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The view that the Helmholtz (constant-displacement) and
Gibbs (constant-force) ensembles for a single polymer chain
yield equivalent results for their respective force-extension
equations in the thermodynamic limit has been prevalent for
more than half a century. Here, use of the term thermody-
namic limit implies that the number of links (monomers) N is
permitted to increase without limit (N → ∞). In their recent
article, Manca et al.1 continue in this tradition. Their justi-
fication for this view in the general case is based primarily
on their Eq. (24), which purports to show that the required
condition for ensemble equivalence is fulfilled, namely, that
the Helmholtz and Gibbs free energies, F and G, respectively,
are related by a Legendre transform of F with respect to r,
i.e., G = F − f · r, where f is the vector force pulling on the
chain and r the displacement between the ends of the chain. In
this Comment, which is based on previous work,2–4 we point
out that not only is this condition not satisfied in the weak-
stretching regime but assuming that it is satisfied, with the
resulting identical force laws, can have serious repercussions.

Reference 1 uses the following equation, their Eq. (24),
to describe the extent to which the expression for G fails to
equal the Legendre transform of F,

G = F − f · r − kBT ln �, (1)

where kB is the Boltzmann constant and T the absolute
temperature. The third term on the right-hand side of the
equation vanishes if the Legendre relationship is valid, with
� defined by

�=(2mπkBT )3/2
∫

dq exp[−(q−r)(∂2F/∂ r2)(q−r)/(2kBT )].

(2)

The authors state that “The quantities G, F, �, and f · r
assume an extensive character (i.e., they are proportional to
N) and therefore, the logarithmic term in Eq. (24) becomes
negligible for large systems. Thus, for N → ∞, the Legendre
transformation is fulfilled.” A flaw in this argument is imme-
diately apparent. Using the ideal freely jointed chain (FJC)
model in the Gibbs mode and Gaussian approximation, one
can see that the force-displacement scalar product is indeed
proportional to N, 〈 f · r〉 ∝ Nf 2; however, it is also propor-
tional to the square of the magnitude of the force; see the
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Appendix. Thus, for any finite N, one can reduce f sufficiently
to ensure that f · r ≤ kBT ln �. Here, we use the standard
scalar, vector notation, i.e., r = |r| and f = | f |. Because of
symmetry considerations, certain functions of vectors can
frequently be expressed in terms of scalars; e.g., F(r) = F(r).

It is instructive to examine the ensemble-equivalence
problem from a different vantage point using the ideal FJC
model in the weak-stretching regime. Here, the term weak-
stretching will refer to that force regime where chains have
a scalar end-to-end separation lying between the random-coil
value and several times this distance. Within the FJC model,
we compare the ensembles by determining whether the Leg-
endre transformation of F is equivalent to G. The definition of
the Legendre transform5 of F with respect to r, FLg(r) = F(r)
− r[∂F(r)/∂r], yields

FLg(r) = − kBT b2r2 (3)

using the r-dependent part of the Helmholtz free energy,
where b2 = 3/(2Na2) and a is the link length. Please re-
fer to the Appendix for details concerning the derivation of
Eq. (3) through (5). The f-dependent part of the Gibbs free
energy is found to be

G(f ) = − kBT v2/4, (4)

and the average of the squared end-separation distance is
given by

〈r2〉 = (3/2 + v2/4)/b2, (5)

where v = f /(bkBT). Solving Eq. (5) for v and substituting the
result into Eq. (4), one obtains

G(〈r2〉) = (3/2 − b2〈r2〉)kBT . (6)

Comparing Eqs. (3) and (6) shows that a necessary condition
for ensemble equivalence, G(〈r2〉) = FLg(r), is only satisfied
when the degree of stretching is at least moderate; that is,
when b2〈r2〉 � 3/2 or 〈r2〉 � 〈r2〉0. The zero subscript in-
dicates the average mean-squared end separation in the ab-
sence of an external force, namely, the random-coil value Na2.
Thus, in the weak-force regime the Legendre relationship be-
tween F and G is not valid, resulting in a nonequivalence of
ensembles.

With the aid of the ideal FJC model and its accompany-
ing force-extension expressions, several consequences of the
equivalence-of-ensembles assumption in the weak-stretching
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regime can be explored. The following formulas (see the Ap-
pendix) derive from the constant-displacement (Helmholtz)
and the constant-force (Gibbs) ensembles, respectively,

〈 f 〉 = 2kBT b2r, (7)

f = 2kBT b2 〈r〉 . (8)

A common interpretation of these two equations in the
thermodynamic limit resulting from the equivalence-of-
ensembles assumption1 is that (i) the two equations are equiv-
alent because the relative force and displacement fluctuations
become negligible allowing the average 〈 〉 notation to be
dropped, and (ii) as a result of (i) the two can be expressed
by the following single equation:

f = 2kBT b2r, [ f = 2kBT b2r], (9)

as in a macroscopic Hooke’s law description of an ordinary
spring. Unfortunately, these interpretations are valid only in
the moderate stretching regime; for polymer-stretching ex-
periments carried out at small fixed forces, Eq. (9) cannot
be used to interpret the results. Because Eq. (9) describes
an entropy spring of zero unstretched length, a conflict must
necessarily arise in a constant-force experiment where 〈r〉 is
measured,6–8 when the force decreases to zero and 〈r〉 ap-
proaches the random-coil value, aN1/2, rather than zero. The
conflict is, of course, readily resolved for extension-vs-force
plots by recognizing that because large fluctuations are still
present,2 the averages must still be used with the understand-
ing that 〈r〉= 〈|r|〉 	= |〈r〉|. Thus in interpreting these experi-
ments, the Gibbs ensemble result

〈r〉 = (〈r〉0 /2)[exp(−v2/4) + (v + 2/v)
∫ v/2

0
dt exp(−t2)]

(10)
must be used, where 〈r〉0 = 2/(bπ1/2). At moderate forces
(v � 1), this expression becomes equivalent to Eq. (9), and
Hooke’s law is recovered.

Because |〈r〉| in Eq. (8) is the magnitude of the aver-
age value of the projection of r in the direction of the ap-
plied force, 〈x〉, the alleged agreement in the weak-stretching
regime between the Helmholtz and Gibbs force laws with in-
creasing N shown in Fig. 5 of Ref. 1 is a consequence of the
fortuitous formal similarity between Eqs. (7) and (8) when N
is sufficiently large so as to approximate Gaussian statistics –
a similarity that belies the difference in configuration between
the Helmholtz and Gibbs chains. This difference particularly
manifests near zero force where Eq. (7) describes a loop-like
structure whereas Eq. (8) describes a random coil. Rewriting
Eq. (8) as

〈x〉 = f/(2kBT b2), (11)

one can discern what is actually occurring at small forces;
as the stretching force increases from zero, the x-component
of the end-to-end displacement increases from zero in a lin-
ear fashion, while the actual end-to-end length 〈r〉 remains in
the vicinity of its approximate unstretched length 〈r〉0, as ex-
pressed by Eq. (10). The polymer chain as a whole responds
to the external force by “rotating” analogous to an electric
dipole in an electric field; this analogy is explained in detail in
Ref. 3. The reason why Eq. (11) has the same formal structure

as Eq. (7) lies in the fact that the underlying end-to-end distri-
bution function P(r) is Gaussian. Were P(r) to have a different
form, Eq. (8) would in general be different from Eq. (7), and
the confusion between the two most likely would not occur.
Thus, we see that the differing Gibbs and Helmholtz ensem-
bles do indeed give rise to differing force laws in the weak-
stretching regime despite their formal similarity. The plots in
Fig. 5 of Ref. 1 would be radically different in the weak-force
region had the correct Gibbs extension, 〈r〉, been used instead
of |〈r〉|. Finally, Manca et al.1 do not discuss the role of rel-
ative fluctuation in the extension, (〈r2〉 − 〈r〉2)1/2/〈r〉, which
remains large in this force region even in the thermodynamic
limit2 thereby providing additional evidence against an equiv-
alence of ensembles.

We have (i) demonstrated that the conclusion of Manca
et al.1 that the Helmholtz and Gibbs ensembles give rise to the
same constitutive equation in the thermodynamic limit is not
justified by showing the Legendre transform of the Helmholtz
free energy is not equal to the Gibbs free energy in the weak-
stretching regime and (ii) shown that this conclusion can have
unfortunate consequences when used to interpret the results
of polymer-stretching experiments in the weak-force regime.

We thank Mehmet Süzen for helpful correspondence con-
cerning the equivalence of ensembles problem.

APPENDIX: THE FREE ENERGIES DEFINED

The following derivations and discussion can be found
in Refs. 2, 3, and 9. The momentum component of the parti-
tion functions does not enter into the relevant part of the cal-
culation; therefore, only the configurational part is included
here. The normalized, field-free, end-to-end distribution func-
tion for the ideal freely jointed chain in the Gaussian ap-
proximation is given by P(r) = P(r) = b3π−3/2exp(−b2r2)
for r 
 Na. In the Helmholtz ensemble, one has F(r, T)
= −kBT{C(N) + ln[P(r)]}, and 〈 f 〉 = ∂F(r, T)/∂r, where
C(N) is a constant proportional to N. In the Gibbs ensemble,
one has G( f, T) = −kBT ln[Z( f, T)], where

Z( f , T ) = exp[C(N )]
∫

d rP (r) exp[ f · r/(kBT )]. (A1)

In the Gibbs ensemble, the average of an r-dependent quantity
Q(r) is given by

〈Q(r)〉 = Z( f , T )−1 exp[C(N )]

×
∫

d rQ(r)P (r) exp[ f · r/(kBT )]. (A2)
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