. Therefore, in Eq. (11) the points with ξ > 0 are external to the particle and those with ξ < 0 belong to the particle

itself. The lengths as,i represent the semiaxes of the external shell interface and ac,i =
√

a2
s,i

+ ξc the semiaxes of the core inter-

face. For the sake of definiteness, we can impose 0 < as,3 < as,2 < as,1 < +∞, so that we have the natural limitation ξ > −a2
s3

.

We suppose now to apply a uniform electric field
→
E 0 (arbitrarily oriented in the space) to the structure above described. It

means that
→
E 0 is the electric field pre-existing before the introduction of the particle into the linear isotropic and

homogeneous space ε . We are interested in determining the perturbation of the electric potential induced by the coated
1

Fig. 2. Confocal structure corresponding to the composite particle composed of a core and a shell embedded in an external matrix.
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particle. We suppose that the perturbed electric field in each region of our structure (core, shell and matrix) can be represented

by the following expressions

φc =→
C · →

x , (12)

φs =→
S · →

x + →
T · →

F (
→
x ), (13)

φm = −→
E 0· →

x +
→
Q · →

F (
→
x ), (14)

where
→
C ,

→
S ,

→
T and

→
Q are vectors to be determined by imposing the pertinent boundary conditions (see below for details). More-

over, the function
→
F (

→
x ) is defined through its components as[ →

F (
→
x )

]
k

= xk

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

) , (15)

where we used the following definition

R(t) =
√

3∏
i=1

(
a2

s,i
+ t

)
, (16)

and where ξ must be obtained as solution of Eq. (11) with fixed x1, x2 and x3 (ξ > −a2
s,3

).

Typically, for analysing the behavior of confocal isotropic geometries, the the ellipsoidal coordinates and the Lamé functions

(or ellipsoidal harmonic functions related to the separation of variables applied to the Laplace equation in elliptic coordinates)

strongly simplify the mathematical derivations (Benveniste & Miloh, 1991). However, in our case we are forced to use Cartesian

variables because of the anisotropic behavior of the particles core. Indeed, the separation of variables for the anisotropic Laplace

equations leads to more complicated differential equations, whose solutions can not be directly written in terms of standard

Lamé functions.

Now, we specify on each interface the boundary conditions imposing the continuity of the electrical potential and the con-

tinuity of the normal component of the electric displacement. These conditions represent the ideal behavior of the fields at an

interface without imperfections. We can assume such conditions since the imperfect character of the transport process between

core and matrix is taken into account through the presence of the shell, which represents a finite-thickness inter-phase mim-

icking the possible contact defects. However, it is important to remark that the thickness of the coating (shell) with confocal

ellipsoidal boundaries is not constant and it varies changing the point considered over the surface. Therefore, the introduction of

imperfect interfaces through this variable layer is an approximation, which is more acceptable when particles are nearly spherical

(Kushch, Sevostianov, & Belyaev, 2015).

Explicitly, we obtain

φc = φs i f ξ = ξc, (17)

φs = φm i f ξ = 0, (18)

∑
j

∑
i

ε3,i j

∂φc

∂xi

n j = ε2

∑
j

∂φs

∂x j

n j i f ξ = ξc, (19)

ε2

∑
j

∂φs

∂x j

n j = ε1

∑
j

∂φm

∂x j

n j i f ξ = 0, (20)

where
→
n= (n1, n2, n3) is the outward normal unit vector to each surface. By using Eqs. (12) and (13) the first boundary condition

can be rewritten as∑
k

Ckxk =
∑

k

Skxk +
∑

k

Tkxk

∫ +∞

ξc

dt

R(t)
(
a2

s,k
+ t

) . (21)

The integral in the above equality can be elaborated by using the change of variable η = t − ξc. The result is∑
k

Ckxk =
∑

k

Skxk + 2

Ac

∑
k

TkxkLck, (22)

where Ac � R(ξc) = ac1ac2ac3 and we introduced the depolarization factors of the core (Landau et al., 1984)

Lck � Ac

2

∫ +∞

0

dη√∏3
i=1

(
a2

c,i
+ η

)(
a2

c,k
+ η

) . (23)

In we take into account the arbitrariness of the point (x1, x2, x3) on the core–shell interface in Eq. (22), we obtain the explicit

form of the first boundary condition
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Ck = Sk + 2

Ac
TkLck,∀k = 1, 2, 3. (24)

The second one can be elaborated in a similar manner. By substituting Eqs. (13) and (14) in Eq. (18) we eventually obtain

∑
k

Skxk + 2

As

∑
k

TkxkLsk = −
∑

k

E0kxk + 2

As

∑
k

QkxkLsk, (25)

where, as before, we defined As � R(0) = as1as2as3 and we introduced the depolarization factors of the shell (Landau et al.,

1984)

Lsk � As

2

∫ +∞

0

dη√∏3
i=1

(
a2

s,i
+ η

)(
a2

s,k
+ η

) . (26)

From Eq. (25) we finally deduce that

Sk + 2

As
TkLsk = −E0k + 2

As
QkLsk,∀k = 1, 2, 3. (27)

The elaboration of the third boundary condition is a more complicated task because of the presence of the term ∂φs/∂x j . To begin

we easily obtain

∂φs

∂x j

= S j +
∑

k

[
Tkδk j

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

) + Tkxk

∂

∂x j

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

)
]

, (28)

and we determine the last integral as follows

∂

∂x j

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

) = d

dξ

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

) ∂ξ

∂x j

= − 1

R(ξ)
(
a2

s,k
+ ξ

) ∂ξ

∂x j

. (29)

Now, to calculate ∂ξ
∂x j

we define

f (x1, x2, x2, ξ ) =
3∑

i=1

x2
i

a2
s,i

+ ξ
− 1. (30)

Since the value of ξ as function of x1, x2 and x3 is defined by f = 0, we also have

∂ f

∂x j

+ ∂ f

∂ξ

∂ξ

∂x j

= 0 ⇒ ∂ξ

∂x j

= −
∂ f
∂x j

∂ f
∂ξ

= 2x j

a2
s, j

+ ξ

1∑
q

x2
q

(a2
s,q+ξ)

2

. (31)

Summing up, Eq. (28) becomes

∂φs

∂x j

= S j +
∑

k

⎡
⎣Tkδk j

∫ +∞

ξ

dt

R(t)
(
a2

s,k
+ t

) − 2xkx jTk

R(ξ)
(
a2

s,k
+ ξ

)(
a2

s, j
+ ξ

) 1∑
q

x2
q

(a2
s,q+ξ)

2

⎤
⎦, (32)

and the boundary condition in Eq. (19) assumes the form∑
i j

ε3,i jCin j = ε2

∑
j

S jn j

+ε2

∑
k j

⎡
⎣Tkδk jn j

∫ +∞

ξc

dt

R(t)
(
a2

s,k
+ t

) − 2xkx jTkn j

R(ξc)
(
a2

s,k
+ ξc

)(
a2

s, j
+ ξc

) 1∑
q

x2
q

(a2
s,q+ξc)

2

⎤
⎦

= ε2

∑
j

S jn j + ε2

∑
j

Tjn j

∫ +∞

ξc

dt

R(t)
(
a2

s,k
+ t

) − ε2

∑
k j

2xkx jTkn j

R(ξc)a2
c,k

a2
c, j

1∑
q

x2
q

a4
c,q

, (33)

where we used the definition a2
c,k

= a2
s,k

+ ξc. In the last term we consider the following theorem concerning the outward normal

unit vector to an ellipsoid (in this case the core–shell interface), which is proved in Appendix A

nk = xk

a2
c,k

∑
j

x jn j

a2
c, j

/
∑

q

x2
q

a4
c,q

(∀ k = 1, 2, 3), (34)
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and, we therefore obtain from Eq. (19)∑
i j

ε3,i jCin j = ε2

∑
j

S jn j + 2

Ac
ε2

∑
j

TjLc jn j − 2

Ac
ε2

∑
k

Tknk, (35)

or, equivalently, for the arbitrariness of
→
n ,∑

i

ε3,i jCi = ε2S j + 2

Ac
ε2TjLc j − 2

Ac
ε2Tj . (36)

We can similarly elaborate the fourth boundary condition. Following the previous procedure, Eq. (20) can be rewritten in the

following form

ε2

∑
j

⎡
⎣S j +

∑
k

Tkδk j

2

As
Lsk −

∑
k

2xkx jTk

R(0)a2
s,k

a2
s, j

1∑
q

x2
q

a4
s,q

⎤
⎦nj = ε1

∑
j

⎡
⎣−E0 j +

∑
k

Qkδk j

2

As
Lsk −

∑
k

2xkx jQk

R(0)a2
s,k

a2
s, j

1∑
q

x2
q

a4
s,q

⎤
⎦nj . (37)

Then we can use the theorem stated in Appendix A for the shell-matrix ellipsoidal interface

nk = xk

a2
s,k

∑
j

x jn j

a2
s, j

/∑
q

x2
q

a4
s,q

(∀ k = 1, 2, 3), (38)

in both the left and right hand sides of Eq. (37). The result has been eventually found as

ε2Sk + ε2
2

As
TkLsk − ε2

2

As
Tk = −ε1E0kSk + ε1

2

As
QkLsk − ε1

2

As
Qk, (39)

concluding the analysis of the boundary conditions. To sum up, we can rewrite the four boundary conditions obtained in Eqs.

(24), (27), (36) and (39) in vector form as follows

→
C=→

S + 2

Ac
L̂c

→
T , (40)

→
S + 2

As
L̂s

→
T = −→

E 0 + 2

As
L̂s

→
Q, (41)

ε̂3

→
C= ε2

[→
S + 2

Ac

(
L̂c − Î

) →
T

]
, (42)

ε2

[→
S + 2

As

(
L̂s − Î

) →
T

]
= ε1

[
−→

E 0 + 2

As

(
L̂s − Î

) →
Q

]
, (43)

where we defined L̂c = diag(Lc1, Lc2, Lc3) and L̂s = diag(Ls1, Ls2, Ls3). After a very long but straightforward algebraic development,

we can obtain the solution of Eqs. (40)–(43) as follows

→
T = −1

2
ε1AsAc

(
ε̂3 − ε2 Î

)
D̂−1

→
E 0, (44)

→
S= ε1As

[
ε2 Î + L̂c

(
ε̂3 − ε2 Î

)]
D̂−1

→
E 0, (45)

→
C= ε1ε2AsD̂

−1
→
E 0, (46)

→
Q= 1

2
AsN̂D̂−1

→
E 0, (47)

where, to compact the final expressions, we defined the tensors N̂ and D̂

N̂ = Ac

[
L̂s(ε2 − ε1) − ε2 Î

](
ε̂3 − ε2 Î

)
− As(ε2 − ε1)

[
ε2 Î + L̂c

(
ε̂3 − ε2 Î

)]
,

(48)

D̂ = Ac(ε2 − ε1)L̂s

(
L̂s − Î

)(
ε̂3 − ε2 Î

)
− As

[
ε1 Î + L̂s(ε2 − ε1)

][
ε2 Î + L̂c

(
ε̂3 − ε2 Î

)]
.

(49)

This completes the static analysis of the behavior of a coated particle with confocal ellipsoidal interfaces and anisotropic

core. It is noteworthy that, in spite of the complex analytical procedure above discussed, we obtained simple results in alge-

braic form, merely depending on the depolarization factors of both ellipsoidal interfaces. We underline that the electric field

induced within the core, assuming the value − →
C as deduced from Eq. (12), is always uniform in spite of the presence of the

shell. As a particular case, we can take into consideration a particle without shell (homogeneous particle). To do this, we can
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impose L̂c = L̂s and Ac = As (the core coincide with the whole particle and the shell disappears), by getting the following

results

→
C hom = −ε1

[
ε1 Î + L̂s

(
ε̂3 − ε1 Î

)]−1→
E 0, (50)

→
Qhom = 1

2
As

(
ε̂3 − ε1 Î

)[
ε1 Î + L̂s

(
ε̂3 − ε1 Î

)]−1→
E 0. (51)

While −→
C hom represents the internal field within the homogeneous particle,

→
Q hom describes the behavior of the external field

in the same case. We remark that, performing the limit L̂c → L̂s and Ac → As we obtained, as expected, results not depending

on ε2, representing the permittivity of the shell, certainly not relevant for the homogeneous particle (with response ε̂3). Results

given in Eqs. (50) and (51) are in perfect agreement with previous literature (Fricke, 1953; Landau et al., 1984; Giordano, 2003;

Giordano, Palla, & Colombo, 2008). In this context, Eq. (51) is useful to determine an effective permittivity tensor ε̂e f f pertinent to

the composite (core–shell) particle. As a matter of fact, we can define an homogeneous equivalent particle by imposing exactly

the same external electric potential generated by the effective particle and the composite one. More explicitly, ε̂e f f must be

calculated by imposing that
→
Q hom =

→
Q where in

→
Q hom we substitute ε̂3 = ε̂e f f and

→
Q is given by Eq. (47). More explicitly, ε̂e f f is

solution of the operator equation (ε̂e f f − ε1 Î)[ε1 Î + L̂s(ε̂e f f − ε1 Î)]
−1 = N̂D̂−1, which allows us to obtain

ε̂e f f = ε1

[
Î − N̂D̂−1L̂s

]−1[
Î − N̂D̂−1

(
L̂s − Î

)]
= ε1 Î + ε1N̂

[
D̂ − L̂sN̂

]−1
, (52)

where N̂ and D̂ are defined in Eqs. (48) and (49), respectively. In order to prove the coherence of this result, we must verify

that ε̂e f f is independent of ε1, a parameter pertinent to the matrix. Indeed, we will obtain ε̂e f f as function of c = Ac/As (volume

fraction of the core within the shell), ε2 and ε̂3. To do this, we can substitute Eqs. (48) and (49) in Eq. (52) and, after a long

calculation, we obtain ε̂e f f in explicit form as follows

ε̂e f f = ε2 Î − cε2

(
ε̂3 − ε2 Î

)[(
cL̂s − L̂c

)(
ε̂3 − ε2 Î

)
− ε2 Î

]−1
. (53)

We remark that for c = 0 we obtain ε̂e f f = ε2 Î and for c = 1 (and L̂s = L̂c) we have ε̂e f f = ε̂3, as expected.

For the following purposes, we need to know the average value of the electric field within the shell region. This point will be

useful to perform the averaging of the electric field in a more complex structure with a population of particles. To approach this

problem we firstly prove the following property: the average field inside the composite particle composed of a core ε̂3 in a shell

ε2 is equal to the uniform field within the effective particle with permittivity tensor ε̂e f f . For the effective homogeneous particle

we can write

〈→
E 〉�2∪�3

= 1

μ(�2 ∪ �3)

∫
�2∪�3

→
E (

→
x )d

→
x

= − 1

μ(�2 ∪ �3)

∫
�2∪�3

∂φ(
→
x )

∂
→
x

d
→
x= − 1

μ(�2 ∪ �3)

∫
ξ=0

φ(
→
x )|ξ=0

→
n dS, (54)

where we have used the divergence theorem. Therefore, the internal average quantity is determined by the values of the electric

potential φ(
→
x ) over the particle surface (ξ = 0), which is a continuous quantity by definition. Please note that, in this case, the

region �2 ∪ �3 represents a homogeneous dielectric. Similarly, for the composite particle, we have

〈→
E 〉�2∪�3

= − 1

μ(�2 ∪ �3)

[∫
�2

∂φ(
→
x )

∂
→
x

d
→
x +

∫
�3

∂φ(
→
x )

∂
→
x

d
→
x

]

= − 1

μ(�2 ∪ �3)

[∫
ξ=0

φ(
→
x )|ξ=0

→
n dS −

∫
ξ=ξc

φ(
→
x )|ξ=ξ+

c

→
n dS +

∫
ξ=ξc

φ(
→
x )|ξ=ξ−

c

→
n dS

]
. (55)

Now, the continuity of the electric potential affirms that φ(
→
x )|ξ=ξ+

c
= φ(

→
x )|ξ=ξ−

c
and, therefore, Eqs. (54) and (55) assume

the same value. Finally, the average electric field is the same in the effective homogeneous and composite particles since the

external field is imposed equal in both cases. This equivalence property can be used to determine the average value of

the electric field in the shell region 〈→
E s〉�2

. Indeed, the equivalence property can be explicitly stated as

−→
C hom = −c

→
C +(1 − c)〈→

E s〉�2
where in

→
C hom we consider ε̂3 = ε̂e f f and where c = Ac/As is the volume fraction of the core in

the shell. Of course, in previous expression, −→
C hom represent the average (uniform) value of the electric field in the effective

particle and −c
→
C +(1 − c)〈→

E s〉�2
the average electric field in the composite one. Anyway, this equality can be rewritten as

follows by taking into account Eqs. (46) and (50)
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ε1

[
ε1 Î + L̂s

(
ε̂e f f − ε1 Î

)]−1→
E 0 = −cε1ε2AsD̂

−1
→
E 0 + (1 − c)〈→

E s〉�2
, (56)

where ε̂e f f is given in Eq. (52). This equation can be solved with respect to 〈→
E s〉�2

, by eventually obtaining

〈→
E s〉�2

= −ε1As

{[
L̂c + Ac

Ac − As

(
L̂s − L̂c

)](
ε̂3 − ε2 Î

)
+ ε2 Î

}
D̂−1

→
E 0, (57)

or, equivalently,

〈→
E s〉�2

= −ε1As

{[
L̂c + c

1 − c

(
L̂c − L̂s

)](
ε̂3 − ε2 Î

)
+ ε2 Î

}
D̂−1

→
E 0. (58)

To conclude, this is the exact expression giving the average electric field within the shell region. It is important to remark

that we obtain 〈→
E s〉�2

= − →
S (by comparing Eqs. (45) and (58)), i.e. the average value in the shell corresponds only to the uni-

form contribution in Eq. (13), if and only if L̂c = L̂s, a condition satisfied only for spherical or cylindrical geometries (or in the

trivial case without shell, c = 0). In fact, the non-uniform term in Eq. (13), controlled by the vector coefficient
→
T , has a zero

contribution for spherical or cylindrical geometries since it corresponds to the classical dipolar behavior; on the other hand,

for an arbitrary ellipsoidal geometry this dipolar property is not verified and we have 〈→
E s〉�2

�= − →
S , being the deviation

between these quantities controlled by the difference L̂s − L̂c and by the volume fraction c.

4. Generalization to constitutive equations with temporal dispersion

The results of previous Section can be generalized to consider more complex constitutive equations, notably describing

linear and nonlinear temporal dispersion. As discussed in Section 2, shells and matrix are described by the complex valued

permittivities ε̇2(ω) and ε̇1(ω), respectively. Because of the linearity of the system, all results of previous Section are still

valid provided that each quantity is substituted by its phasor. Moreover, the core of the particles is described by the field

dependent permittivity tensor given in Eq. (8) of Section 2. The consideration of this response is more complicated and

the corresponding problem can be solved as follows. In spite of the nonlinear character of Eq. (8), we can affirm that the

uniformity of the electric field inside the core is confirmed also in this case (Giordano & Rocchia, 2005). The equation for

obtaining this uniform internal field, see Eq. (46), remains unaltered, even though it assumes an implicit form. Indeed, by

substituting the constitutive equation
→̇
Dc(

→
x ,ω) = ˙̂ε3,tot(ω)

→̇
E c(

→
x ,ω) in the relation giving the internal electric field (inside

the core, see Eq. (46)), i.e.

˙̂D
→̇
E c = −ε̇1ε̇2As

→̇
E 0, (59)

we obtain

˙̂α
→̇
E c + 1

2
χ̇1

˙̂β
(→̇

E c · →̇
E

∗
c

)→̇
E c + 1

4
χ̇2

˙̂β
(→̇

E c · →̇
E c

)→̇
E

∗
c = →̇

E 0, (60)

where

˙̂α = − c

ε̇1ε̇2
(ε̇2 − ε̇1)L̂s

(
L̂s − Î

)(
ε̇3 − ε̇2 Î

)
+ 1

ε̇1ε̇2

[
ε̇1 Î + L̂s(ε̇2 − ε̇1)

][
ε̇2 Î + L̂c

(
ε̇3 − ε̇2 Î

)]
,

(61)

˙̂β = − c

ε̇1ε̇2
(ε̇2 − ε̇1)L̂s

(
L̂s − Î

)
+ 1

ε̇1ε̇2

[
ε̇1 Î + L̂s(ε̇2 − ε̇1)

]
L̂c, (62)

are diagonal operators with components α̇k and β̇k, respectively. Here, as before, c = Ac/As represents the volume fraction of the

core within the shell. If a solution of Eq. (60) exists, due to self-consistency, all the boundary conditions are fulfilled and the

problem is completely analogous to its linear counterpart, treated in the previous Section. In its explicit form, Eq. (60) can be

rewritten as

α̇kĖck + 1

2
χ̇1β̇kĖck

∑
i

ĖciĖ
∗
ci + 1

4
χ̇2β̇kĖ∗

ck

∑
i

Ė2
ci = Ė0k. (63)

By considering a possible solution of the form Ėck = ȧkĖ0k + ḃkĖ3
0k

, it is not difficult to obtain the expression of Ėck in terms of Ė0k,

expanded up to the third order

Ėck = 1

α̇k

Ė0k − 1

2
χ̇1

β̇k

α̇2
k

Ė0k

∑
i

Ė0iĖ
∗
0i

α̇iα̇
∗
i

− 1

4
χ̇2

β̇k

α̇kα̇
∗
k

Ė∗
0k

∑
i

Ė2
0i

α̇2
i

. (64)
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This result represents the electric field phasor inside the nonlinear core of a composite particle embedded in a given ma-

trix. To sum up we remember that the three phases core, shell and matrix are described by the complex frequency dependent

permittivities ε̇3, ε̇2 and ε̇1, respectively; moreover, the core exhibits a nonlinear behavior modulated by the complex nonlin-

ear susceptibilities χ̇1(ω) = χ̇(0, ω) and χ̇2(ω) = χ̇(2ω,ω). The final result stated in Eq. (64) is completly controlled by the

quantities α̇k and β̇k, defined in Eqs. (61) and (62).

Of course, the presence of the above discussed nonlinear behavior for the core alters the average value of the electric field

within the shell region. However, by considering Eqs. (57) and (59) we can rewrite the average value of the electric field over the

shell region in terms of the value of the electric field within the core

〈→̇
E s〉�2

= 1

ε̇2

{[
L̂c + Ac

Ac − As

(
L̂s − L̂c

)](
˙̂ε3,tot − ε̇2 Î

)
+ ε̇2 Î

}
→̇
E c

= 1

ε̇2

[
L̂c + Ac

Ac − As

(
L̂s − L̂c

)][
˙̂ε3

→̇
E c + 1

2
χ̇1

(
→̇
E c · →̇

E

∗
c

)
→̇
E c + 1

4
χ̇2

(
→̇
E c · →̇

E c

)
→̇
E

∗
c

]

+
{

Î −
[

L̂c + Ac

Ac − As

(
L̂s − L̂c

)]}→̇
E c. (65)

Of course, in Eq. (57) we have introduced the complete expression for ˙̂ε3,tot given in Eq. (8) in place of the standard

tensor ε̂3. Now, we can rewrite Eq. (65) component-by-component and we may exploit the result
1
2 χ̇1Ėck

∑
i ĖciĖ

∗
ci

+ 1
4 χ̇2Ė∗

ck

∑
i Ė2

ci
= (Ė0k − α̇kĖck)/β̇k, coming directly from Eq. (63). The result of this procedure can be eventually

obtained as

〈Ėsk〉�2
= 1

ε̇2

[
Lck + Ac

Ac − As
(Lsk − Lck)

][
ε̇3Ėck + Ė0k − α̇kĖck

β̇k

]

+
{

1 −
[

Lck + Ac

Ac − As
(Lsk − Lck)

]}
Ėck

= ṫkĖck + ṡk

ε̇2β̇k

Ė0k (66)

where

ṡk = Lck + Ac

Ac − As
(Lsk − Lck) = Lck + c

1 − c
(Lck − Lsk) (67)

ṫk = 1 − ṡk + ε̇3

ε̇2

ṡk − ṡkα̇k

ε̇2β̇k

(68)

This completes the determination of the electric field in the nonlinear core and in the shell of the composite particle.

5. Averaging procedure over the orientations

In previous Section we have obtained the results for Ėck and 〈Ėsk〉�2
, representing the electric fields in the core and in the

shell (averaged), respectively, for a composite particle having the principal axes aligned with the coordinate system. These

results give the final quantities in terms of the remotely applied electric field, arbitrarily oriented in the space. Now, we

maintain fixed the vector corresponding to the applied field and we consider the particle uniformly randomly oriented in the

space (see Fig. 3 for details). So doing, we are interested in determining the average value of the quantities Ėck and 〈Ėsk〉�2

over the Euler angles ϑ,ψ and ϕ, controlling the orientation of the particle in the space. In the following, these averaged

fields will be referred to as 〈Ėck〉ϑ,ψ,ϕand 〈〈Ėsk〉�2
〉
ϑ,ψ,ϕ

. Of course, we have obtained in Eqs. (64) and (66) a non isotropic

relationship giving Ėck and 〈Ėsk〉�2
as function of Ė0k, because of the ellipsoidal (geometrically non isotropic) shape of the

particle. On the contrary, after having performed the averaging we will obtain an isotropic relation between 〈Ėck〉ϑ,ψ,ϕ or

〈〈Ėsk〉�2
〉
ϑ,ψ,ϕ

and the applied field Ė0k since the angles averaging smears out the shape anisotropy. The final isotropic relation

will therefore assume a form similar to that of Eq. (5).

To begin the calculation, we note that in Eq. (66) for 〈Ėsk〉�2
there is a first term Ėckṫk. Therefore, we firstly determine the

average value of this quantity, observing that, for obtaining the average value of Ėck, it is sufficient to substitute ṫk = 1 in the

final result. Moreover, we will analyse the second term in Eq. (66) to complete the calculation. Hence, we consider the following

vector components
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Fig. 3. Rotation of the confocal core–shell structure, representing the composite particle.
v̇k = Ėckṫk = ṫk

α̇k

Ė0k − 1

2
χ̇1

β̇kṫk

α̇2
k

Ė0k

∑
i

Ė0iĖ
∗
0i

α̇iα̇
∗
i

− 1

4
χ̇2

β̇kṫk

α̇kα̇
∗
k

Ė∗
0k

∑
i

Ė2
0i

α̇2
i

, (69)

and we try to calculate the average value over the orientation. To do this, we define the principal directions of the rotated particle

as
→
n 1,

→
n 2 and

→
n 3, useful to write the average value in the following form

〈→̇
v〉ϑ,ψ,ϕ =

〈∑
k

v̇k

→
nk

〉
ϑ,ψ,ϕ

=
〈∑

k

⎡
⎣ ṫk

α̇k

→̇
E 0 · →

nk − 1

2
χ̇1

β̇kṫk

α̇2
k

→̇
E 0 · →

nk

∑
i

(→̇
E 0 · →

ni

)(→̇
E

∗
0 · →

ni

)
α̇iα̇

∗
i

− 1

4
χ̇2

β̇kṫk

α̇kα̇
∗
k

→̇
E

∗
0 · →

nk

∑
i

(→̇
E 0 · →

ni

)2

α̇2
i

⎤
⎦→

nk

〉
ϑ,ψ,ϕ

,

(70)

where we exploited the standard properties
→̇
v = ∑

k v̇k

→
n k and Ė0k = →̇

E 0 · →
n k. By further expanding Eq. (70) (or, more precisely,

its s-th component), we easily obtain

〈v̇s〉ϑ,ψ,ϕ =
∑

k j

ṫk

α̇k

Ė0 j〈nk jnks〉ϑ,ψ,ϕ
− 1

2
χ̇1

∑
iklqp

β̇kṫk

α̇2
k

Ė0l Ė0qĖ∗
0p

α̇iα̇
∗
i

〈nklniqnipnks〉ϑ,ψ,ϕ

−1

4
χ̇2

∑
iklqp

β̇kṫk

α̇kα̇
∗
k

Ė∗
0l

Ė0qĖ0p

α̇2
i

〈nklniqnipnks〉ϑ,ψ,ϕ
, (71)

where nk j represents the jth component of the unit vector
→
n k. Now, the problem is solved if we are able to calculate the average

value of the combinations nk jnks and nklniqnipnks over the random orientations of the orthogonal unit vectors
→
n 1,

→
n 2 and

→
n 3.

Performing the integration over the unit sphere, by means of standard spherical coordinates, we obtain, after some long but

straightforward computations, the results

〈nk jnks〉ϑ,ψ,ϕ
= 1

3
δ js, (72)

〈nklniqnipnks〉ϑ,ψ,ϕ
= 1

15

(
2δlsδqp − 1

2
δqlδps − 1

2
δqsδpl

)
− 1

15
δik

(
δlsδqp − 3

2
δqlδps − 3

2
δqsδpl

)
, (73)

We remark that these expressions are in perfect agreement with previous literature (Giordano & Rocchia, 2005). It is also interest-

ing to note that such a rotational averaging has been thoroughly examined to calculate the macroscopic response of isotropic and

anisotropic samples from microscopic parameters, an idea perfectly coherent with the present investigation (Andrews, 2004).

Anyway, by substituting Eqs. (72) and (73) in Eq. (71), we obtain

〈v̇s〉ϑ,ψ,ϕ = 1

3

∑
k j

ṫk

α̇k

Ė0 jδ js

− 1

2
χ̇1

∑
iklqp

β̇kṫk

α̇2
k

Ė0l Ė0qĖ∗
0p

α̇iα̇
∗
i

1

15

(
2δlsδqp − 1

2
δqlδps − 1

2
δqsδpl

)

+ 1

2
χ̇1

∑
iklqp

β̇kṫk

α̇2
k

Ė0l Ė0qĖ∗
0p

α̇iα̇
∗
i

1

15
δik

(
δlsδqp − 3

2
δqlδps − 3

2
δqsδpl

)

− 1

4
χ̇2

∑
iklqp

β̇kṫk

α̇kα̇
∗
k

Ė∗
0l

Ė0qĖ0p

α̇2
i

1

15

(
2δlsδqp − 1

2
δqlδps − 1

2
δqsδpl

)

+ 1

4
χ̇2

∑
iklqp

β̇kṫk

α̇kα̇
∗
k

Ė∗
0l

Ė0qĖ0p

α̇2
i

1

15
δik

(
δlsδqp − 3

2
δqlδps − 3

2
δqsδpl

)
, (74)

and, by saturating all the sums over repeated indices, we finally obtain
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〈v̇s〉ϑ,ψ,ϕ = Mt Ė0s (75)

−1

2
χ̇1Ė0s

∑
q

Ė0qĖ∗
0q

(
9

10
Xt + 1

10
Zt

)
− 3

20
χ̇1Ė∗

0s

∑
q

Ė0qĖ0q(Zt − Xt) (75)

− 3

20
χ̇2Ė0s

∑
q

Ė0qĖ∗
0q(Zt − Yt) − 1

4
χ̇2Ė∗

0s

∑
q

Ė0qĖ0q

(
6

5
Yt − 1

5
Zt

)
(75)

= Mt Ė0s − At Ė0s

∑
q

Ė0qĖ∗
0q − Bt Ė∗

0s

∑
q

Ė0qĖ0q, (75)

where we defined

Mt = 1

3

∑
k

ṫk

α̇k

, (76)

Xt =
(

1

3

∑
k

β̇kṫk

α̇2
k

)(
1

3

∑
i

1

α̇iα̇
∗
i

)
, (77)

Yt =
(

1

3

∑
k

β̇kṫk

α̇kα̇
∗
k

)(
1

3

∑
i

1

α̇2
i

)
, (78)

Zt = 1

3

∑
k

β̇kṫk

α̇3
k
α̇∗

k

, (79)

At = 1

2
χ̇1

(
9

10
Xt + 1

10
Zt

)
− 3

20
χ̇2(Yt − Zt), (80)

Bt = 1

4
χ̇2

(
6

5
Yt − 1

5
Zt

)
− 3

20
χ̇1(Xt − Zt). (81)

In order to complete the determination of the average value of 〈Ėsk〉�2
we have to consider the second term in Eq. (66), which

corresponds to ṡk/(ε̇2β̇k)Ė0k. Its average value (we consider the s-th component) over the orientations can be simply determined

as follows〈∑
k

ṡk

ε̇2β̇k

(
→̇
E 0 · →

nk

)
nks

〉
ϑ,ψ,ϕ

=
∑
k,i

ṡk

ε̇2β̇k

Ė0i〈nkinks〉ϑ,ψ,ϕ = 1

3

∑
k

ṡk

ε̇2β̇k

Ė0s. (82)

By adding Eqs. (75) and (82) we obtain the first important result giving the average value of the electric field within the shell

region〈〈
Ėsk

〉
�2

〉
ϑ,ψ,ϕ

= � Ė0s − At Ė0k

∑
q

Ė0qĖ∗
0q − Bt Ė∗

0k

∑
q

Ė0qĖ0q, (83)

where we introduced the parameter � as follows

� = 1

3ε̇2

∑
k

ṡk

β̇k

+ 1

3

∑
k

ṫk

α̇k

. (84)

To conclude, we observe that by letting ṫk = 1 in Eq. (75), we directly obtain the angular averaged value of Ėck inside the particle

core

〈Ėck〉ϑ,ψ,ϕ = MĖ0s − AĖ0k

∑
q

Ė0qĖ∗
0q − BĖ∗

0k

∑
q

Ė0qĖ0q, (85)

where the following parameters have been used

M = 1

3

∑
k

1

α̇k

, (86)

X =
(

1

3

∑
k

β̇k

α̇2
k

)(
1

3

∑
i

1

α̇iα̇
∗
i

)
, (87)

Y =
(

1

3

∑
k

β̇k

α̇kα̇
∗
k

)(
1

3

∑
i

1

α̇2
i

)
, (88)

Z = 1

3

∑
k

β̇k

α̇3
k
α̇∗

k

, (89)
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A = 1

2
χ̇1

(
9

10
X + 1

10
Z
)

− 3

20
χ̇2(Y − Z), (90)

B = 1

4
χ̇2

(
6

5
Y − 1

5
Z
)

− 3

20
χ̇1(X − Z), (91)

and they can be simply obtained by letting ṫk = 1 in Eqs. (76)–(81). We finally remark that Eqs. (83) and (85) represent isotropic

relationships between the remotely applied field and the internal average ones. Indeed, they exhibit the same form of the

isotropic constitutive equation stated in Eq. (5).

6. Effective medium theory for a population of randomly oriented particles

We consider in this Section a population of composite particles randomly oriented and dispersed in the matrix. As before, we

suppose to deal with nonlinear cores and linear materials for shells and matrix. The structure is represented in Fig. 1, where one

can find the definition of the regions �m (matrix), �s (ensemble of shells) and �c (ensemble of cores). Moreover, we consider

the whole composite structure contained in the region �, representing the body we are going to homogenize. Because of the

random orientations of the particle, we expect to find an overall isotropic response for the entire composite material. It means

that it will be described by an isotropic constitutive equation, having the form given in Eq. (5), where we will introduce an

effective complex permittivity ε̇e f f (ω) and by two nonlinear susceptibilities χ̇1,e f f (ω) and χ̇2,e f f (ω). In order to develop the

effective medium theory we need to determine the average value of the displacement vector and of the electric field over the

whole region �. We begin by evaluating the average value of the vector
→̇
D, as follows

〈→̇
D〉 = 1

μ(�)

∫
�

→̇
Ddv = 1

μ(�)

∫
�m

→̇
Ddv + 1

μ(�)

∫
�s

→̇
Ddv + 1

μ(�)

∫
�c

→̇
Ddv

= 1

μ(�)

∫
�m

→̇
Ddv + 1

μ(�)

∫
�s

→̇
Ddv + 1

μ(�)

∫
�c

→̇
Ddv

+ ε̇1

μ(�)

∫
�s

→̇
E dv − ε̇1

μ(�)

∫
�s

→̇
E dv + ε̇1

μ(�)

∫
�c

→̇
E dv − ε̇1

μ(�)

∫
�c

→̇
E dv

= 1

μ(�)
ε̇1

∫
�

→̇
E dv + 1

μ(�)
(ε̇2 − ε̇1)

∫
�s

→̇
E dv + 1

μ(�)

∫
�c

(→̇
D − ε̇1

→̇
E
)
dv

= ε̇1〈→̇
E 〉 + φ(1 − c)(ε̇2 − ε̇1)〈→̇

E s〉�s
+ φc

〈→̇
Dc − ε̇1

→̇
E c

〉
�c

∼= ε̇1〈→̇
E 〉 + φ(1 − c)(ε̇2 − ε̇1)

〈〈→̇
E s

〉
�2

〉
ϑ,ψ,ϕ

+ φc
〈→̇
Dc − ε̇1

→̇
E c

〉
ϑ,ψ,ϕ

, (92)

where we have considered the volume fraction c of the core within each composite particle and the volume fraction φ of the

particles in the entire volume (see definitions in Fig. 1). They represent the stoichiometric parameters of the heterogeneous

structure. In previous expression, the symbol μ(�) represents the measure of the region �. The second to last expression is an

exact result giving the average value of
→̇
D in terms of 〈→̇

E 〉, 〈→̇
E s〉�s

and 〈→̇
Dc − ε̇1

→̇
E c〉�c

. From now on, we introduce the hypothesis

to work with a dilute dispersion of particle, i.e. φ � 1. Conversely, the theory is valid for any value of the volume fraction c,

describing the composition of the particles. So doing, each particle can be considered as isolated in the space and subjected to

a remotely applied field, as discussed in previous Sections. Hence, the value 〈→̇
E s〉�s

can be approximated with 〈〈→̇
E s〉�2

〉
ϑ,ψ,ϕ

,

calculated in the previous Section for an isolated particle, see Eq. (83). Similarly, the last term 〈→̇
Dc − ε̇1

→̇
E c〉�c

can be approxi-

mately evaluated by considering a single particle in the matrix. This approximation will be referred to as 〈→̇
Dc − ε̇1

→̇
E c〉ϑ,ψ,ϕ and

this quantity must be evaluated in the following. Anyway, these approximations lead to the final result given in Eq. (92).

We can follow a similar procedure for the average value of the electric field. We obtain the following result

〈→̇
E 〉 = (1 − φ)〈→̇

E m〉�m
+ φ(1 − c)〈→̇

E s〉�s
+ φc〈→̇

E c〉�c

∼= (1 − φ)
→̇
E 0 + φ(1 − c)〈〈→̇

E s〉�2
〉
ϑ,ψ,ϕ

+ φc〈→̇
E c〉ϑ,ψ,ϕ . (93)

While the first expression is exact and simply corresponds to the average value definition, the second one contains the approx-

imations imposed by the hypothesis of low concentration of particles. Importantly, the terms 〈〈→̇
E s〉�2

〉
ϑ,ψ,ϕ

and 〈→̇
E c〉ϑ,ψ,ϕ are

available in previous Section, see Eqs. (83) and (85).
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In order to obtain an explicit form of these average balance equations, we need to evaluate the term 〈→̇
Dc − ε̇1

→̇
E c〉ϑ,ψ,ϕ , which

is not available from previous calculations. We firstly observe that

Ḋck − ε̇1Ėck = ε̇3Ėck + 1

2
χ̇1Ėck

∑
i

ĖciĖ
∗
ci + 1

4
χ̇2Ė∗

ck

∑
i

Ė2
ci − ε̇1Ėck

= ε̇3Ėck + Ė0k − α̇kĖck

β̇k

− ε̇1Ėck

= 1

β̇k

Ė0k +
(

ε̇3 − ε̇1 − α̇k

β̇k

)
Ėck = 1

β̇k

Ė0k + ˙rkĖck, (94)

where we exploited the result 1
2 χ̇1Ėck

∑
i ĖciĖ

∗
ci

+ 1
4 χ̇2Ė∗

ck

∑
i Ė2

ci
= (Ė0k − α̇kĖck)/β̇k, coming directly from Eq. (63), and we de-

fined

˙rk = ε̇3 − ε̇1 − α̇k

β̇k

. (95)

Summing up, we can apply the above discussed averaging procedure over the orientations and we eventually obtain

〈Ḋck − ε̇1Ėck〉ϑ,ψ,ϕ = M(ε̇3 − ε̇1)Ė0k − ArĖ0k

∑
q

Ė0qĖ∗
0q − BrĖ

∗
0k

∑
q

Ė0qĖ0q, (96)

where M is defined in Eq. (86) and the other parameters follow

Xr =
(

1

3

∑
k

β̇kṙk

α̇2
k

)(
1

3

∑
i

1

α̇iα̇
∗
i

)
, (97)

Yr =
(

1

3

∑
k

β̇kṙk

α̇kα̇
∗
k

)(
1

3

∑
i

1

α̇2
i

)
, (98)

Zr = 1

3

∑
k

β̇kṙk

α̇3
k
α̇∗

k

, (99)

Ar = 1

2
χ̇1

(
9

10
Xr + 1

10
Zr

)
− 3

20
χ̇2(Yr − Zr), (100)

Br = 1

4
χ̇2

(
6

5
Yr − 1

5
Zr

)
− 3

20
χ̇1(Xr − Zr). (101)

They can be simply obtained by substituting ṫk with ṙk in Eqs. (77)–(81). Now, the first balance equation for the average value of
→̇
D can be rewritten in components as follows

〈Ḋk〉 = ε̇1〈Ėk〉 +
[
φ(1 − c)�(ε̇2 − ε̇1) + φcM(ε̇3 − ε̇1)

]
Ė0k

−
[
φ(1 − c)(ε̇2 − ε̇1)At + φcAr

]
Ė0k

∑
q

Ė0qĖ∗
0q

−
[
φ(1 − c)(ε̇2 − ε̇1)Bt + φcBr

]
Ė∗

0k

∑
q

Ė0qĖ0q

= ε̇1〈Ėk〉 + �Ė0k − ξ Ė0k

∑
q

Ė0qĖ∗
0q − ηĖ∗

0k

∑
q

Ė0qĖ0q, (102)

where we introduced

� = φ(1 − c)�(ε̇2 − ε̇1) + φcM(ε̇3 − ε̇1), (103)

ξ = φ(1 − c)(ε̇2 − ε̇1)At + φcAr, (104)

η = φ(1 − c)(ε̇2 − ε̇1)Bt + φcBr . (105)

Similarly, the second balance equation for the electric field assumes the form

〈Ėk〉 =
[
(1 − φ) + φ(1 − c)� + φcM

]
Ė0k

−
[
φ(1 − c)At + φcA

]
Ė0k

∑
q

Ė0qĖ∗
0q −

[
φ(1 − c)Bt + φcB

]
Ė∗

0k

∑
q

Ė0qĖ0q

= = �Ė0k − δĖ0k

∑
q

Ė0qĖ∗
0q − �Ė∗

0k

∑
q

Ė0qĖ0q, (106)

where, additionally, we defined
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� = (1 − φ) + φ(1 − c)� + φcM, (107)

δ = φ(1 − c)At + φcA, (108)

� = φ(1 − c)Bt + φcB. (109)

Now, to complete the homogenization procedure, we remember that the effective medium theory represents a constitutive

equation combining 〈Ḋk〉 with 〈Ėk〉. Therefore, to obtain such a relation we have to find Ė0k in terms of 〈Ėk〉 from Eq. (106) and to

substitute this result in Eq. (102). To begin, we invert Eq. (106), easily getting the expression

Ė0k = 1

�
〈Ėk〉 + δ

�3�∗ 〈Ėk〉
∑

q

〈Ėq〉〈Ė∗
q〉 + �

�3�∗ 〈Ė∗
k〉

∑
q

〈Ėq〉〈Ėq〉. (110)

Then, we substitute this result in Eq. (102) and, up to the third order in the electric field, we eventually obtain

〈Ḋk〉 =
(

ε̇1 + �

�

)
〈Ėk〉 + δ� − ξ�

�3�∗ 〈Ėk〉
∑

q

〈Ėq〉〈Ė∗
q〉 + �� − η�

�3�∗ 〈Ė∗
k〉

∑
q

〈Ėq〉〈Ėq〉. (111)

This represents the most important result of the present paper, fully characterizing the electrical response of the dispersion

of composite particles with uniformly random orientations and positions. To conclude, we can also write down the effective

parameters for the whole heterogeneous material as follows

ε̇e f f (ω) = ε̇1 + �

�
, (112)

χ̇1,e f f (ω) = 2

�3�∗ (δ� − ξ�), (113)

χ̇2,e f f (ω) = 4
3 ∗ (�� − η�). (114)
� �

Fig. 4. Analysis of the effective parameters in the static case with the core-to matrix contrast ε3/ε1 = 10 (ε3 = 10, ε1 = 1). The overall response is shown versus

log10ε2for prolate spheroids with axes as1 = 3M − 2, as2 = 1, as3 = 1 (red continuous curves), spheres (green curves with triangles) and oblate spheroids with

axes as1 = 1, as2 = 1, as3 = 1/(3M − 2) (black dashed curves). The results for the effective permittivity are split in two different ranges to improve the legibility.

We fixed the volume fractions c = 0.9 and φ = 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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These results represent closed form expressions of the three effective quantities controlling the overall response of the heteroge-

neous material. We underline that the procedure can be easily implemented in a numerical code, useful to calculate the effective

parameters at any frequency ω, as discussed in the next Section.

7. Numerical results

We start with a simple example concerning a purely static case, without temporal dispersion. It means that ε1, ε2, ε3 and

χ1 = χ2 assume real values, similarly to the results εe f f and χ1,e f f = χ2,e f f . Indeed, in this static case it is easily proved

that if χ1 = χ2, then we have χ1,e f f = χ2,e f f . This point can be analytically verified through Eqs. (113) and (114), com-

bined with all the pertinent parameters. However, this is not always true, as discussed below for complex valued permittiv-

ities and nonlinear susceptibilities. We use the general theory to investigate the effect of the shell permittivity ε2, the ef-

fect of the ellipsoidal particles shape and, finally, the effect of the core-to-matrix contrast ε3/ε1. The results are shown in

Figs. 4–6, where the effective parameters have been represented in terms of the microstructure features. In particular, the

three figures concern the contrast ε3/ε1 = 10, 1, 0.1, respectively. In all cases, we have used a volume fraction c = 0.9 for the

core within each particle, and φ = 0.3 for the entire population of composite particles. In each plot we have represented

the results for prolate ellipsoids of revolution (spheroids of ovary or elongated form), spheres, and oblate ellipsoids of rev-

olution (spheroids of planetary or flattened form). For representing the prolate shape we used three semiaxes defined as

as1 = 3M − 2, as2 = 1, as3 = 1, while for the oblate case we adopted as1 = 1, as2 = 1, as3 = 1/(3M − 2), where M = 1 . . . 10, to

fully explore the effect of the shape on the overall response of the heterogeneous material. In both cases, M = 1 corresponds

to the spherical shape. The above semiaxes definitions are coherent with the initial assumption 0 < as,3 < as,2 < as,1 < +∞,

stated in Section 3. In Figs. 4–6, results for prolate spheroids, spheres and oblate spheroids are represented by red, green and

black curves, respectively. The results for the linear effective permittivity εe f f have been reported, in each case, by means

of two plots, the first in panel (a) showing εe f f /ε1 for −5 < log10 ε2 < 0, and the second in panel (b) showing εe f f /ε1 for

0 < log10 ε2 < 5. This splitting permits to better observe the large modification of the linear results within the entire range

of variation of log10 ε2. The limiting values of εe f f /ε1 for ε2 → 0 and ε2 → ∞ can be explained and checked as follows. For

ε2 → 0, the system corresponds to a dispersion of voids (or better, zero permittivity particles) with volume fraction φ
and, conversely, for ε2 → ∞ the system corresponds to a dispersion of metallic particles (superconducting particles if we deal
Fig. 5. Analysis of the effective parameters in the static case with the core-to matrix contrast ε3/ε1 = 1 (ε3 = ε1 = 1). The overall response is shown versus

log3ε2for prolate spheroids with axes as1 = 3M − 2, as2 = 1, as3 = 1 (red continuous curves), spheres (green curves with triangles) and oblate spheroids with

axes as1 = 1, as2 = 1, as3 = 1/(3M − 2) (black dashed curves). The results for the effective permittivity are split in two different ranges to improve the legibility.

We fixed the volume fractions c = 0.9 and φ = 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 6. Analysis of the effective parameters in the static case with the core-to matrix contrast ε3/ε1 = 0.1 (ε3 = 0.1, ε1 = 1). The overall response is shown versus

log10ε2for prolate spheroids with axes as1 = 3M − 2, as2 = 1, as3 = 1 (red continuous curves), spheres (green curves with triangles) and oblate spheroids with

axes as1 = 1, as2 = 1, as3 = 1/(3M − 2) (black dashed curves). The results for the effective permittivity are split in two different ranges to improve the legibility.

We fixed the volume fractions c = 0.9 and φ = 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
with transport properties instead of dielectric ones) with the same volume fraction. In fact, because of the extremes values of

the shell permittivity, the particle cores can not influence the effective properties. In the first case the electric induction can not

enter the shell (
→
D= 0 since ε2 → 0), while in the second case is the electric field that can not penetrate the shell (

→
E = 0 since

ε2 → ∞). Anyway, we can use the standard Maxwell–Garnett rule for the effective permittivity εe f f of a dispersion of ellipsoids

(ε2) in a matrix (ε1) with a volume fraction φ (Maxwell-Garnett, 1904; Fricke, 1953; Giordano, 2003)

εe f f = ε1 +
φ(ε2 − ε1)

1
3

∑
j

ε1

ε1+L j(ε2−ε1)

1 + φ
[

1
3

∑
j

ε1

ε1+L j(ε2−ε1)
− 1

] , (115)

in order to examine the relevant limiting behaviors. If ε2 → 0, we obtain

εe f f

ε1

= 1 −
φ 1

3

∑
j

1
1−L j

1 + φ
[

1
3

∑
j

1
1−L j

− 1

] , (116)

while, for ε2 → ∞, we have

εe f f

ε1

= 1 + φ

1 − φ

1

3

∑
j

1

L j

. (117)

We numerically proved that such limiting behaviors are in perfect agreement with results in Figs. 4–6, panels (a) and (b), for

any shape of the involved ellipsoids, described by the pertinent depolarization factors. As regards the effective nonlinear re-

sponse we presented the susceptibility χe f f in panel (c), representing the values of χ1,e f f = χ2,e f f . We firstly observe that

the limiting values limε2=0χe f f = limε2=∞χe f f = 0 must be always fulfilled. Indeed, as above remarked, when ε2 → 0 or

ε2 → ∞ the core does not affect the overall response of the heterogeneous material. Since the nonlinear character is solely

contained in the particle cores, we must have a purely linear response when the core are not influencing the effective be-

havior (because of the shell shield). This behavior is correctly confirmed in Figs. 4–6, panel (c), for any value of the contrast
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ε3/ε1 = 10, 1, 0.1. In all cases, χe f f /χ1 shows a maximum point for a specific value of the shell permittivity. Moreover, we

observe that this peak is larger if ε3 < ε1 and if the particles are oblate. In Fig. 6, where ε3/ε1 = 0.1, we find a nonlinear response

χe f f as large as 50χ1, for strongly oblate particle having as1 = 1, as2 = 1, as3 = 1/28 (M = 10). We remark that in Fig. 6 the non-

linear responses for prolate particles, which are much weaker (χe f f � χ1), have been represented with an intensification factor

(×50) in order to facilitate the visualization. To conclude, we proved that, under specific conditions, we can obtain a large ampli-

fication of the nonlinear response, a phenomenon very useful to design composite materials with tailored nonlinear properties

(an important point, e.g. in nonlinear optics).

In order to present a more complex example of application of the previous homogenization theory, we need to introduce a

realistic behavior of a nonlinear material with temporal dispersion, to be used in the core of the composite particles. To do

this we can develop a nonlinear version of the classical Drude–Lorentz model, largely used in optics (and nonlinear optics as

well). The classical motion equation describing the dynamics of the position
→
r of an electron elastically coupled to an atomic

nucleous,

q
→
E −k

d
→
r

dt
− h

→
r −β(

→
r · →

r )
→
r = m

d2
→
r

dt
2

, (118)

has been generalized with a third order term, controlled by the coefficient β , representing the anharmonicity of the coupling. In

Eq. (118), q
→
E is the Lorentz force applied to the electron charge q, k is the friction coefficient, h is the linear spring constant and

m is the electron mass. Since we are interested in a sinusoidal steady state we can introduce the vector phasors for the electric

field and the electron position. Hence, following the same procedure used in Section 2, the motion equation taking into account

only the monochromatic terms at frequency ω assumes the form[(
ω2

0 − ω2
)

+ iω
k

m

]
→̇
r + β

m

[
1

2

(→̇
r · →̇

r
∗)→̇

r + 1

4

(→̇
r · →̇

r

)→̇
r

∗]
= q

m

→̇
E , (119)

where we have introduced the resonance frequency ω0 =
√

h/m. This equation in
→̇
r can be solved up to the third order in the

electric field. Then the polarization density vector can be obtained as
→̇
P = Nq

→̇
r , where N is the optical electrons density. The

result is
Fig. 7. Effective properties of the dispersion of composite particles with nonlinear dispersive cores described by Eqs. (121) and (122). Panels (a) and (b): linear

and nonlinear results for prolate particles (axes as1 = 3M − 2, as2 = 1, as3 = 1 with M = 1 . . . 10). Panel (c) and (d): linear and nonlinear results for oblate particles

(axes as1 = 1, as2 = 1, as3 = 1/(3M − 2) with M = 1 . . . 10). In all plots continuous curves represent the real parts while dashed one the imaginary parts. Moreover,

green curves concern the case with spherical particles. We considered a frequency ω = 0.8ω0, before the resonance. We fixed ε1 = 100ε0, c = 0.9 and φ = 0.3.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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→̇
P = Nq2

m
(
ω2

0
− ω2

)
+ iωk

→̇
E −

Nβq4

[
1
2

(
→̇
E · →̇

E

∗)→̇
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4

(
→̇
E · →̇

E

)
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E

∗]
[
m
(
ω2

0
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)
+ iωk

]2[
m2

(
ω2

0
− ω2

)2 + ω2k2
] . (120)

Finally, by considering the definition of the electric displacement vector
→̇
D = ε0

→̇
E + →̇

P , we obtain a constitutive equation of the

form given in Eq. (8) where χ1(ω) = χ2(ω), i.e. a response as in Eq. (10), where

ε̇3(ω) = ε0 + Nq2

m
(
ω2

0
− ω2

)
+ iωk

, (121)

χ̇1(ω) = − Nβq4[
m
(
ω2

0
− ω2

)
+ iωk

]2[
m2

(
ω2

0
− ω2

)2 + ω2k2
] . (122)

In order to model the particles core we adopt the following parameters: q = −1.6 × 10−19 C, m = 9.1 × 10−31 Kg,

ε0 = 8.85 × 10−12 F/m, ω0 = 100, 000 s−1, N = 3.1 × 107 m−3, k = 5 × 10−26 Ns/m,β = 1 × 10−26 N/m3 (arbitrary values used

just to give an example of application of the theory). For the matrix we assume a fixed real permittivity ε1 = 100ε0 and

for the shell a variable real permittivity −13 < log10 ε2 < −4. As before, we have used a volume fraction c = 0.9 for the core

within each particle, and φ = 0.3 for the entire population of composite particles. The results are shown in Figs. 7 and 8 in

terms of log10 ε2, for two different frequencies ω = 0.8ω0 and ω = 1.2ω0, respectively. It means that we analyse the behavior

of the system just before and after the resonance frequency ω0. In both cases, we show in panels (a) and (b) the results for pro-

late particles and in panels (c) and (d) those for oblate particles. Moreover, in panels (a) and (c) we report the results for the

real and imaginary part of the linear permittivity ε̇e f f and in panels (b) and (d) the real and imaginary part of the nonlinear

susceptibilities χ̇1,e f f and χ̇2,e f f . Firstly, we observe that, although χ̇1 = χ̇2 in the nonlinear Drude–Lorentz model, the mixing

law previously obtained for the nonlinear response yields different values for χ̇1,e f f and χ̇2,e f f when the temporal dispersion is

actually present. Nevertheless, the differences between χ̇1,e f f and χ̇2,e f f are quite negligible, as it can be seen in Figs. 7 and 8,

panels (b) and (d). Therefore, also the whole system, when χ̇1 = χ̇2, can be approximately described with a constitutive equa-

tion as in Eq. (10). We further observe that the limiting values limε2=0χ̇e f f = limε2=∞χ̇e f f = 0 are always fulfilled also in this
Fig. 8. Linear and nonlinear effective properties of the dispersion of composite particles with nonlinear dispersive cores described by Eqs. (121) and (122).

Panels (a) and (b): linear and nonlinear results for prolate particles (axes as1 = 3M − 2, as2 = 1, as3 = 1 with M = 1 . . . 10). Panel (c) and (d): linear and nonlinear

results for oblate particles (axes as1 = 1, as2 = 1, as3 = 1/(3M − 2) with M = 1 . . . 10). In all plots continuous curves represent the real parts while dashed one

the imaginary parts. Moreover, green curves concern the case with spherical particles. We considered a frequency ω = 1.2ω0, after the resonance. We fixed

ε1 = 100ε0, c = 0.9 and φ = 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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case with dispersion, as expected. Finally, we remark that the amplification of the nonlinear properties when | ε̇3 |< ε1 is again

observed for oblate particles, as clearly visible in panel (d) of Figs. 7 and 8.

8. Conclusions

In this work, we considered the problem of homogenizing a population of randomly oriented coated ellipsoidal particles

from the dielectric point of view. We supposed to deal with linear responses for matrix and shells, while the cores have been

considered with a nonlinear behavior, expanded up to the third order in the electric field. Moreover, all constitutive equations

exhibit hereditary phenomena (the-so-called temporal dispersion). The problems introduced by such memory effects can be

handled by working in the Fourier domain, useful to describe a sinusoidal steady-state at a given frequency ω. On the other

hand, the difficulties generated by the nonlinear behaviors have been overcome by proving that the electric field within the

cores remain uniform independently of their constitutive equations. Then, its value has been determined by solving an implicit

equation based on a frequency and field dependent permittivity tensor. Performing the averaging over the orientations and

over the heterogeneous material volume, we elaborated an effective medium theory, allowing the calculation of the linear and

nonlinear overall response. The originality of this procedure resides in the fact that we have combined (i) the randomness of the

orientations, (ii) the presence of an inter-phase between cores and matrix and, finally, (iii) the linear and nonlinear hereditary

response of the constituents.

Appendix A. A property of the normal unit vector to an ellipsoidal surface

We consider an ellipsoids with axes a1, a2 and a3 described by the parametric representation x1 = a1sinϑcosϕ, x2 =
a2sinϑsinϕ and x3 = a3cosϑ , where 0 < ϕ < 2π and 0 < ϑ < π . This representation can be written in compact form as

→
r =→

r

(ϑ,ϕ) where
→
r = (x1, x2, x3) is the position vector. Therefore, the normal unit vector may be calculated through the standard

expression

→
n=

∂
→
r

∂ϑ
∧ ∂

→
r

∂ϕ

|| ∂
→
r

∂ϑ
∧ ∂

→
r

∂ϕ
||

. (A.1)

Performing the calculation we obtain

→
n= 1

N
(
a2a3sin

2ϑcosϕ, a1a3sin
2ϑsinϕ, a1a2sinϑcosϑ

)
, (A.2)

where N is given by

N =
√

a2
2
a2

3
sin

4ϑcos2ϕ + a2
1
a2

3
sin

4ϑsin
2ϕ + a2

1
a2

2
sin

2ϑcos2ϑ . (A.3)

Now, it is not difficult to develop the following two expressions

3∑
j=1

x2
j

a4
j

= N 2

sin
2ϑa2

1
a2

2
a2

3

,

3∑
j=1

x jn j

a2
j

= N
sinϑa1a2a3

, (A.4)

where we have used Eq. (A.2) and the parametric representation of the ellipsoidal surface. The ratio between previous quantities

is therefore given by(
3∑

j=1

x jn j

a2
j

)/(
3∑

j=1

x2
j

a4
j

)
= sinϑa1a2a3

N . (A.5)

Now, since we can easily verify that sinϑa1a2a3/N = nka2
k
/xk,∀k, we finally obtain the interesting property

nk = xk

a2
k

∑
j

x jn j

a2
j

/∑
j

x2
j

a4
j

(∀ k = 1, 2, 3), (A.6)

which is valid for any point belonging to the ellipsoidal surface. This result has been exploited in Eqs. (34) and (38), for the

core–shell interface and for the shell-matrix interface, respectively.
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