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A B S T R A C T

This thesis provides a picture on the thermo-elastic behavior of
polymer molecules with biological relevance. In particular, this es-
say deals with the thermo-elasticity of single polymer molecules
subjected to uniform stretching (generated by an applied force)
or non-uniform stretching (generated by an external field). Ana-
lytical expressions and molecular dynamics simulations are elabo-
rated considering some generalizations of the freely-jointed chain
(FJC) and the worm-like chain (WLC) models. The analytical the-
ory, based on classical statistical mechanics, allows a rigorous
mathematical treatment, while the study of complex systems is
covered by means of Monte Carlo simulations.

On the one hand, the uniform stretching of a single polymer,
imposed by an external pulling force, is pursued for studying
the statistical mechanics of small molecules. When the thermo-
dynamic limit is not satisfied, different boundary conditions (ei-
ther Helmholtz or Gibbs ensemble) yield different elastic behavior,
showing the fascinating intrication native to the thermodynamics
of small systems. This complexity is shown to be even more sug-
gestive when investigating bistable molecules of which domains
exhibit transitions between two stable states. This scenario leads
from cooperative to non-cooperative response of each domain to
the external force, depending on the specific statistical ensemble
considered. Universal scaling laws are provided, governing the
overall elasticity of the polymer systems.

On the other hand, the non-uniform stretching of a single
molecule, imposed by an external field, is studied to analyze the
average configurational properties of polymers and leads to an-
other very intricating scenario concerning the behavior of the vari-
ances describing the fluctuations of the system. Furthermore, for
the WLC model our attention fall in the investigation of the force-
extension curve, for which we derive new approximated expres-
sions for a chain immersed into an external field.
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R É S U M É

Cette thèse est consacrée à l’étude théorique et numérique
du comportement thermo-élastique des polyméres d’intérêt
biologique. On étudie la thermo-élasticité d’une molécule
polymérique soumise soit à une traction uniforme (générée par
une force appliquée) soit à une traction non uniforme (générée
par un champ extérieur). Des solutions analytiques, ainsi que
des simulations de dynamique moléculaire, sont élaborées à
partir de deux modèles différents: freely-jointed chain (FJC) et
worm-like chain (WLC). La théorie analytique, basée sur la ther-
modynamique statistique, permet un traitement mathématique
rigoureux, tandis que l’étude des systèmes complexes est basée
sur des simulations de Monte Carlo.

Dans une première partie, une étude de la traction uniforme
d’une macromolécule est proposée afin de comprendre la mé-
canique statistique qui côntrole le processus d’éxtension. On con-
state que, lorsque la limite thermodynamique n’est pas satisfaite,
différents comportements élastiques sont observés en changeant
les conditions aux limites (ensemble de Helmholtz ou ensemble
de Gibbs), montrant ainsi la fascinante intrication de la thermo-
dynamique des petits systèmes (small systems thermodynamics).
Cette complexité se révèle encore plus suggestive lorsque on re-
garde le comportement des molécules bistables dont les domaines
présentent des transitions entre deux états stables. Ce scénario est
dû à la réponse coopérative ou non-coopérative de la force ex-
terne dans chaque domaine, en fonction de l’ensemble statistique
considéré. Les lois des échelles universelles régissant l’élasticité
globale du système polymère sont fournies.

La seconde partie de la thèse est consacrée à l’étude de la trac-
tion non uniforme d’une macromolécule. L’objectif est l’analyse
des propriétés configurationnelles moyennes des polymères; cette
démarche conduit à l’étude du comportement des variances
décrivant les fluctuations du système. En outre, pour le mod-
èle WLC, notre attention s’est portée sur la courbe contrainte-
déformation, pour laquelle on obtient de nouvelles expressions
pour une chaîne polymèrique immergée dans un champ extérieur.
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S O M M A R I O

La presente tesi concerne lo studio del comportamento termo-
elastico di polimeri di interesse biologico. In particolare si stu-
dia la termo-elasticità di polimeri a catena singola soggetti a de-
formazione uniforme (generata da una forza applicata) oppure
a deformazione non uniforme (generata da un campo esterno).
Si sviluppano simulazioni di dinamica molecolare e si elaborano
espressioni analitiche prendendo in considerazione alcune gen-
eralizzazioni dei modelli freely-jointed chain (FJC) e worm-like
chain (WLC). La teoria, basata sulla meccanica statistica classica,
consente un trattamento matematico rigoroso della risposta elas-
tica in strutture semplici e le simulazioni fondate sul metodo
Monte Carlo permettono di studiare sistemi più complessi. La
deformazione uniforme generata da una singola forza applicata
ha permesso di introdurre la meccanica statistica dei piccoli sis-
temi. In tali condizioni il limite termodinamico non è soddisfatto
e diverse condizioni limite (Helmholtz e Gibbs) possono generare
differenti risposte elastiche. Tale fenomeno è ancora più rilevante
quando si trattano catene polimeriche soggette a trasformazioni
configurazionali fra due stati metastabili. In tal caso si osservano
risposte cooperative (transizioni simultanee) o non-cooperative
(transizioni sequenziali) al variare delle condizioni imposte.

La deformazione non-uniforme di catene polimeriche è studiata
al fine di comprendere le proprietà configurazionali medie indotte
dal campo applicato. Le varianze sono analizzate per descrivere le
fluttuazioni del sistema. Infine, nel caso del modello WLC le curve
forza-estensione vengono analizzate e alcune forme analitiche ap-
prossimate sono proposte.
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I N T R O D U C T I O N

The recent development of mechanical experiments on sin-
gle molecules provide a deeper understanding of intermolecu-
lar and intramolecular forces, thereby introducing crucial addi-
tional information about the thermodynamics and kinetics of sev-
eral biomolecular processes [1, 2, 3]. Single-molecule experimental
methods can be typically based on laser optical tweezers (LOTs)
[3], magnetic tweezers (MTs) [4] or atomic force microscope (AFM)
[5]. These experimental techniques have been extensively applied
to nucleic acids (DNA, RNA and DNA condensation) [6], proteins
(protein-protein interaction [7] and protein folding [8]), molecu-
lar motors [9] and other long-chain biopolymers [10]. They all
provide a valuable insight about the response of polymers to
external forces, allowing the detailed investigation of the force-
extension relationship for macromolecules. Furthermore, in such
experiments the determination of small energies and the detec-
tion of large deviations due to Brownian interactions offer a new
method for analyzing the basic foundations of statistical mechan-
ics. In particular, the above techniques permit a clearer compre-
hension of the equilibrium and non-equilibrium thermodynamics
of small systems and the experimental verification of fluctuation
theorems [11, 12, 13]. These results and successive experimental
evidences suggest that the mechanical properties of DNA, and in
particular its flexibility [14], have a relevant role in many biologi-
cal processes [15].

The importance of understanding the force-extension relation-
ship for macromolecules has therefore attracted the attention
of physicists and mathematicians, who produced several mod-
els and relationships to explain the experimental results. The
simplest model of a polymer is known as the freely-jointed chain
(FJC) model [16, 17, 18], which is appropriate to describe certain
biopolymers, including single-stranded DNA (ssDNA) and RNA
[19]. Another important and well known model is the worm-like
chain (WLC) [17], which well describes the double-stranded DNA
(dsDNA). The first famous investigation concerning the stretching
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2 introduction

of a chain structure in order to measure its elastic features was
performed on the double-stranded DNA: the experimental results
appeared in very good agreement with the WLC model [20, 21]
while they were only in partial agreement with the FJC model
(the latter model typically providing, however, a better fit for
single-stranded DNA and RNA [19]). The discrete version of the
WLC model has been considered and new interpolation formulas
for semiflexible polymers have been introduced [22, 23]. Moreover,
efficient techniques for calculating the thermo-mechanical prop-
erties of an heterogeneous chain have been developed through
the numerical determination of the statistical partition functions
under different types of boundary conditions [24]. In spite of
the richness of experimental results and the large number of
models devoted to explain specific situations, there is often the
lacks of a universal theoretical approach able to describe different
mechanical behaviours. The philosophy of our approach has been
focused on the interest in developing unifying models capturing
at the same time different physical pictures.

In particular, in this thesis we work on the thermo-elasticitythe present
thesis of single polymer models of biological relevance. Our approach is

twofold, since we adopt both theoretical and numerical techniques
considering some generalizations of the FJC and the WLC models.
The analytical theory is based on classical statistical mechanics
and allows a rigorous mathematical treatment for some systems.
On the other hand, the study of more complex systems is covered
by means of Metropolis Monte Carlo simulations. The rationale
of our approach can be framed within the scheme above defined.

The thesis is organized as follows:structure
of the
thesis part i provides an overview of the structure of biopolymers and

some experimental methods adopted in recent investigations:
– Chapter 1 supplies a brief outline of the main concepts of

biopolymers and how these complex structures are mod-
eled for theoretical studies. A discussion on some experi-
mental methods at a single-molecule level is likewise pre-
sented.



introduction 3

part ii is addressed to the description of some basic concepts
pertaining to analytical and statistical mechanics:
– Chapter 2 deals with analytical mechanics. In order to in-

troduce the statistical mechanics formalism, two reformula-
tions of Newton’s mechanics for systems with constraints
are presented: the Lagrangian and the Hamiltonian for-
malisms.

– Chapter 3 deals with statistical mechanics. The outline of
classical statistical mechanics is presented, so as to lay the
groundwork to introduce the subject of the present thesis:
the thermodynamics of single polymer chains. More pre-
cisely, the microcanonical and the canonical distributions
are briefly discussed.

part iii provides an insight into the thermodynamics of sin-
gle polymer chains and some applications of the Metropolis
Monte Carlo simulation approach:
– Chapter 4 deals with the thermodynamics of a polymer

model with a finite number N of monomers and with an
arbitrary potential V on monomers. For this model, we de-
scribe two different approaches that lead to two different
ensembles: the Helmholtz and the Gibbs ensembles. The
proper partition functions are found and an exact relation-
ship between them is worked out. In particular, it is shown
that the Gibbs partition function is the three-dimensional
(bilateral or two-sided) Laplace transform of the Helmholtz
partition function.

– Chapter 5 is addressed to provide an overview on the
Metropolis Monte Carlo method. The reasons that give
rise to take profit of the method are discussed, as well as
some insidious problems of the approach (i.e., the quasi-
ergodicity sampling) are presented.

part vi provides an insight into the thermodynamics of single
polymer chains loaded by external forces and some basic con-
cepts the Metropolis Monte Carlo method are presented:
– Chapter 6 deals with the statistical mechanics of a small

polymer chain. We take into consideration the quantitative
difference between the thermodynamic behaviour of the
Helmholtz or Gibbs ensemble, by investigating the founda-
tions of the statistical mechanics for small systems. While



4 introduction

the analytical approach is useful to obtain the explicit par-
tition function in some specific cases, Metropolis Monte
Carlo simulations are crucial to determine the scaling laws
controlling the convergence to the thermodynamic limit.
In all cases we show that the convergence to the thermo-
dynamic limit upon increasing contour length is described
by a suitable power law and a specific scaling exponent,
characteristic of each model.

– Chapter 7 provides an insight into the finite-size elastic-
ity of model polymers consisting of domains that can
exhibit transitions between two stable states at large
applied force. The constant-force (Gibbs) and constant-
displacement (Helmholtz) formulations lead to two sep-
arated classes of results showing cooperative and non-
cooperative mechanically induced unfolding. We developed
a unifying model capturing at the same time the main fea-
tures of both behaviors, via a unique universal model.

part v provides some meaningful investigations on the elasticity
of single polymer chains immersed in external fields:
– Chapter 8 furnishes a study on the non-uniform stretching

of a single, non-branched polymer molecule by an exter-
nal field (e.g. fluid in uniform motion, or uniform electric
field). A universal physical framework that leads to general
conclusions on different types of polymers is provided. We
derive analytical results both for the freely-jointed chain
and the worm-like chain models based on classical sta-
tistical mechanics. The average conformation of the poly-
mer and its fluctuation statistics are evaluated by means of
Metropolis Monte Carlo.
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P O LY M E R C H A I N S I N B I O L O G Y





1
B I O - P O LY M E R S A N D S I N G L E M O L E C U L E
E X P E R I M E N T S

Contents
1.1 Polymers 7
1.2 Biological polymers 9

1.2.1 Models for bio-polymers 12

1.3 Single molecule stretching experiments 15
1.3.1 Atomic force microscopy (AFM) 17

1.3.2 Force and elasticity measurements 18

1.3.3 Optical tweezers (OTs) 20

1.3.4 Magnetic tweezers (MTs) 21

1.3.5 Flow fields 21

The exceptional spectrum of polymeric materials and their prop-
erties plays a capital and ubiquitous role in everyday life from
those of familiar synthetic plastics to the natural bio-polymers
that are fundamental for biological functions. Most of biological
macromolecules are composed in large part of polymers, includ-
ing proteins, nucleic acids and polysaccharides. The investigation
on the mechanical properties of bio-polymers plays a crucial role
in understanding biological systems. These structures are complex
and the comprehension of their behavior is a very fascinating chal-
lenge. Experimental methods allow to investigate bio-polymers by
means of mechanical stimulus, including forces. All biological mo-
tions, from cellular motility to replication and segregation of DNA,
are driven by molecular-scale forces. In this Chapter we present
an overview on the structure of polymers and some experimental
methods adopted at a single-molecule level.

1.1 polymers

A polymer is a large molecule (macromolecule) composed of
multiple repeating units (monomers) typically connected by cova-
lent chemical bonds. A monomer is in general anything that re-

7



8 bio-polymers and single molecule experiments

Figure 1.1: Different types of polymer architectures. Linear, ring, star-
branched and randomly-branched polymers. Taken from: Ref. [16]

peats along the chain. If the macromolecule contains monomers
of only one type is called homopolymer [16].

· · ·−A−A−A−A−A−A−A−A−A− · · ·

This type of polymer is usually represented as a chain of N repeat-
ing sequences. Macromolecules composed of the same monomers
differ from one another for their microstructure, degree of poly-
merization or architecture [25]. The number N is also called thedegree of

polymerization degree of polymerization and is a very important factor determining
manifold conformational properties of polymeric chains [17]. The
other two main factors that define the conformational properties
of a polymeric chain are the microstructure, which is related to the
physical arrangement of the monomers along the chain, and the
architecture, which is the way in which branched monomers lead
to a deviation from a simple linear chain. A branched polymer
molecule is composed of a main chain with one or different side
chains (branches). Types of polymer architecture range from the
most simple linear structure to complex branched configurations
that can form networks of polymers [26]. Examples of polymer ar-
chitecture include linear, ring, star-branched and randomly-branched
polymers (see Fig.1.1) [16].

If a molecule has less than 20 monomers it is considered to be aoligomers
small molecule and is called oligomer. Frequently polymers contain
more than 20 units; linear polymers can contain up to ten billion
monomers as for the longest known chromosome.

If a macromolecule contains different types of monomers ishetereopolymers
called hetereopolymer, which properties depend on microstructure
and are subordinated to the sequence of monomers in the chain.
When a macromolecule is made by only two different monomerscopolymer
is called copolymer [16].

· · ·−A−B−A−B−A−B−A−B−A− · · ·
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1.2 biological polymers

Figure 1.2: The structure of the
DNA double helix.
Taken from: http://www.

genome.gov/

Many biological macro-
molecules are hetereopolymers,
including proteins, which are
made up of different monomeric
units [27, 28]. There are four
types of biological polymers
(bio-polymers) of particular in-
terest in this essay: nucleic acids,
ribonucleic acids, proteins and
polysaccharides. Deoxyribonu-
cleic acid (DNA), ribonucleic acid DNA and RNA
(RNA) and proteins are examples
of linear heteropolymers. DNA
and RNA consist of four types
of monomers (nucleotides), while
natural proteins are commonly
composed by 20 different types of
monomers [27, 28, 29]. In Fig.1.2
is shown the simplifier structure
of a double helix DNA. The three-
dimensional framework appears
to be slightly richer and more
complex, showing a double helix
and other substructures. The struc-
tural support to the molecule is
provided by a phosphate backbone.
DNA consists of two strands that
wind around each other. Each
strand has a backbone made of
alternating sugar (deoxyribose)
and phosphate groups. The two
strands are held together by hy-
drogen bonds between the bases with adenine forming a base
pair with thymine and cytosine forming a base pair with guanine.
One of the four bases is attached to each sugar: adenine (A),
cytosine (C), guanine (G), or thymine (T). These bases make a
particular alphabet that is (C, T, A, G) in the case of DNA and (C,

http://www.genome.gov/
http://www.genome.gov/
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One-letter code Three-letter code Amino-acid name

A Ala Alanine

R Arg Arginine

N Asn Asparagine

D Asp Aspartic acid

C Cys Cysteine

Q Gln Glutamine

E Glu Glutamic acid

G Gly Glycine

H His Histidine

I ILe Isoleucine

L Leu Leucine

K Lys Lysine

M Met Methionine

F Phe Phenylalanine

P Pro Proline

S Ser Serine

T Thr Threonine

W Trp Tryptophan

Y Tyr Tyrosine

V Val Valine

Table 1: Overview of protein sequences. The abbreviation codes for amino
acids (one-letter and three-letter) adopted by the commission on Bio-
chemical Nomenclature of the IUPAC-IUB.
Taken from: Ref. [28]

U, A, G) for RNA [6, 25, 27]. The letter U corresponds to a base
named uracile.

Proteins are biological macromolecules consisting of one or dif-proteins
ferent chains of amino acids. They perform different functions for
biological organisms, including the transport of molecules from
one location to another, the catalysis of metabolic reactions, and
the replication of DNA. These macromolecules differ from one
another principally in their sequence of amino acids. A polymer
chain of amino acid residues is called a polypeptide. Proteins are
made of up to 20 different residues that are indicated with three
identifying letters of the corresponding amino acid (See. Tab.1).
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Figure 1.3: The genetic code in DNA. Correspondance between nucleotide
sequence of DNA.
Taken from: http://www.chemguide.co.uk/organicprops/

aminoacids/dna4.html

The base sequences in the DNA strand or in messenger RNA
(mRNA) are instructions coded to build chains of protein consti-
tuted of amino acids. Even if a protein consists in 20 amino acids,
only four different bases make the coded instructions. The set of
all rules by which information encoded within genetic material
(DNA or mRNA sequences) is translated into proteins (amino acid
sequences) by living cells is called the genetic code [6].
Biological decoding is accomplished by the ribosome that links
amino acids in an order specified by mRNA, using transfer RNA
(tRNA) molecules to carry amino acids and to read the mRNA
three nucleotides at a time [30]. The genetic code is hugely similar
among all organisms, and can be expressed in a simple table with
64 entries (see Fig.1.3).

http://www.chemguide.co.uk/organicprops/aminoacids/dna4.html
http://www.chemguide.co.uk/organicprops/aminoacids/dna4.html
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A three base sequence in DNA or RNA is called codon. In Fig.1.3codons
it is also shown how the combinations of three bases are used in
the coding strand of DNA to code for individual amino acids. The
colors underline that most of the amino acids have more than one
code. Looking at leucine (Leu): there are six different codons all of
which will eventually produce a leucine in the protein chain. Com-
binations of three bases are used in the coding strand of DNA to
code for individual amino acids. Three codons do not have anstop

codons amino acid written beside them and are known as stop codons.
They serve as a signal to indicate that the end of the chain has
been reached during protein synthesis [6, 27].

Despite some great research evidences, unraveling the origin of
the genetic code and translation machinery is an inherently dif-
ficult problem [31], and many questions are still awaiting a re-
sponse. For example, the very complexity of the translation system
[32] inevitably suggests that it has been shaped gradually and this
implies an evolutionary motivation [30]. This is a great challenge
to evolutionists. Moreover, as far as the coding and translation
system is concerned, it would seem logical to start with separat-
ing the two “origins” - origin of the code, and origin of translation
[33, 34]. All these complexities in genetic code investigation drive
some scientist to recognize that “biology is frustratingly holistic”
[35]. Events at one level can effect and be affected by events at very
different levels of scale or time.

Polysaccharides are molecules of carbohydrate monomers thatpolysaccharides
are organics compound consisting in atoms of carbon, hydrogen
and oxygen. Each carbohydrate monomer is joined together by
glycosidic bonds. If all the monosaccharide monomers are of the
same type, the polysaccharide is called a homopolysaccharide. When
macromolecules are composed by different type of monosaccha-
ride, they are called heteropolysaccharides [27].

1.2.1 Models for bio-polymers

To modelize and understand the previous complex structures
we describe them as simple chains composed of a sequence of
points representing the monomers of the chain and linked by rods
representing the bond between monomers (see Fig.1.4) [17, 36].
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b

Figure 1.4: A simple poly-
mer model.
Each monomer
is represented
as a bead and
each bond as a
rigid rod.

The bond types for macromolecules can
be covalent or ionic [37]. For the covalent
bonds we shall assume a harmonic poten-
tial of the form

V(x) = (1/2)k(x− b)2,

where k is a spring constant, b is the equi-
librium bond length and x is the actual
extension of the bond [25]. For certain
models, anharmonic potentials are also
used based on a finitely extensible non-
linear elastic potential (FENE). The FENE
potential is harmonic at its minimum but
the bonds cannot be stretched beyond a maximum length deter-
mined by a certain value of finite extensibility [38].

An important measure describing the physics of a polymer is contour
lengththe contour length. If each monomer is joined by a bond with length

b, then the total contour length of the chain is Lc = Nb [16, 17].
The way in which monomers are connected together is also im-
portant: the conformation describes the geometric structure of a
polymer. If two monomers are joined by a single bond, then a
rotation about that bond is possible. If the two monomers have
other monomers or groups attached to them, then configurations
in which torsional angle variations are possible. Indeed, angles
between monomers are also used for the description of macro-
molecules.

The simplest model of a polymer regards the molecule as a
chain of N monomers, joined by perfectly flexible bonds with
length b [26, 38]. This model is known as the freely-jointed chain Freely

jointed
chains

(FJC) model and it corresponds to a random walk where each step
has length b [16, 17, 18]. This model is the most simple one for
a single polymer in solution and it is appropriate to describe cer-
tain biopolymers, including single-stranded DNA (ssDNA) and
RNA [19]. On the contrary, the FJC model is not useful for de-
scribing the double-stranded DNA (dsDNA), for which a well de-
scription is provided when regarding the polymer as semi-flexible
[17, 27]. The semi-flexibility is a property of stiffer polymers Worm

like
chains

with successive segments displaying a sort of cooperativity [17]:
all pointing in roughly the same direction. The measure of this
cooperativity is called persistence length that is, roughly speaking,
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the distance along the contour length of the molecule where the
molecule keeps a straight direction due to its bending rigidity [1].

Figure 1.5: Persistence length. It measures the
length along the chain over which
the tangent vectors t(s) become
decorrelated [16, 26].

More precisely, describ-
ing a real polymer chain
as a space curve r(s)

parametrized by a dis-
tance s, it is possibile to
define t(s) as the unit
tangent vector to the
curve at the position s

(see Fig.1.5). The persis-
tence length is defined
by a correlation function
that gives the character-
istic distance along the
contour over which the
tangent vectors t(s) be-
come uncorrelated:

〈t(s) · t(s ′)〉 = e
|s−s ′|
Lp , (1.1)

where

Lp =
κ

kBT
, (1.2)

and κ is the bending stiffness, defined as the Young’s modulus of
the material times the moment of inertia of a filament cross-section
about the axis of rotation. The persistence length is therefore a
concept associated with the bending energy of the structure. This
characteristics is taken into account by a more physically sounds
model known as the worm-like chain (WLC) model. While FJC
model is flexible only between discrete segments, the WLC model
describes elastic properties of semiflexible polymers dealing with
rotational-isomeric-states, helicity and stiffness [17]. In particular,
the investigation of the stiffness related to a response of a force
applied to the macromolecule, has been of central and crucial in-
terest on the past decades biophysical studies [2, 25].
Further, a number of mathematical models have been developed
for describing the mechanical response of polymers in different
chemical and loading conditions [16, 39, 40]. A technique describ-
ing the crossover between these two classes of models, FJC (flexi-
ble) and WLC (semiflexible), has been recently introduced [41]. It
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has been shown that the alternative between these two regimes
depends on the chain bending rigidity and the magnitude of the
applied force. Moreover, we remark that models for semiflexible
polymer chains can be realized both with continuum and discrete
structures. The comparison between these two approaches and
their applicability has been largely investigated [42]. A refined
technique that has led to important results for the WLC model
is based on the path integral formalism (functional integration)
[43, 44, 45, 46, 47]. In fact, it has been proved that the calcula-
tion of the partition function for a continuous polymer chain ex-
actly corresponds to a Feynmann path integral, as introduced in
quantum mechanics [48]. All previous methodologies have been
typically developed for analysing homopolymers, but can be also
generalised to heteropolymers [49, 50].

Until recently, scientists could only investigate chemical pro-
cesses on a bulk level. During the past few years, this situation has
changed thanks to the development of methods to manipulate sin-
gle molecules [51, 52, 53, 54]. Forces and stresses that molecules
exert on each other are now directly measurable with high pre-
cision. These methods are yielding new informations about the
forces that hold biomolecules together, revealing fundamental en-
lightenment concerning how they work and their functions on bi-
ological systems.

1.3 single molecule stretching experiments

A key issue in polymer theory concerns the determination of the
physical properties of chains starting from the knowledge of the
actual chemical architecture and environmental conditions [55, 56].
The response of single molecules provides additional information
about thermodynamics and kinetics that is sometimes difficult
to obtain in bulk experiments [57, 58]. Actually, measurements
taken over single molecules might show a different mechanical be-
haviour with respect to a measure taken on a single bulk system;
this is due to the coupled effects that many molecules have with
each other. For example, it has been shown that during the folding
process, characterized by the folded and the unfolded state, some
proteins transiently visit an intermediate state, which is possible
to observe only when regarding a single protein. On the contrary,
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the intermediate state is usually masked in bulk measurements
where results are averaged over many molecules [59]. One of the
most important single-molecule experiment concerns the stretch-
ing of a macromolecule in order to measure its elastic features.
Modern methods for stretching single molecules provide a valu-
able insight about the response of polymers to external forces. The
interest on single molecules loading encouraged new research and
technological developments on related mechanical experiments.

Typically, mechanical methods allow the manipulation of a poly-two important
ways for

manipulating
polymer

chains

mer molecule in two ways: the stretching of the chain by the di-
rect action of an external force or by the application of an external
field. If we consider homogeneous polymers (with all monomers
described by the same effective elastic stiffness), then we obtain a
uniform strain with the application of an external force and a non-
uniform strain with an applied field. To exert an external force on aexternal

forces polymer fixed at one end, atomic force microscope (AFM) [5], laser
optical tweezers (LOTs) [3] or magnetic tweezers (MTs) [4] can be
used. Many experiments have been performed over a wide class
of polymers with biological relevance, such as the nucleic acids
(DNA, RNA) [6], allowing the stretching of the entire molecule
and providing the reading and the mapping of genetic informa-
tions along the chain [60, 61]. The first famous investigation was
performed on the dsDNA and the results appeared in very good
agreement with the worm-like chain (WLC) model [20, 21] while
they were only in partial agreement with the freely jointed chain
(FJC) model (the latter model typically providing, however, a bet-
ter fit for ssDNA and RNA [19]). Furthermore, it has been possi-
ble to observe the elastic behaviour of single polymers consisting
of domains that exhibit transitions between different stable states
[10, 62].
Alternatively, it is possible to manipulate single molecules by anexternal

fields external field. In this case the external field acts on the molecules
from a distance or, in other words, without a defined contact point
for applying the traction. A non-uniform stretching performed by
an external field can be induced either via a hydrodynamic (or
electrohydrodynamic) flow field [64, 65, 66] or via an electric (or
magnetic) field [67, 68, 69]. The use of an electric field has been
adopted for driving the alignment of DNA on a solid surface for
applications such as gene mapping and restriction analysis [67].
All such manipulation methods for single molecule experiments
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Methods Fmin−max(N)∗ Xmin(m)∗ Stiffness (Nm−1)
Cantilevers 10−11 − 10−7 10−10 0.001− 100
Photon field 10−13 − 10−10 10−9 10−10 − 10−3

Magnetic field 10−14 − 10−11 10−8 n.a.
Flow field 10−13 − 10−9 10−8 n.a.

Table 2: Overview of single-molecule manipulation methods.
*These numbers represent only empirical, not absolute limits.
(Fmin−max, force range; Xmin, minimum displacement).
Taken from Ref. [63]

have their capabilities and limitations, which are often very differ-
ent from one another. In Tab. 2 there are summarized the relevant
force ranges, minimum displacement, probe stiffness and other
details of each method [63].

1.3.1 Atomic force microscopy (AFM)

The atomic force microscopy (AFM) is the simplest single
molecules technique in concept. Even if, AFM is born as an
imaging tool, it allows as well the manipulation of individual
molecules and the measurement of inter– and intramolecular
interaction forces with piconewton resolution [70, 71, 72]. This
property mades AFM an ideal tool for biological applications
[73, 74, 75, 76, 77]. When used for the measurement of inter– and
intramolecular interaction forces AFM is also called a molecular
force probe (MFP). Two important advantages of the technique re-
sides on the rapidity in sample preparation and on the possibility
to conduct measurements of biololgical samples under physiolog-
ical conditions [78, 79]. AFM consists of a cantilever with a tip
held above a piezoelectric scanning stage. One end of a molecule
is sticks to the cantilever tip, while its other end is fixed on the
piezoelectric stage. The deflection of the cantilever is measured
from the displacement of a low power laser reflected off the can-
tilever on a position-sensitive detector (PSD) (see Fig. 1.6) [63, 70].
When used for imaging, the AFM cantilever scans the surface of
the sample line after line. When used as MFP, a macromolecule
is attached to the sample surface and to the AFM cantilever tip.
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Figure 1.6: Schematics of atomic force
microscopy.
Taken from Ref. [70]

The piezoelectric stage is re-
tracted along the axial di-
rection, increasing the sepa-
ration between the cantilever
and the sample surface. The
force on the molecule is probed
by the cantilever deflection,
while the extension of the
molecule is equal to the sep-
aration between the AFM tip
and the sample surface. With
that, a high-resolution force–
extension curves of the single
molecule can be detected [70].

Atomic force microscopy hasAFM
applications been successfully adopted to

study mechanical and confor-
mational properties of macro-
molecules [5], including the un-
folding in proteins made of re-
peating domains [10, 62].

1.3.2 Force and elasticity measurements

While pulling on the macromolecule by an AFM, it is possible to
obtain two types of measures: the force response of the moleculetwo types

of measures and its extension. In fact molecules can be described as springs
that generate a restoring force when mechanically stretched. It
is important to note that neither force nor extension data are
recorded directly but rather through something that can be ob-
served. Force is generally calculated from the bending of a can-
tilever of known spring constant. The cantilever stiffness depends
on the material properties and shape of the cantilever. Typical val-
ues for cantilever springs in SME resides on the range 10 − 102

pN/nm.
To obtain precise force data, each cantilever must be properly

calibrated before use [70]. The stiffness accuracy depends on thestiffness
accuracy calibration method used and is about 10 − 20%. The extension

data are obtained by measuring the change in displacement be-
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Figure 1.7: Force-extension curve. The extension of the molecule until its rup-
ture is appreciable in a force releasing on the cantilever.

tween the ends of the molecule. The accuracy of this data is de-
termined by the quality of the piezoelectric stage. Piezoelectric
stages used in SME provide angstrom-level resolution. The force-
extension curve (see Fig. 1.7), provides valuable informations on
the structure, the folding and unfolding processes and even the
chemical activity of the molecule. Measurement of the stretching
curve is relatively straightforward. The AFM tip is lowered toward
the surface or the sample is lifted toward the cantilever tip by
piezoelectric actuators. After the initial contact with the surface,
the cantilever is pressed into the surface on which the sample is
deposited with a predetermined constant force. The tip is then re-
tracted. Attachment of the sample (RNA, DNA or protein) tethers
the cantilever tip to the surface, causing the cantilever to bend to-
ward the surface as the tip is retracted (see Fig. 1.8 ). The value of
this force is obtained by the Hooke law [70].

Figure 1.8: Schematics of a single molecule stretching with AFM. Initially the
molecule is attached to the tip (I), then pulled and its extension is
measured (II, III), finally the molecule is released or undergoes a
rupture (IV).
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1.3.3 Optical tweezers (OTs)

A very useful experimental technique are optical tweezers (OTs),
also known as optical traps, which can be used to exert forces on
dielectric particles ranging in size from nanometers to microm-
eters. The technique consists in focusing a laser to a diffraction
limited spot creating an optical trap. One end of a molecule is teth-
ered to a certain surface, the other end is attached to a bead that is
trapped in a laser beam causing the extension of the molecule (see
Fig.1.9). The particles near the focus experiences a restoring force
within the range 0.1−100 pN directed toward the focus [36, 80, 81].

Figure 1.9: Schematics of an optical tweezers experiment.
Taken from: http://jolisfukyu.tokai-sc.jaea.go.jp

The optical field polarizes the dielectric particle and the inter-
action with the gradient force near the focus results in a force
directed along the gradient. There is also a scattering force along
the beam propagation direction, which results in a shift of the
equilibrium trapping position nearby the focus [70]. For small
displacements (∼ 150 nm) of the trapped object from its equilib-
rium position, the force is linearly proportional to the displace-
ment and the optical trap can be well approximated as a linear
spring. The spring constant depends on how tightly the laser is
focused, the laser power and the polarizability of the trapped ob-
ject. Once again, from the knowledge of the spring constant, the

http://jolisfukyu.tokai-sc.jaea.go.jp
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value of the force is obtained by the Hooke law. A great advantage
of optical tweezers is the accuracy of the force resolution, which
usually is in the order of 0.1 pN [1]. This value is about 10 times
more accurate than in AFM, because the stiffness of the trap is at
least 100 times less than the one of a cantilever. Therefore the force OTs

applicationsresolution makes optical tweezers an ideal tool to investigate the
behavior of biomolecules [82, 83, 84, 85].

1.3.4 Magnetic tweezers (MTs)

Magnetic tweezers (MTs) are most straightforward to implement
then the two previous techniques (AFM, OTs). The method con-
sists on generating a magnetic trap by a pair of permanent mag-
nets placed above the sample [86]. In such manner the concept is
similar to that of optical tweezers: a (magnetic) particle in an exter-
nal magnetic field experiences a force proportional to the gradient
of the square of the magnetic field. One end of a molecule is teth-
ered to a certain surface, the other end is attached to a bead, which
is trapped in a magnetic field generated by magnets. (see Fig.1.10).
Magnetic tweezers are capable of exerting forces of maximum 1

nN (for the case of the electromagnetic tweezers). They can be
used to manipulate, and in particular, to rotate magnetic particles
ranging from 0.5 to 5µm [70]. The typical force range that can
be measured with this technique is 10−2 − 10 pN, which is highly
sensitive to the typical size of the magnetic bead. The low stiffness MTs

applicationsof the magnetic trapping potential makes magnetic tweezers ide-
ally to the study of nucleic acid enzymes [69, 87, 88, 89]. For their
properties, magnetic fields have been also used to apply torsional
stress to individual DNA molecules [68, 69].

1.3.5 Flow fields

Flow fields are a particular case of external fields. They exert
forces on each monomer of the molecule (tethered at one end)
through the transfer of momentum from the fluid to the monomer.
In a laminar flow, considering a liquid with viscosity η and velocity
v, the drag force of the liquid in motion can be calculated using
the Stokes law. The law is valid for forces up to ∼ 10 nN con-
sidering the flow as not turbulent. One experimental advantage
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Figure 1.10: Schematics of a magnetic tweezers experiment.
Taken from Ref. [70]

of using flow fields is that the liquid surrounding the tethered
molecule can be easily replaced. This is an important feature for
many single-molecules studies of enzymes, which require varying
buffer conditions [63].

The flow field technique was extensively applied in single-flow fields
applications molecule study of DNA elasticity [20] as well as to characterize the

rheological properties of individual DNA molecules [90, 91, 92].
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This Chapter provides a description of some basic concepts per-
taining to analytical mechanics that allow a consecutive introduc-
tion to the statistical mechanics formalism. Two reformulations of
Newton’s mechanics for systems with constraints are presented:
the Lagrangian and the Hamiltonian formalisms.

There are many circumstances in mechanics whereby the mo-
tion of bodies is constrained in some way. In each case, there are
forces acting on the constrained bodies and these forces are such
as to guarantee the respect of the constraints.
In the Newtonian approach a mechanical system is treated by in-
troducing variables representing the unknown forces, and solving
the system of equations for forces and accelerations. As a matter
of fact, this is not the unique procedure possible to follow, neither
the best one in certain situations. For complicated systems the
direct application of Newton’s laws might become extremely com-
plex. The reason lies on the fact that the equations are vectorial
and forces and accelerations turn out difficult to be determined.
This complication is even magnified when considering forces for
maintaining constraints on the motion of particles [93].

There exist two reformulations of Newton’s mechanics that of-
fer two different ways for solving the problem of motion: the La-
grangian and the Hamiltonian formalisms. The first one is associ-

25
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ated with configuration space, eventually extended by time, while
the latter is related to the concept of phase space.

2.1 constrained systems

Let us consider a system composed of N particles defined in
space by the vectors x1, x2, ..., xN with 3N independent variables
and subjected to p constraints depending on the positions and the
time. The general constraint can be expressed as:

f1(x1, x2, ..., xN, t) = 0. (2.1)

Considering all the p constraints we can write the following sys-
tem 

f1(x1, x2, ..., xN, t) = 0
f2(x1, x2, ..., xN, t) = 0

...
fp(x1, x2, ..., xN, t) = 0,

(2.2)

for which we have n = 3N− p degrees of freedom (the number ofdegrees of
freedom degrees of freedom is equal to the number of coordinates that are

used to specify the configuration of the system minus the number
of independent equations of constraint [93]. In other words, one
can say that solving a system with n degrees of freedom and N
particles implies the existence of 3N − n scalar constraint equa-
tions on those position variables.

Constraints such as the one showed in Eq.(2.1) that are express-holonomic and
non-holonomic

constraints
ible only as a function of coordinates and time, and does not
depend on velocities are defined holonomic. On the contrary, con-
straints depending also on velocities, such as:

f(x1, x2, ..., xN, v1, v2, ..., vN, t) = 0. (2.3)

are called nonintegrable or nonholonomic.
Moreover, if the equations of constraints do not contain the time as
an explicit variable, the mechanical system is called scleronomous
and its constraints are called scleronomic constraints; otherwise the
system is called rheonomous and its constraints are called rheonomic
constraints [94].
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2.2 generalized coordinates

In general, the configuration of a system can be expressed in
terms of various sets of coordinates. This means that for the anal-
ysis of a mechanical system, different coordinate systems are pos-
sible. In fact, there is an infinite number of possible choices.

Considering the system in Eq.(2.2) we saw that, at any instant,
the values of these coordinates could be expressed as a set of 3N
numbers. In other respects, expressing the positions of the parti-
cles in terms of spherical coordinates requires as well a set of 3N
numbers. The process of obtaining one set of numbers to express coordinate

transformationthe configuration of the same system from the other is known as a
coordinate transformation. There are some instances where the math- independent

generalized
coordinates

ematical analysis of a dynamical system is simplified by choosing
a set of independent generalized coordinates. Any set of number
that serve to specify the configuration of a system is an example of
generalized coordinate. This term can refer to any of the commonly
used coordinate systems, but it can also refer to any of other sets of
parameters that serve to specify the configuration of a system [93].
A system can be fully described by the scalar generalized coordinates,
q1,q2, ...,qn, and the time t, if and only if all the q’s are independent
coordinates. Considering Eq.(2.1), the transformation from old co-
ordinates to generalized coordinates can be represented as follows

xi = xi(q1(t),q2(t), ...,qn(t), t), (2.4)

which we indicate from now on as

xi = xi(q, t) (2.5)

to simplify the notation.
Important enough, we notice that this is a relationship between

different descriptions of the same point in configuration space,
and the functions xi are independent of the motion of any particle.
We are assuming that the xi and the qk are each a complete set of
coordinates for the space, so the q’s are also functions of the xi
and t:

qk = qk(x1, ..., xN, t). (2.6)
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For a more generic discussion, if we have to deal with nonholo-
nomic constraints, hence considering Eq.(2.3), the equivalent coor-
dinate transformation would be:

xi = xi(q1(t),q2(t), ...,qn(t),p1(t),p2(t), ...,pn(t), t) (2.7)
= xi(q,p, t),

where we have also included the possibility of using a coordinate
system that changes with time t. We remand to Section 2.6 for a
more detailed discussion on the meaning of the p coordinates.

Let us, for the moment, stay on the transformation in Eq.(2.4);
adopting the chain rule on this equation, we can write the total
time derivative

ẋi =
dxi
dt

=
∂xi
∂qk

q̇k +
∂xi
∂t

∀k = 1, ...,n (2.8)

where we used the Einstein convention in which repeated indexes
are summed over, that is

akbk ≡
N∑
k=1

akbk. (2.9)

From now on, we will use such a convention for generalized co-
ordinates, whereas for the i particles we will explicit indicate the
summation.

To be a good coordinate system, we should be able to invert the
relationship so that

qk = qk(xi, t), (2.10)

which we can do as long as we have

det

(
∂xi
∂qk

)
6= 0, (2.11)

since it is implied a linear transformation. Using the chain rule on
Eq.(2.10), we get

q̇k =
dqk
dt

=
∂qk
∂xi
ẋi +

∂qk
∂t

. (2.12)



2.3 lagrangian approach 29

2.3 lagrangian approach

Let us consider a particle identified by the vector xi moving in
a surface with a velocity vi. In this condition, the surface applies
a certain force Φi to the particle. If the surface is quiet (i.e. the
constraint is scleronomic), we have

N∑
i=1

Φi · vi = 0 ∀vi. (2.13)

From Newton’s law we can write the total force as the contribution
of the forces external to the system Fi and the forces of constraint
Φi obtaining

FTOT =

N∑
i=1

miai =

N∑
i=1

Fi +Φi. (2.14)

If the surface is moving in time (rehonomic constraint) we must
consider two admissible sets of velocities of the particles. So doing,
the difference between these admissible velocities (the so-called
virtual velocity) is tangent to the constraint (i.e. to the differential
manifold representing the system). Therefore, Eq.(2.13) becomes

N∑
i=1

Φi ·
(
v
(1)
i − v

(2)
i

)
= 0 ∀v(1)i , v(2)i . (2.15)

From this, by using Eq.(2.8), we obtain

N∑
i=1

Φi ·
(
v
(1)
i − v

(2)
i

)
=

N∑
i=1

Φi ·
∂xi
∂qk

(
q̇
(1)
k − q̇

(2)
k

)
= 0 ∀k = 1, ...,n

(2.16)

and, since the qk’s are independent and arbitrary, we have that

N∑
i=1

Φi ·
∂xi
∂qk

= 0 ∀k = 1, ...,n. (2.17)

Using Eq.(2.14) one finally gets

N∑
i=1

(Fi −miai) ·
∂xi
∂qk

= 0 ∀k = 1, ...,n (2.18)
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which is called d’Alembert’s principle. It is possible to demonstrated’Alembert’s
principle [93, 94, 95] that the last equation becomes

d

dt

(
∂K

∂q̇k

)
−
∂K

∂qk
=
∑
i

Fi ·
∂xi
∂qk

∀k = 1, ...,n (2.19)

where K is the total kinetic energy

K =

N∑
i=1

1

2
mivi · vi. (2.20)

If the forces are conservatives, hence they are derivables from a
scalar potential function

V = V(x1, ..., xN), (2.21)

and we can write

Fi = −∇iV = −
∂V

∂xi
, (2.22)

where the xi’s are defined in Eq.(2.4). From that, it is possible to
write the generalized forces Qk as

Qk =
∑
i

(−∇Vi) ·
∂xi
∂qk

= −
∑
i

(
∂V

∂xi

)
· ∂xi
∂qk

= −
∂V

∂qk
−
d

dt

(
∂V

∂q̇k

)
,

(2.23)

where the last term in the right-hand side of Eq.(2.23) is zero.
Therefore, for the generalized forces we have∑

i

(−∇Vi) ·
∂xi
∂qk

= −
∂V

∂qk
. (2.24)

Combining Eqs.(2.19) and (2.24) we get

d

dt

(
∂(K− V)

∂q̇k

)
−
∂(K− V)

∂qk
= 0, (2.25)

and, defining the new function Lagrangian L asthe
Lagrangian

L = K− V , (2.26)
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we finally obtain

d

dt

(
∂L

∂q̇k

)
−
∂L

∂qk
= 0, (2.27)

which define a set of equations, known as the Lagrange’s equations
or, from variational calculus, the Euler-Lagrange equations.

The set up of the equations of motion via the Lagrangian for- advantages of
the Lagrangian
approach

mulation (i.e. by means of Eq.(2.27)) allow to solve them in a very
convenient way. Indeed, while the original form of the Newton’s
law imposes to deal with many vectors (forces and accelerations),
the Lagrangian formulation allows to work only with two scalar
functions: the kinetic energy K and the potential energy function
V . A standard method is then easily provided to solve the prob-
lem of motion of a mechanical system. It is only necessary to write
down K and V in generalized coordinates, from which it is easily
to find the Lagrangian as L = K− V . Finally, substituting L in the
Lagrange’s equations, one get the equations of motion.

2.4 the jacobi integral and the hamiltonian

We want now give thought to the Lagrangian along the path of
the motion. To do that, let us consider the general form of the La-
grangian, which depends on the q’s, the q̇’s and the time, namely
L = L(q(t), q̇(t), t). As we are interested on the time variation of
the Lagrangian, we need to study its total time derivative. Consid-
ering Eq.(2.27) we have,

dL

dt
=
d

dt
L(q(t), q̇(t), t) =

∂L

∂qk
q̇k +

∂L

∂q̇k
q̈k +

∂L

∂t
, (2.28)

where we can write the second term in the right-hand side via the
following total time derivative

d

dt

(
∂L

∂q̇k
q̇k

)
=
d

dt

(
∂L

∂q̇k

)
q̇k +

∂L

∂q̇k
q̈k, (2.29)

thus getting

dL

dt
=

d

dt

(
∂L

∂q̇k
q̇k

)
+
∂L

∂t
−

[
d

dt

(
∂L

∂q̇k

)
−
∂L

∂qk

]
q̇k, (2.30)

which becomes
dL

dt
=

d

dt

(
∂L

∂q̇k
q̇k

)
+
∂L

∂t
(2.31)
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because, from Eq.(2.27), the last term in squared brackets turns
out to be zero. Rewriting the last equation we get

∂L

∂t
=
d

dt

(
L−

∂L

∂q̇k
q̇k

)
, (2.32)

and introducing a new function

H = H(q, q̇) =
∂L

∂q̇k
q̇k − L, (2.33)

we finally gets

dH

dt
= −

∂L

∂t
. (2.34)

The new function in Eq.(2.33) is called Hamiltonian of the system.the
Hamiltonian If the Lagrangian does not depend on time (e.g. when the sys-

tem is scleronomous), we expect a conservation law. In fact we
have

∂L

∂t
= 0 ⇒ dH

dt
= 0 (2.35)

that isthe Jacobi
integral

J ≡ ∂L

∂q̇k
q̇k − L = constant, (2.36)

where the quantity J is a constant of motion and it is called the Ja-
cobi integral of the system. Moreover, if the system is scleronomous
we find

H = K+ V . (2.37)

Note that, strictly speaking, the name Hamiltonian for H is re-
served for the function H = H(q,p, t) on extended phase space
rather than the function with arguments H(q, q̇, t) as we previ-
ously defined (for scleronomous systems) in Eq.(2.21).

2.5 mathematical form of the kinetic energy

We previously discussed that for systems that admit the La-
grangian formulation, equations of motion are easily found by
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starting to write T and V in generalized coordinates. The trans-
formation of T , from Cartesian coordinates to generalized coordi-
nates, is obtained by using the transformation equation Eq.(2.4)
and finding the velocities from it. From Eq.(2.8), we have the ve-
locities in generalized coordinates, following

vi =
∂xi
∂qk

q̇k +
∂xi
∂t

. (2.38)

The kinetic energy T is then writable as

T =
1

2

N∑
i=1

1

2
mivi · vi (2.39)

=
1

2

N∑
i=1

mi

(
∂xi
∂qk

q̇k +
∂xi
∂t

)
·
(
∂xi
∂qh

q̇h +
∂xi
∂t

)
.

Carrying out the expansion, the expression becomes

T =
1

2

∑
i

mi
∂xi
∂qk
· ∂xi
∂qh

q̇kq̇h +
∑
i

mi
∂xi
∂qk
· ∂xi
∂t
q̇k (2.40)

+
1

2

∑
i

mi
∂xi
∂t
· ∂xi
∂t

,

and respectively defining three new term a0, ak, akh, as

a0 =
1

2

∑
i

mi
∂xi
∂t
· ∂xi
∂t

, (2.41)

ak =
∑
i

mi
∂xi
∂t
· ∂xi
∂qk

, (2.42)

akh =
∑
i

mi
∂xi
∂qk
· ∂xi
∂qh

, (2.43)

we finally get mathematical
form of the
kinetic energy

T =
1

2
akhq̇kq̇h + akq̇k + a0, (2.44)

which is called mathematical form of the kinetic energy.
Therefore, the kinetic energy of a system can be written as the sum
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of three homogeneous term: one independent of the generalized
velocities, one linear and one term that is quadratic in them.

Using the mathematical form of T , we define the mathematical
form of the Lagrangian as:

L = K− V (2.45)

=
1

2
akhq̇kq̇h + akq̇k + a0 − V .

From Eq.(2.33) we findmathematical
form of the

Hamiltonian
H =

∂

∂q̇k

[
1

2
ashq̇sq̇h + asq̇s + a0 − V

]
q̇k − L (2.46)

=

[
1

2
ash(δskq̇h + δhkq̇s) + δskas

]
q̇k − L

=
1

2
akhq̇hq̇k +

1

2
askq̇sq̇k + akq̇k − L

=
1

2
akhq̇hq̇k + V − a0,

that is known as mathematical form of the Hamiltonian.
If the system is scleronomous

akh 6= 0 ak = 0 a0 = 0, (2.47)

then

T =
1

2
akhq̇kq̇h, (2.48)

and we get again

H = K+ V . (2.49)

2.6 the state space and the phase space

We previously discussed the advantages obtained passing from
the Newtonian to the Lagrangian approach: Lagrange’s equa-
tions are obtained by a derivation from a scalar function (the
Lagrangian L) and they have the same structure independently
of the coordinates choice. From the Lagrangian we derived an-configuration

space other scalar function, the Hamiltonian H, as a function of q’s, q̇’s
and the time t, therefore a function defined in the space of (q’s,
q̇’s) called the configuration space. There exists a convenient way to
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write Lagrange’s equations that allow us to obtain a system of 2n
equations of the first order instead of a system of n second-order
equations. Even if this can appears only another way to write La-
grange’s equations, we will see that it is a mandatory rewriting for
the foundation of statistical mechanics. In fact, using the Hamilto-
nian formalism the compatibility between probability and dynam-
ics (which is one of the central problem of statistical mechanics)
can be formulated in a very easy way by means of the Liouville’s
theorem.

Let us consider a system with n degrees of freedom, and a space
of possible configurations C in which it is fixed a system of local
coordinates q = (q1, ...,qn). For such a system, it is possible to
rewrite the Lagrange’s equations (see Eq.(2.27)) in a normal form,
obtaining

q̈ = f(q, q̇, t), q ∈ <n. (2.50)

From this, it appears clear that Lagrange’s equations forms a sys-
tem of n second-order equations. We want to show that it is conve-
nient to think the Lagrange’s equations as a system of first order
equations in a space with a double (2n) number of variables. The
reason lies in the fact that, for a second order equation as Eq.(2.50),
each solution is identified by the pair (q0, q̇0) of initial positions
and velocities. Therefore, it is spontaneous to evaluate, instead of
the space of configurations C, another space in which the pairs
(q, q̇) are thought to be independent from one another. This space the state

spaceis called the state space. In this way, it is possible to study the
evolution in time of the state space points, namely the pairs po-
sitions q = q(t) and velocities q̇ = q̇(t). From this discussion,
becomes natural the definition of an another space: instead of the
velocities defined as q̇(t), are introduced the auxiliary variables
p = (p1, ...,pn) which are called momentum conjugate to the coordi-
nates q = (q1, ...,qn) or canonical momentum . They are defined as canonical

momentum

pk =
∂L

∂q̇k
(q, q̇, t). (2.51)

Their utility comes clear rewriting the Lagrange’s equation
Eq.(2.27) using the canonical momentum in Eq.(2.51). In fact, from

d

dt

(
∂L

∂q̇k

)
−
∂L

∂qk
= ṗk −

∂L

∂qk
= 0 (2.52)
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one obtain the Lagrange’s equations in the following form

ṗk =
∂L

∂qk
(q, q̇, t), (2.53)

which is a set of equations of the first order in normal form.
Consequently we can now introduce the new space mentionedthe phase

space before, instead of the state space (q, q̇), the so called phase space
(q,p), where we indicate

x = (x1, x2, ..., x2n) = (q1,q2, ...,qn,p1,p2, ...,pn) (2.54)

as the generalized coordinates, briefly

x ≡ (q,p) ∈ <2n. (2.55)

It is possible to show that one can write the whole system in nor-
mal form, namely in the form

ẋ = V(x), (2.56)

where V(x) is an appropriate vector field ∈ <2n.
We wish now invert Eq.(2.51) respect to q̇i, in order to obtain

q̇k = q̇k(q,p, t). (2.57)

Actually, the possibility of inversion between q̇i and pi is alwaysinversion
of the

coordinates
possible for all natural mechanical systems, where the Lagrangian
is L = K−V with a potential energy independent of q̇i. In general,
considering the case of generic Lagrangian functions, (i.e., not nec-
essary of the type L = K− V), the condition that the Hessian is
not-zero, namely

det

(
∂2L

∂q̇i∂q̇k

)
6= 0, (2.58)

which guarantees that Eq.(2.51) can be always inverted to fur-
nishes the q̇i as a function of pi (i.e., considering the qi’s and t
as parameters).

2.7 hamiltonian approach

As a matter of fact, if the Hessian is not zero (i.e., the condition
in Eq.(2.58) is verified) and recalling equation Eq.(2.33), we can
now define the proper Hamiltonian as

H = H(q,p, t) = [pk · q̇k − L(q, q̇, t)]q̇k=q̇k(q,p,t) , (2.59)
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where Eq.(2.57) has been considered, namely the function q̇k has
been obtained by means of inversion of

pk =
∂L

∂q̇k
. (2.60)

From the previous results we have

q̇k =
∂H

∂pk
,

∂L

∂qk
= −

∂H

∂qk
. (2.61)

In conclusion, it is possible to show that, considering a non- Hamilton’s
equationsdegenarate Lagrangian (i.e., the condition in Eq.(2.58) is verified),

the Lagrange’s equations

d

dt

∂L

∂q̇k
=
∂L

∂qk
(2.62)

are equivalent to the Hamilton equations
q̇k =

∂H

∂pk

ṗk = −
∂H

∂qk
,

(2.63)

which form a system of 2n differential equations of the first order.
Indeed, from the Hamiltonian

H = phq̇h(q,p, t) − L(q,p, t) (2.64)

we have for the q̇k’s

∂H

∂pk
= q̇k(p,q, t) + ph

∂q̇h
∂pk

−
∂L

∂pk
, (2.65)

whereas the Lagrangian is defined as

L = L(q, q̇, t) = L(q, q̇(q,p, t), t), (2.66)

then
∂L

∂pk
=
∂L

∂q̇h

∂q̇h
∂pk

, (2.67)

and we have,
∂H

∂pk
= q̇k + ph

∂q̇h
∂pk

−
∂L

∂q̇h

∂q̇h
∂pk

(2.68)

= q̇k +

(
ph −

∂L

∂q̇h

)
∂q̇h
∂pk

= q̇k.
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The second relation in Eq.(2.63), is obtained from

∂H

∂qk
= ph

∂q̇h
∂qk

−
∂L

∂qk
(2.69)

= ph
∂q̇h
∂qk

− ṗk −
∂L

∂q̇h

∂q̇h
∂qk

= −ṗk.
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So far, it has been considered the notion of state of a system in
relation to its dynamics (microscopic state) and we discussed how
the equations of motion can be solved with the formalism of ana-
lytical mechanics. As a matter of fact, statistical mechanics is com-
posed of two formalisms, one is analytical mechanics while the
other is statistics. As previously showed, the problem of analyt-
ical mechanics can be solved by means of Lagrange’s equations
(if considering the space state), or better for some cases, via the
Hamilton’s equations (if considering the phase space). The dy-
namics of the motion is a deterministic problem that is solved
by knowing the initial conditions (q0, q̇0) for the Lagrangian ap-
proach, or (q0,p0) for the Hamiltonian one. However, for systems
composed of a huge number of particles (e.g., a gas), the micro-
scopic state is not accessible and, consequently, a deterministic
knowing of the initial conditions is not achievable. For such sys-
tems it is only possible to carry out a weaker concept of the state.
In thermodynamics the simplification of this concept is extraordi-
nary hard and, as known, the system is not described by using
the n ∼ 1023 degrees of freedom, whereas by imaging the state

39
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as something empirically accessible and sometimes described by
variables as the temperature and the volume (macroscopic state),
or by basic field variables in the study of the thermodynamics of
fluids such as the velocity of the fluid.

Statistical mechanics, operates as a bridge between the two dif-
ferent concepts of state, microscopic and macroscopic. On the one
hand, it is assumed that a microscopic state is assigned and a
certain Hamiltonian defines its dynamics, therefore the system is
characterized by a deterministic dynamics. On the other hand, it
is contemplate the assumption that the informations contained in
the microscopic state are not accessible and are redundant. This
leads to a new definition of state: the statistical state, which is called
ensemble [96]. Supposing a lack of information in the initial state
of the system, it is assigned a priori probability on the initial data.
This probability should be well defined so that the two elements
analytical mechanics and statistics will be consistently connected.

3.1 from analytical to statistical mechanics

Hamilton’s equations of motion (see Eq.(2.63)) lay the ground-
work to the transition from the analytical to the statistical mechan-
ics. In fact, with the introduction of the conjugate momentum per-advantages

of the
Hamiltonian
formulation

taining to the Hamiltonian formulation, it is possible to show that,
independently of the choice of the q’s, the equations of motion
satisfy the normal system form in Eq.(2.56), and the canonical co-
ordinates act as they were orthogonal Cartesian coordinates.

Considering an arbitrary Lebesgue-measurable domain Dt =volume
of the

phase space
D(t), it is possible to associate with it a measure that we indicate
as dV = vol(Dt). This measure represents the volume element of
the considered region of the phase space, and it is defined con-
sidering the canonical coordinates (q,p) as they were orthogonal
Cartesian coordinates, hence

dV = dq1 . . . dqndp1 . . . dpn; (3.1)

independently of the choice of the q’s coordinates. The concept of
measure is discussed in more details in Section 3.4.1.

Having defined the unit volume of the phase space, we can now
deal with the problem of the definition of a priori probability on
the initial data. This problem is known to be trivial if the possible
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data set N is finite, whereas to be much more complex if it is not
[97]. In the latter case, (N → ∞), as the space is a continuum, it
is necessary to assign an initial probability density ρ0(x) in the
phase space with the properties

ρ0(x) > 0,
∫
ρ0(x)dV = 1, (3.2)

and the problem is now to find a corresponding probability den-
sity ρ(x, t) at a certain time t evolved from the initial one ρ0(x).
From that, the probability that a representative point of the system
would be in a arbitrary domain of the phase space D0 ⊂ Γ is

Pr(x ∈ D0) =
∫
D0

ρ0(x)dV , (3.3)

where Γ is called Gamma space, which is the phase space of the
global system, and the element of volume dV is defined in Eq.(3.1).

From Eq.(3.3), for a generic observable of interest f, which is a
function of the dynamics variables x and p, it is then possible to
define its mean value as the weighted mean 〈f〉ρ(t) on all possible
states of the system as

〈f〉ρ(t) =
∫
f(x)ρ(x, t)dV . (3.4)

In this case, a physical state is a set of identical systems, called concept of
ensembleensemble, which differs for the initial conditions and that evolves

independently from the others states. Thus, the system evolves in
time accordingly to a density probability ρ(x, t) that connects the
initial state to the state of the system at a certain time t.

3.2 the hamiltonian vector field

We previously discussed how in the Hamiltonian formulation
the canonical coordinates act as they were orthogonal Cartesian
coordinates. Actually, the utility of the canonical coordinates lies
in the fact that the corresponding equations of motions, i.e. the
Hamilton’s equations, have a particular symmetric structure. As a
matter of fact, we already discussed that the Hamiltonian formu-
lation represents a system of differential equation in normal form
(see Eq.(2.56)), namely

ẋ = V(x), (3.5)
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and we already stated that V(x) is an appropriate vector field
∈ <2n, but without specifying anything else. Actually the vector
field V(x) is called Hamiltonian vector field and is constructed in
a suitable way, which turns out in some important properties of
the Hamiltonian and of the Hamiltonian vector field. In fact, the
vector field is constructed as following:

VH(x) = E∇H(x), (3.6)

where E is the symplectic matrix [98]the
symplectic

matrix
E =

(
0n In

−In 0n

)
(3.7)

and the gradient

∇H(x) =
(
∂H

∂qk
,
∂H

∂pk

)
(3.8)

is defined as a simple extension of the equivalent definitions for
the Cartesian space R3.

We finally have

VH(x) =

(
∂H

∂pk
,−
∂H

∂qk

)
. (3.9)

The reason of this particular vector field definition lies in the factorthogonality
that, in this way, VH(x) is orthogonal to the gradient of the Hamil-
tonian. This is straightforwardly proved by means of a direct cal-
culation; namely using Eq.(3.6) and Eq.(3.9) we have

VH(x) · ∇H =

(
∂H

∂pk
,−
∂H

∂qk

)
·
(
∂H

∂qh
,
∂H

∂ph

)
(3.10)

=
∂H

∂pk

∂H

∂qk
−
∂H

∂qk

∂H

∂pk
= 0,

where it has been used the Schwarz’s theorem for the commuta-
tion of the partial derivatives.

Furthermore, from Eq.(3.6) turns out that, as a consequence ofsolenoidality
its particular structure, the Hamiltonian vector field is solenoidal:

∇ ·VH(x) =

(
∂

∂qk
,
∂

∂pk

)
·
(
∂H

∂ph
,−
∂H

∂qh

)
(3.11)

=
∂2H

∂qk∂pk
−

∂2H

∂pk∂qk
= 0.
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Summarizing, the gradient of the Hamiltonian and the divergence
of the Hamiltonian vector field in the phase space have been defined
as an extension of the familiar definitions for the ordinary space
<3, referred to orthogonal Cartesian coordinates. This is far from
obvious because, even in the ordinary space <3, when using polar
or spherical coordinates, the gradient and the divergence have ex-
pressions completely different with respect to the case in which
Cartesian coordinates are considered. The same consideration is
true concerning the property of solenoidality of the Hamiltonian
vector field.

3.3 liouville’s theorem

Let now consider a generic velocity field V = V(q,p) in the
phase space and the ensemble measure of a region V0 of the phase
space at the initial time instant t = 0. During the evolution of
the system, also the ensemble evolves in time and this results in
the change of the probability density ρ0 and the region of volume
V0 they occupy. In other words, we are considering the problem of
how a corresponding probability density ρ(x, t) evolves from a ini-
tial density ρ0(x). The function ρ(x, t) must satisfy the continuity
equation,∫

V0

∂ρ

∂t
dV +

∫
∂V0

Vρ ·Σ = 0 ∀V0, (3.12)

being Σ a closed surface element and ∂V0 its boundary. From
Stoke’s theorem we can write:∫

∂V0

Vρ ·Σ =

∫
V0

∇ · (Vρ)dV . (3.13)

Writing Eq.(3.12) in local form, we have

∂ρ

∂t
+∇ · (Vρ) = 0, (3.14)

which is known as the Liouville’s equation. Considering a Hamilto-
nian vector field V = VH(x), we rewrite Eq.(3.12) as

∂ρ

∂t
+∇ · (VHρ) = 0, (3.15)
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and, recalling Eqs.(3.9) and (3.11), we can write

∂ρ

∂t
+∇ · (VHρ) =

∂ρ

∂t
+ (∇ ·VH)ρ+VH · (∇ρ) (3.16)

=
∂ρ

∂t
+

(
∂H

∂pk
,−
∂H

∂qk

)
·
(
∂ρ

∂qh
,
∂ρ

∂ph

)
=

∂ρ

∂t
+
∂H

∂pk

∂ρ

∂qk
−
∂H

∂qk

∂ρ

∂pk
,

then, from Eq.(3.15), we get

∂ρ

∂t
+ {ρ,H} = 0, (3.17)

where we used the Poisson brakets notation. We note now that

dρ

dt
=

∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk +

∂ρ

∂t
(3.18)

=
∂ρ

∂qk

∂H

∂pk
−
∂ρ

∂pk

∂H

∂qk
+
∂ρ

∂t
,

where we recalled the Hamilton’s equations (see Eq.(2.63)). From
Eqs.(3.17) and (3.18) we getLiouville’s

theorem
dρ

dt
≡ d

dt
ρ(q(t),p(t), t) = 0. (3.19)

This means that for Hamiltonian systems the continuity equation
becomes the following equation, known as the Liouville’s theorem,
and the phase space probability distribution function ρ is a con-
stant of the motion. In other words, it is possible to think the
points of the phase space as they were the constituent of an in-
compressible fluid.

Moreover, from Eq.(3.15) follows that we have finally fixed
the problem to find a corresponding probability density ρ(x, t)
evolved from the initial one ρ0(x).

3.4 the ergodic problem

In this Section, a concise discussion of the ergodic problem is ex-
posed. An initial recall of the essential theoretical setup is manda-
tory, hence presented, for introducing the ergodic hypothesis, which
is a crucial mainstay of statistical mechanics.
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Nowadays, the ergodic theory is a quite general branch of math-
ematics that studies dynamical systems with an invariant measure
and related problems, however its initial development was mo-
tivated by problems of statistical physics. A central concern of
ergodic theory is the behavior of a dynamical system when it is
allowed to run for a long time. One of the most important re-
sult concerning this point is the Poincaré recurrence theorem, which
states that almost all points in any subset of the phase space even-
tually revisit the set [97, 99]. Some specific ergodic theorems pro-
vide more precise informations under certain conditions. One of
them is the Birkhoff’s ergodic theorem (discussed in Section 3.4.3),
which claims that the time average of a function along the trajecto-
ries exists almost everywhere and is related to the space average.
At its simplest form, a dynamical system is a function T defined
on a setΩ. As the original motivation of the ergodic problems was
classical mechanics, the setΩ considered was the set of all possible
states of given dynamical system. This set is what we previously
mentioned as configuration space or phase space (depending on
what kind of formalism we are dealing with). From that,

T : Ω→ Ω (3.20)

is the law of motion which prescribes that if the system is at state
x now, then it will evolve to state T(x) after one unit of time. The
aim of the theory is to describe the behavior of Tn(x) as n → ∞
with n ∈ Z, and this understanding is related to understanding
the behavior of the system at the far future.

Considering a box containing a gas made of N identical
molecules, classical mechanics says that knowing the initial gen-
eralized positions q and momenta p, it is possible to determine
the positions and momenta of each molecule at time t by solv-
ing Hamilton’s equations (see Eq.(2.63)), namely where we call
(q,p) := (q1, . . . ,qN;p1, . . . ,pN) the state of the system. Let Ω de-
note the collection of all possible states, then

Tt : (q,p) 7−→ (q(t),p(t)) (3.21)

denotes the map which gives solution of Eq.(2.63) with the initial
condition (q(0),p(0)). The Ergodic Hypothesis, states that for cer-
tain invariant measures µ, many functions f : Ω → <, and many
states x = (q,p), the time average of f exists and equals the space
average of f.
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In order to present a more detailed and accessible discussion of
the ergodic hypothesis, we recall some mathematical setup in the
following.

3.4.1 Measure-preserving and ergodic system

Let consider a system composed by the triplet (Ω,A,µ) where:

– Ω ⊂ <n is a set of points xi ∈ <, sometime called the space.
– A is an element of the σ -algebra on Ω, namely a collection

of subsets of Ω, which contains the empty set, and which
is closed under complements and countable unions. The el-
ements of A are called measurable sets.

– µ : A ⊂ Ω→ < a measure on Ω such that

µ(A ⊂ Ω) =

∫
A⊂Ω⊂<n

g(x)dx =

∫
A⊂Ω⊂<n

dµ (3.22)

µ(Ω) = 1, (3.23)
consequently

µ(Ω) =

∫
Ω
dµ = 1. (3.24)

Let also be T a function T : Ω → Ω called transformation on Ω
where its inverse is applied to a given set

T−1(A) = {x ∈ Ω : T(x) ∈ A}. (3.25)

The transformation T is said to be measure-preserving with respectmeasure-
preservity to µ (or viceversa) if

µ(T−1(A)) = µ(A) (3.26)

is verified and, it is said to be ergodic ifergodicity

T−1(A) = A⇔ {µ(Ø) = 0 or µ(A) = 1} (3.27)

is verified.
A system (Ω,A,µ, T ) for which both the previous properties are
valid is called an ergodic dynamical system.

From a probabilistic point of view, a measure preserving transfor-
mation on a probability space is a probability preserving transforma-
tion. Much of the power and usefulness of ergodic theory is due
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to the following probabilistic interpretation of the abstract set up
discussed above.
Suppose (X,A,µ, T) is a probability preserving transformation. We
can think of:

– Ω as of a sample space, namely the collection of all possible
states x of a random system [100],

– A as the collection of all measurable events [97, 100],
– µ is the probability law: Pr[x ∈ E] := µ(E) ,
– measurable functions f : Ω→ < are random variables f(x),
– the sequence Ωn := f · Tn(n > 1) is a stochastic process [97, 100].

3.4.2 Phase space conservation

Considering a dynamical system the phase
flux

ẋ = f(x, t), (3.28)

where x0 ∈ Rn is the initial state and x(x0, t) ∈ Rn is the state of
the system at time t, we introduce the phase flux Φt, which is the
evolution at time t of the initial data x0, namely

x = Φ(x0, t) = Φt. (3.29)

Considering a subset x ∈ P0 ⊂ <n we can define the measure

misP0 =

∫
P0

dx (3.30)

of the initial subset x0 ∈ P0 ⊂ <n and the measure of the evolved
subset x ∈ Pt ⊂ <n

misPt =

∫
Pt

dx. (3.31)

We are now interested on studying how misP0 is related to
misPt. To do this, let us consider the evolution in time of misPt,
d
dt

∫
Pt
dx. We get

d

dt

∫
Pt

dx =
d

dt

∫
P0

J(t)dx =

∫
P0

d

dt
J(t)dx, (3.32)

where J(t) denoted the Jacobian matrix

J(t) = det

(
∂x

∂x0

)
. (3.33)
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Then, we can now study the total derivative in time

d

dt
J(t) =

d

dt

[
det

(
∂Φt

∂x0

)]
. (3.34)

Remembering that for a generic matrix A(t), its derivative in time
is given by

d

dt
A(t) = detA(t) tr

(
A(t)−1

dA(t)

dt

)
, (3.35)

where tr(M) denotes the trace of the generic matrix M.
From this we get

d

dt
J(t) = J(t) tr

[(
∂Φt

∂x0

)−1
d

dt

(
∂Φt

∂x0

)]
(3.36)

= J(t) tr

[(
∂Φt

∂x0

)−1
∂

∂x0

(
∂Φt

∂t

)]

= J(t) tr

[(
∂Φt

∂x0

)−1
∂

∂x0
f(Φt, t)

]

= J(t) tr

[(
∂Φt

∂x0

)−1(
∂f

∂x

)
Φt

∂Φt

∂x0

]

= J(t) tr

[
∂f

∂x

]
= J(t)∇ · f.

Then, we finally get

d

dt

∫
Pt

dx =

∫
P0

J(t)∇ · f dx0 =
∫
Pt

∇ · f dx, (3.37)

which is a general results with several applications.
For Hamiltonian systems, we get the particular resultphase space

conservation
d

dt

∫
Pt

dx = 0 (3.38)

because, as previously discussed, the Hamiltonian vector field is
solenoidal. From Eq.(3.38) we have that∫

P0

dx =

∫
Pt

dx, (3.39)
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which means that the volume of every domain P of the phase
space is a constant of the motion. Eq.(3.39) is a result of crucial im-
portance known as the phase space conservation law. In other words,
we have that

J(t) = 1 ∀t. (3.40)

3.4.3 Birkhoff’s ergodic theorem

Let consider a measure µ on Ω and a dynamical system with
a flux Φt, then for every integrable function f(x) (in the sense of
Lebesgue), it is possible to define almost everywhere (for almost
all x0 [100]) along the trajectories two averages.
The first is the space average (or ensemble average) of f, which is ensemble

average
〈f〉 =

∫
Ω
g(x)f(x)dx, (3.41)

being g(x) the density function on the relevant region of phase time
averagespace, while the second is the time average

f̄(x0) = lim
t→∞ 1t

∫ t
0
f[Φ(x0, t)]dt. (3.42)

Furthermore, if f is measure–preserving and ergodic holds almost
everywhere that

f̄(x0) = 〈f〉, (3.43)

which states that for an ergodic transformation the time average
equals the space average almost everywhere.

This theorem is one of the existing theorem related to the study the ergodic
hypothesisof the ergodic hypothesis. This hypothesis says that, over long pe-

riods of time, the time spent by a particle in some region of the
phase space of microstates with the same energy is proportional
to the volume of this region. As a matter of fact, this is a quite
sophisticate and delicate topic, suffice to states that, under fairly
general conditions, a proof of the ergodic hypothesis is still absent
for most of real mechanical systems [101].

3.5 microcanonical distribution

We discussed how, for mechanical systems, the Liouville theo-
rem states that the measure µ is invariant. This means that, con-
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sidering Eq.(3.41), the density function g(x) is constant. Moreover,
if the system is ergodic, it is possible to use space averages instead
of measuring time averages as an instrument does. In particular,
if

g(x) = 1 ∀x, (3.44)

the phase space measure µ is equivalent to the Lebesgue mea-
sure. In this conditions, the general statistical distribution is called
the microcanonical distribution and the corresponding ensemble is
called the microcanonical ensemble. In other words, we are consid-
ering the important assumption for which all the accessible mi-
crostates are equally probable.

Let us consider a Hamiltonian system in a 6N-dimensional
phase space, where the probability densities evolve as solutions of
the Liouville’s equation Eq.(3.19). If this system is scleronomous
and isolated, the total energy E remains constant, hence the mo-
tion of the N-particle will be confined to a (6N− 1) dimensional
surface given by

H(q,p, t) = E ∀t, (3.45)

and we denote the surface as Γ(E). As we previously discussed,
we have not access to the detailed dynamics of the system, but
we can instead study averages over the surface Γ(E) (a generic
domain) of the phase space. This averages are a special case of
ensemble averages. We will see in Chapter 5 how this is similarly
done in Metropolis Monte Carlo method that simulates ensemble
averages rather than time averages.

Considering the probability density ρ(q,p) in the phase space,
we can write

Pr{Q < q < Q+ dQ, P < p < P+ dP} = ρ(Q,P)dQdP

then, the probability that a point of the system is located in an
arbitrary domain of the phase space is

Pr{(Q,P) ∈ A ⊂ <2n} =

∫
A
ρ(q,p)dqdp. (3.46)

Instead of working with the constant energy surface Γ(E) we
assume that all the states are equally probable in (E,E+∆E). This
means that all (q,p) are contained into the domain

E < H(q,p) < E+∆E (3.47)
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occur with equal probability in the ensemble [102, 103, 104, 99]. In
other words, we can take into a consideration the energy between
a range E, E+∆E and, in this domain the probability density func-
tion is defined as

ρ(q,p) =

{
const if : E < H(q,p) < E+∆E
0 elsewhere.

(3.48)

In the special case in which we are considering a closed classical microcanonical
ensemblesystem of energy E, we have that the probability density function

is defined as

ρ∆E(q,p) = γ r∆E(H(q,p) − E), (3.49)

where γ is an opportune constant and r∆E(x) is the generic win-
dow function

r∆E(x) =


1

∆E
if x ∈ (0,∆E)

0 elsewhere,
(3.50)

for which we have∫∞
−∞ r∆E(x)dx =

∫∞
0
r∆E(x)dx = 1, (3.51)

and therefore

lim
∆E→0

r∆E(x) = δ(x). (3.52)

The ensemble corresponding to Eq.(3.49) is called microcanonical
ensemble.
From the normalization properties (see Eq.(3.2)) of the probability
density function∫

ρ(q,p)dqdp = 1, (3.53)

we have

γ

∫
r∆E(H(q,p) − E)dqdp = 1, (3.54)

from which we can find the value of the normalization constant

γ =
1

1
∆E

∫
{(q,p):E<H(q,p)<E+dE} dqdp

, (3.55)
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and finally the explicit form of the probability density functionmicrocanonical
distribution

with finite
∆E

ρ∆E(q,p) =
r∆E(H(q,p) − E)∆E∫

{H<E+dE} dqdp−
∫
{H<E} dqdp

(3.56)

which is called microcanonical distribution with a finite ∆E.
If we consider the surface between E and E+∆Ewith a tolerance

∆E→ 0, then we define the phase space volume as

Ω(E) =

∫
H(q,p)<E

dqdp, (3.57)

and looking for the limit ∆E→ 0 of

ρ∆E(q,p) =
∆E

Ω(E+ dE) −Ω(E)
r∆E(H(q,p) − E), (3.58)

namely

ρ(q,p) = lim
∆E→0

ρ∆E(q,p) (3.59)

= lim
∆E→0

∆E

Ω(E+∆E) −Ω(E)
r∆E(H(q,p) − E), (3.60)

we finally getmicrocanonical
distribution

with ∆E→ 0 ρ(q,p) =
1

dΩ(E)
dE

δ(H(q,p) − E), (3.61)

which is known as the microcanonical distribution for ∆E→ 0.

3.6 ideal gas phase space volume

Let us consider a monoatomic the ideal gas composed of N non-
interacting point particles, then the potential energy U(q,p) =

0 by definition and the system has n = 3N degrees of freedom.
Consequently the Hamiltonian H(q,p) is

H(p) = K(p) =

N∑
i=1

mi

2
pi ·pi, (3.62)

and recalling Eq.(3.45) we get

E =

n≡3N∑
k=1

p2k
2m

, (3.63)
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which defines the surface of a 3N dimensional sphere of radius
R =
√
2mE. From Eq.(3.57), we can write

Ω(E) =

∫
H(q,p)<E

dqdp =

∫
∑n≡3N
k=1 p2k<2mE

dqdp = Vn(R)V
N, (3.64)

where Vn(R) is the volume of a 3D sphere with ray R in a n-
dimensional space defined as

Vn(R) =
πn/2

Γ(n2 + 1)
Rn, (3.65)

and the Gamma function Γ(n) is an extension of the factorial func-
tion with its argument shifted down by 1, valid for real and com-
plex numbers. That is, if n is a positive integer, the Gamma func- the Gamma

functiontion is defined

Γ(n) = (n− 1)!. (3.66)

From Eq.(3.64) and Eq.(3.65) we get

Ω(E) =
πn/2

Γ(n2 + 1)
(2mE)

n
2VN, (3.67)

and studying the total derivative with respect to the energy E we
get from the last equation Eq.(3.67)

dΩ(E)

dE
=

πn/2

Γ(n2 + 1)
(2m)

n
2
n

2
E
n
2−1VN. (3.68)

If we consider true that for the microcanonical distribution is
valid the energy equipartition theorem, then from Eqs. (3.61),
(3.63) and Eq.(3.68), we get the kinetic energy

〈K〉 = 1

2
n
Ω(E)

Ω ′(E)
, (3.69)

and remembering that if we have a general function f(q,p) we can
get the average of it by Eq.(3.4), namely

〈f(q,p)〉 =
∫
f(q,p)ρ(q,p)dqdp, (3.70)

it is possible to define the temperature T as

T =
1

kB

Ω(E)

Ω ′(E)
, (3.71)
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and from Eq.(3.69) and Eq.(3.71) we can write

〈K〉 = 1

2
nkBT . (3.72)

Finally, we get for an ideal gas

Ω(E)

Ω ′(E)
=

E
n
2

n
2E

n
2−1

=
2

n
E = kBT , (3.73)

and the total energy

E =
n

2
kBT =

3

2
NkBT . (3.74)

3.7 canonical distribution

We want now study a system composed by a heat bath with
a constant temperature T and another system that is much more
smaller than the first one. The two systems are free to exchange
energy and are isolated from the rest of the universe, so that the
total particle numbers and volume of each system are constant.
Under these assumptions the total energy of the system will be
constant (weak interaction). If we indicate with ρ1(q1,p1) the dis-
tribution of the small system and with ρ2(q2,p2) the distribution
of the eath bath we can write the total distribution of the system
as ρ(q1,p1,q2,p2) .

Remembering that in probability theory if x and y are two
random variables, we can define the probability density function
ρ(x,y) as

Pr{X < x < X+ dX, Y < y < Y + dY} = ρ(X, Y)dXdY (3.75)

so that

Pr{(x,y) ∈ A ⊂ <2} =

∫
A
ρ(x,y)dxdy, (3.76)

we can write

Pr{X < x < X+ dX} =

∫
1
ρ(X)dX (3.77)

= Pr{X < x < X+ dX,−∞ < y <∞}

=

∫X+dX
X

∫∞
−∞ ρ(x,y)dydx

=

∫∞
−∞ ρ(x,y)dydX,
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from which, referring to our two systems, we get

ρ(q1,p1) =
∫
ρ(q1,q2,p1,p2)dq2dp2, (3.78)

and recalling Eq.(3.60) we have

ρ1(q1,p1) = lim
∆E→0

∫
∆E

Ω(E+∆E) −Ω(E)
(3.79)

× r∆E(H(q,p) − E)dq2dp2.

In the hypothesis of weak interaction, we can write

H(q1,q2,p1,p2) = H1(q1,p1) +H2(q2,p2), (3.80)

where H1(q1,p1) and H2(q2,p2) are the energies of the two sys-
tems. We chose a tolerance ∆E so that the statistical weights
Ω(E1 +∆E1), Ω(E2 +∆E2) are proportional to ∆E

ρ1(q1,p1) = lim
∆E→0

∆E

Ω(E+∆E) −Ω(E)
(3.81)

×
∫
r∆E(H1(q1,p1) +H2(q2,p2) − E)dq2dp2

= lim
∆E→0

∫
∆E

Ω(E+∆E) −Ω(E)

×
∫E−H1<H2<E−H1+∆E
E<H1+H2<E+∆E

1

∆E
dq2dp2

= lim
∆E→0

∫
∆E

Ω(E+∆E) −Ω(E)

× Ω2(E−H1 +∆E) −Ω2(E−H1)

∆E
,

and when ∆E→ 0, we get

ρ1(q1,p1) =
Ω ′2(E−H1(q1,p1))

Ω ′(E)
. (3.82)
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Assuming now that the heat bath is an ideal gas (whit n big),
we write

ρ1(q1,p1) =
Ω ′2(E−H1(q1,p1))

Ω ′(E)
(3.83)

=
Ω ′2(E)
Ω(E) ′

Ω ′2(E−H1(q1,p1)
Ω ′2(E)

= γ
[E−H1(q1,p1)]

n
2−1

E
n
2−1

= γ

[
1−

H1(q1,p1)
E

]n
2−1

= γ

[
1−

H1(q1,p1)
n
2kBT

]n
2−1

.

Considering the limit n→∞, then

n

2
− 1 ≈ n

2
(3.84)

and denoting the last as

x =
n

2
, (3.85)

we can write

lim
x→∞γ

[
1−

H1(q1,p1)
n
2kBT

]n
2−1

= γ lim
x→∞

[
1−

1

x

H1(q1,p1)
kBT

]x
, (3.86)

where E is the total energy of the ideal gas in Eq.(3.74). Remem-
bering that

lim
n→∞

(
1+

1

n

)n
= e, (3.87)

with the change of variables

y = −
xkBT

H1(q1,p1)
, (3.88)

and gathering the constant terms in Z, one work outthe Gibbs
ensemble

ρ1(q1,p1) =
1

Z
lim
y→∞

(
1+

1

y

)−
yH1(q1,p1)

kBT

(3.89)

=
1

Z
e
−
H1(q1,p1)
kBT ,
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which represents the so called Gibbs ensemble.
We can rewrite the last equation introducing the notation the canonical

distribution

β =
1

kBT
(3.90)

as

ρ1(q1,p1) =
1

Z
e−βH1(q1,p1), (3.91)

which is called the canonical distribution. While in the microcanoni-
cal distribution the energy E is specified and the temperature T is
a derived quantity, in the canonical ensemble the temperature of
the system is kept fixed and the energy fluctuates above its mean
values.
The constant term Z is actually the partition

function

Z =

∫
e−βH1(q1,p1)dq1dp1, (3.92)

having the role of a normalizing term and it is called the canonical
partition function.
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So far, we discussed how polymer molecules are recurrent in
biological systems. Their understanding in term of elasticity and
mechanical behavior is of crucial importance for natural sciences
(see Chapter 1). Mechanical experiments on polymers provided
a crucial elucidation about the molecular behaviour of several
biomolecular processes. In particular, the behaviour of single poly-
mer chains has been studied and single molecules techniques de-
veloped over the years include mechanical and optical methods
[1, 2, 3]. We already introduced the simplest model of a single
polymer, the Freely-jointed chains (FJC) model, which describes the
molecule as a chain of N monomers, joined by perfectly flexible
bonds with length b [26, 38]. Even if, FJC is the most simple model
for a single polymer, it is appropriate to describe certain biopoly-
mers, including single-stranded DNA (ssDNA) and RNA [19]. On
the other hand, this model is not useful for describing other kind
of biopolymers, for which a well description is provided by the
Worm-like chains (WLC) model [17, 27].

Usually, FJC and WLC models describe the polymer with some
assumptions, this is the reason why we can refer to them with
the generic term ideal chains. Two main assumptions are typically
considered in the analytical developments of the standard FJC

61
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and WLC models: (a) inextensibility, expressed as a fixed bond
length between two adjacent monomers, and (b) the number of
monomers constituting the chain is supposed very high. The first
assumption is used even in the case of large applied forces, al-
though it has been shown that the polymer may enter a regime
where the elasticity of the molecular and chemical bonds becomes
important. This phenomenon has been experimentally observed
for DNA [105], polyelectrolytes [106] and F-actin [107]. Typical cor-
rections aimed at describing bond elasticity have been introduced
through additional spring-like terms [108]. The second assump-
tion is related to the concept of thermodynamics limit (N → ∞).
We will discuss in Chapter 6 the consequences of both assump-
tions and what happens when they are not longer valid.

As a first theoretical analysis, in this Chapter, we deal with the
thermodynamics of a polymer model that maintains generality on
both the two assumptions. To do this, we consider a polymer chain
with a finite number N of monomers and with an arbitrary poten-
tial V on monomers without the hypothesis of the interaction pair-
ing. The advantage to consider such a model is that, when desired,
we can specify a particular bond potential and eventually study
the system for an infinite number of monomers (N → ∞). The
specification of a particular bond potential allow us to consider
different kind of elasticity contribution of the chemical bonds, de-
pending on the considered systems and loading regimes. A typical
choice is to assume the bond potential harmonic, which leads to
the well-known bead-spring chain models. On the one hand much
work has been performed using Hookean springs [109], even if
these models are sometimes insufficient in describing polymer be-
havior elasticity. On the other hand it is well known that finite-
extensibility plays an important role in determining the rheologi-
cal properties of polymers [110, 111]. In certain cases, we can also
specify the spring stiffness approaching to infinite, in order to turn
our model in the classical FJC or WLC models that assumes a fixed
bond length between monomers.
The advantage to consider a finite number N of monomers, lies on
the fact that we are interested on investigate the thermodynamics
of the system out of the thermodynamic limit, with the possibility
on the same ground, to study our systems in the thermodynamic
limit when requested.
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~r0

~r1 ~r2
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~rN−1
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V
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~rN

Figure 4.1: Polymer chain model. The monomer r0 is clamped while the other
monomers are free to fluctuate.

Two different approaches, which lead to two different ensem-
bles, are described: the Helmholtz and the Gibbs ensembles. We
determine the proper partition functions and we derive an exact
relationship between them. In particular, we find that the Gibbs
partition function is the three-dimensional (bilateral or two-sided)
Laplace transform of the Helmholtz partition function.

4.1 thermodynamics of polymer chains

Let us consider a chain of monomers in a long molecule, each our polymer
modelmonomer representing a group of atoms or molecules along the

polymer backbone. The classical dynamics of monomers is de-
scribed by the set of positions ri (i = 1, ...,N) and momenta
pi (i = 1, ...,N). We assume that one terminal monomer is fixed
at position r0 ≡ (0, 0, 0) and that monomers interact through an
arbitrary potential (see Fig. 4.1). The dynamics of the system is
described by the Hamiltonian

h0(r1, .., rN,p1, ..,pN) =
N∑
i=1

pi ·pi
2m

+ V(~r1, ..,~rN). (4.1)

Moreover, we consider this system in contact with a thermal bath polymer
immersed in
a thermal bath

characterized by a temperature T . It means that, at thermal equi-
librium, its statistical properties are described by the density prob-
ability in the phase space, hence by the canonical distribution, pre-
viously discussed in Eq.(3.90), namely

ρ(q,p) =
1

Z
e
−
h0(q,p)
kBT , (4.2)
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where we have introduced the canonical variables q = (r1, ..., rN)
and p = (p1, ...,pN), the Boltzmann constant kB and the partition
function Z. The convergence of thermal equilibrium to the canoni-
cal distribution is proved in Chapter 3: all the consequences will be
demonstrated in detail. The main goal of this Chapter is to obtainmain

goal the macroscopic (or mesoscopic) thermodynamics of the system
starting from the above canonical distribution. To this aim we fol-
low two dual approaches that are equivalent in the limit of a large
system (thermodinamic limit) hence for systems with N→∞.
In the first approach we suppose to fix the position rN of the last
component of the chain and we define r ≡ rN as a macroscopic
(or deterministic) variable. This case is similar to that of an idealsimilitude

with an
ideal gas

gas into a given volume V. In the second approach we suppose
to apply a given force f to the last particle and we consider f as
a macroscopic variable. This case is similar to that of a gas con-
strained with a certain pressure P.

4.2 helmholtz ensemble

By setting a given end-to-end distance, positions r0, rN and mo-
menta p0, pN are fixed (see Fig.4.2), and we can use the following
reduced Hamiltonianreduced

Hamiltonian
h(q,p, r) = h0(r1, . . . , rN−1, rN = r,p1, . . . ,pN−1,pN = 0).

where, in this case the microscopic variables are defined as q =

(r1, . . . , rN−1) and p = (p1, . . . ,pN−1), in terms of which the sys-
tem partition function is writtenHelmholtz

partition
function

Zr(r, T) =
∫∫
ΓN−1

e
−
h(q,p,r)
kBT dqdp, (4.3)

where ΓN−1 = <6(N−1). The force exerted on r ≡ rN by the others
components of the chain is − ∂h

∂rN
by definition of interaction po-

tential energy. Its mean (or average) value defines the macroscopic
force and the constitutive equation of the chain. The force exertedforce

exerted on
the system

on the system (from outside) is:

f =

〈
∂h(q,p, r)
∂rN

〉
=

∫∫
Γ

∂h(q,p, r)
∂r

ρ(q,p, r)dqdp (4.4)
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Figure 4.2: A polymer chain under the Helmholtz boundary conditions:
monomers r0 and rN are clamped.

or equivalently

f(r, T) =

∫∫
Γ
∂h(q,p,r)

∂r e
−
h(q,p,r)
kBT dqdp∫∫

Γ e
−
h(q,p,r)
kBT dqdp

. (4.5)

Actually, the concept of macroscopic force, here introduced for
the specific case of the position of the monomer rN, is much more
general and is often referred to the concept of the Landau free en-
ergy. As a matter of fact, keeping fixed a general set of monomers
(in this case r0, rN are fixed), the average force over all the con-
figurations of all the remaining n monomers acting on the i-th
monomer (r1, . . . , rN−1 in this case) at any fixed configuration is
given by:

−∆iU
n =

∫
e−βV(−∆iV)dq1 . . . dqN−1∫

e−βVdq1 . . . dqN−1
, (4.6)

where i = 1, . . . ,N, β = 1/kBT , the ∆iUn is the average force and
therefore Un is the so-called potential potential of the mean force or
the Landau free energy [99, 112, 113].
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We also remark that the constitutive equation Eq.(4.5) can be
directly obtained from the partition function Zr in Eq.(4.3). We
work out:

∂Zr

∂r
=

∫∫
Γ
e
−
h(q,p,r)
kBT

(
−
1

kBT

)
∂h(q,p, r)

∂r
dqdp. (4.7)

By combining Eqs.(4.5) and (4.7) we find:Helmholtz
constitutive

equation
f(r, T) = −kBT

1

Zr

∂Zr

∂r
= −kBT

∂

∂r
log(Zr). (4.8)

In addition to the constitutive equation, the statistical mechanics
also furnishes the macroscopic thermodynamics as follows. We
consider the average value of the Hamiltonian as the internal en-
ergy of the system, namely

U = 〈h(q,p, r)〉
=

∫∫
Γ
h(q,p, r)ρ(q,p, r, T)dqdp

=

∫∫
Γ h(q,p, r)e−

h(q,p,r)
kBT dqdp∫∫

Γ e
−
h(q,p,r)
kBT dqdp

. (4.9)

In order to introduce the thermodynamics we must consider
a transformation of the system. It means that the end-position
r = r(t) can vary in time and also the temperature T=T(t) is a
dynamical variable. In general, these assumptions lead to the out-
of-equilibrium statistical mechanics. However, we assume a veryvery slow

motion
assumption

slow motion of r and T and, therefore, we may say that the sys-
tem evolves through a quasi-static transformation. This kind of
transformation passes through a sequence of equilibrium states
and thus the dynamical probability density in the phase space is
simply given by

ρ(q,p, r(t), T(t)) =
1

Zr
e
−
h(q,p,r(t))
kBT , (4.10)

where Zr is given by Eq.(4.3), with r = r(t) and T = T(t). As long
as we are considering a very slow motion of r and T , the trans-
formations of the system pass through a sequence of equilibrium
states: in these hypothesis it is significant looking for the variation
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in time of the internal energy U. Starting from Eq.(4.9), the time
dependence is only in the variables r and T . We have

dU

dt
=

∫∫
Γ

d

dt
[h(q,p, r(t))ρ(q,p, r(t), T(t))]dqdp

=

∫∫
Γ

dh(q,p, r(t))
dt

ρ(q,p, r(t), T(t))dqdp

+

∫∫
Γ
h(q,p, r(t))

dρ(q,p, r(t), T(t))
dt

dqdp. (4.11)

Now we are able to identify two integrals: the first one represents
the work made on the system, while the second one is the heat
entering the system. Denoting with the letter A the first integral,
and with the letter B the second one, we can write

A =

∫∫
Γ

dh(q,p, r(t))
dr

dr(t)

dt
ρ(q,p, r(t), T(t))dqdp

=
dr(t)

dt

∫∫
Γ

dh(q,p, r(t))
dr

ρ(q,p, r(t), T(t))dqdp

= f · dr(t)
dt

, (4.12)

having considered Eq.(4.4) or Eq.(4.5). The product force-velocity
is the power, i.e. the work W made for unit of time. It means that
we can write

A =
dW

dt
. (4.13)

Let us denote for simplicity of notation, h = h(q,p, r(t)) and ρ =

ρ(q,p, r(t)), then for the second integral B, we elaborate the Gibbs
distribution as

ρ =
e
− h
kBT∫∫

Γ e
h
kBT

dqdp
= e

F−h
kBT , (4.14)

where F is called Helmholtz free energy and it is linked to the
partition function by the relation

1

Zr
= e

F
kBT (4.15)

equivalently we have

F = −kBT logZr. (4.16)
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For brevity, let us indicate the exponential argument in Eq.(4.15)
as

η =
F− h

kBT
(4.17)

and therefore we get

ρ = eη. (4.18)

The integral B assumes the form

B =

∫∫
Γ
h
dρ

dt
dqdp

=

∫∫
Γ
h
deη

dt
dqdp

=

∫∫
Γ
heηη̇dqdp. (4.19)

Since
∫∫
Γ ρdqdp = 1 we have∫∫
Γ
eηdqdp = 1 (4.20)

and we obtain

d

dt

∫∫
Γ
eηdqdp =

∫∫
Γ
eηη̇dqdp = 0. (4.21)

Again, since F does not depend on p and q, we have∫∫
Γ
Feηη̇dqdp = 0, (4.22)

and we can write

B =

∫∫
Γ
(h− F)eηη̇dqdp. (4.23)

and recalling Eq.(4.17) we have that h−F = −kBTη, then we finally
obtain

B = −

∫∫
Γ
kBTηη̇e

ηdqdp. (4.24)

To better understand the meaning of the previous integral we
may calculate 〈η〉, namely

〈η〉 =
∫∫
Γ
ηρdqdp =

∫∫
Γ
ηeηdqdp (4.25)
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and the variation in time of the average value of η as

d〈η〉
dt

=

∫∫
Γ
η̇eηdqdp+

∫∫
Γ
ηeηη̇dqdp. (4.26)

The first term is zero because of Eq.(4.21) and we obtain

B = −kBT
d

dt
〈η〉, (4.27)

where B can be interpreted as the heat given to the system for unit
of time. We obtain

B =
dQ

dt
= T

dS

dt
, (4.28)

where we have introduced the entropy

S = −kB〈log ρ〉 = −kB

∫∫
Γ
ρ log(ρ)dqdp. (4.29)

In conclusion, we obtained the first and the second principles start-
ing from the Gibbs distribution. We can we easily get the thermo-
dynamic energy balance in the form

dU

dt
=
dW

dt
+
dQ

dt
, (4.30)

where the first term represents the work done by the external force

dW

dt
= f · dr

dt
(4.31)

and the second one represents the heat entering the system

dQ

dt
= T

dS

dt
. (4.32)

From the relation h− F = −kBTη we perform the average and we
obtain

U− F = TS (4.33)

from which we have that the Helmholtz free energy F is given by Helmholtz
free energy

F = U− TS. (4.34)
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This is the standard definition in classical thermodynamics. Fur-
thermore, from Eq.(4.8) and Eq.(4.15), we have that

f = −kBT
∂

∂r
logZr =

∂F(r, T)
∂r

, (4.35)

which is a simple form of the constitutive equation.

Several thermodynamics relations follows from the scheme
above. From Eq.(4.30) we can write

dU = f · dr+ TdS. (4.36)

and, if U = U(r,S), we get

f =
∂U

∂r
and T =

∂U

∂S
. (4.37)

Moreover, from Eq.(4.34), we work out

dF = dU− TdS− SdT

= f · dr+ TdS− TdS− SdT
= f · dr− SdT . (4.38)

from which, if F = F(r, T), we get

f =
∂F

∂r
and S = −

∂F

∂T
. (4.39)

The classical thermodynamics of a gas or a fluid is obtained by
substituting r and f with the volume V and pressure P, respec-
tively.

4.3 gibbs ensemble

We suppose now to consider a given applied force f to the par-
ticle placed al rN (see Fig.4.3). This force can be introduced by
means of an addition potential energy −f · rN so that ∂

∂rN
(−f ·

rN) = f as requested; therefore the system is described by theaugmented
Hamiltonian following augmented Hamiltonian

h̃(q,p, f) = h(r1, ..., rN,p1, ...,pN) − f · rN (4.40)

where the quantities q = r1, ..., rN and p = p1, ...,pN are the mi-
croscopic variables while f assumes the role of the macroscopic
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~r0

~r1
~r2

~ri

~rN−1 V

V

V
V

V

FIXED

~f

~rN

Figure 4.3: A polymer chain under the Gibbs boundary conditions: while the
monomer r0 is clamped, the one at rN is subject to a constant trac-
tion f.

variable. It is important to notice that, imaging to rigidly trans-
late in space the molecule of rX, such that r0 → r0 + rX and
rN → rN + rX, the h term is unchanged while the term f · rN
goes into f · (rN + rX). Actually, while the h term clearly appears
unchanged, the last term appears to make the augmented Hamil-
tonian h̃ position dependent. However, as the force applied is a
constant of the motion, also the scalar product is constant and all
the other results that comes out are valid and independent of the
position of the last monomer. The ensemble partition function is Gibbs

partition
function

now given by

Zf = Z(f, T) =
∫∫
Γ
e
−
h̃(q,p,f)
kBT dqdp, (4.41)

and the corresponding Gibbs distribution is

ρ(q,p, f, T) =
1

Zf
e
−
h̃(q,p,f)
kBT . (4.42)

As before, we may determine the constitutive equation of the sys-
tem: to this aim we observe that ∂h̃∂f = −rN, and therefore we cal-
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culate the average position of the head of the chain as r = 〈rN〉 or
more explicitly

r = −

〈
∂h̃

∂f

〉
= −

∫∫
Γ

∂h̃

∂f
ρdqdp, (4.43)

which is the counterpart of Eq.(4.5). By using Eqs.(4.41) and (4.42)
in Eq.(4.43), we obtain

r(f, T) = −

∫∫
Γ
h̃(q,p,f)
∂f e

−
h̃(q,p,f)
kBT dqdp∫∫

Γ e
−
h̃(q,p,f)
kBT

, (4.44)

which is the counterpart of Eq.(4.8). This constitutive equation can
also be expressed by means of the partition function Zf. In fact, by
differentiating Eq.(4.41) with respect to f, we get

∂Zf
∂f

=

∫∫
Γ

h̃(q,p, f)
∂f

(
−
1

kBT

)
e
−
h̃(q,p,f)
kBT dqdp (4.45)

and thereforeGibbs
constitutive

equation r(f, T) = kBT
1

Zf

∂Zf
∂f

= kBT
∂

∂f
log(Zf). (4.46)

Now, we can introduce the macroscopic thermodynamics by
identifying the average value of the augmented Hamiltonian with
the enthalpy of the system. We can write

h = < h̃(q,p, f) >

=

∫∫
Γ
h̃(q,p, f)ρ(q,p, f, T)dqdp

=

∫∫
h̃(q,p, f)e−

h̃(q,p,f)
kBT dqdp∫∫

e
−
h̃(q,p,f)
kBT dqdp

. (4.47)

As previously, we suppose that f = f(t) and T = T(t) in order to
introduce a quasi-static transformation and we develop the time
derivative of the enthalpy, namely

dh

dt
=

∫∫
Γ

d

dt
[h̃(q,p, f)ρ(q,p, f, T)]dqdp

=

∫∫
Γ

h̃(q,p, f)
dt

ρ(q,p, f, T)dqdp

+

∫∫
Γ
h̃(q,p, f)

dρ(q,p, f, T)
dt

dqdp, (4.48)
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where the first term is

A =

∫∫
Γ

∂h̃(q,p, f)
∂f

df

dt
ρ(q,p, f, T)dqdp

=
df

dt

∫∫
Γ

∂h̃(q,p, f)
∂f

ρ(q,p, f, T)dqdp

= −
df

dt
· r. (4.49)

The second term can be developed by introducing a new form of
the Gibbs distribution

ρ(q,p, f, T) =
1

Zf
e
− h̃
kBT = e

G−h̃
kBT . (4.50)

Here we have used the relations

1

Zf
= e

G
kBT or G = −kBT log(Zf). (4.51)

where G is the Gibbs free energy.
For brevity, let us indicate

φ =
G− h̃

kBT
. (4.52)

We now develop the calculation of B starting from Eq.(4.19). The
integral B assumes the present form

B =

∫∫
Γ
h̃
d

dt
eφdqdp =

∫∫
Γ
h̃φ̇eφdqdp. (4.53)

Since∫∫
Γ
eφdqdp = 1 (4.54)

we obtain

d

dt

∫∫
Γ
eφdqdp =

∫∫
Γ
eφφ̇dqdp = 0 (4.55)

and since G is independent on q and p, we can write∫∫
Γ
Geφφ̇dqdp = 0. (4.56)
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We can write B (see Eq.(4.53)) also as

B =

∫∫
Γ
(h̃−G)φ̇eφdqdp = −

∫∫
Γ
kBTφφ̇e

φdqdp. (4.57)

The average value of φ is given by

〈φ〉 =
∫∫
Γ
φeφdqdp (4.58)

and its time derivative is

d〈φ〉
dt

=

∫∫
Γ
[φ̇eφ +φφ̇eφ]dqdp =

∫∫
φφ̇eφdqdp. (4.59)

From Eqs.(4.57) and (4.59) we obtain that

B = −kBT
d

dt
〈φ〉 (4.60)

or equivalently

B = T
dS

dt
=
dQ

dt
, (4.61)

where we have introduced the entropy

S = −kB〈log(ρ)〉 = −kB

∫∫
Γ
ρ log(ρ)dqdp. (4.62)

It is important to remark that Eq.(4.62) is not identical to Eq.(4.29)
since the probability density ρ in the latter developed case cor-
responds to the Gibbs ensemble. We will discuss after that, only
when the thermodynamic limit of a large system is satisfied, the
two approaches yield the same results. The time derivative of the
enthalpy has been obtained in the form

dh

dt
= −

df

dt
· r+ T dS

dt
. (4.63)

Since in the thermodynamic limit we have the equivalence of
the ensembles, we can also consider Eq.(4.36), namely

dU

dt
= f · dr

dt
+ T

dS

dt
(4.64)

and we obtain by subtraction

dh

dt
−
dU

dt
= −

df

dt
· r− f · dr

dt
= −

d

dt
(f · r) (4.65)
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or equivalently:

h = U− f · r, (4.66)

which is the standard definition of enthalpy in thermodynamics.
Within the Gibbs ensemble, from the definition of φ in Eq.(4.59),
we can write

G− ĥ = kBTφ (4.67)

and performing the average we obtain Gibbs
free
energyG = h− TS, (4.68)

which is the standard definition of Gibbs free energy. Moreover, from
Eqs.(4.46) and (4.51) we have

r = kBT
∂

∂f
log(Zf) = −

∂G(f, T)
∂f

. (4.69)

Some thermodynamic relations from enthalpy and Gibbs free en-
ergy follow. From Eq.(4.63) we have that

dh = −r · df+ TdS (4.70)

and, if h = h(f,S) we obtain

r = −
∂h

∂f
, T =

∂h

∂S
. (4.71)

From Eq.(4.68) we have

dG = dh− TdS− SdT

= −r · df+ TdS− TdS− SdT
= −r · df− SdT , (4.72)

from which, if G = G(f, T), we can write

r = −
∂G

∂f
, S = −

∂G

∂T
. (4.73)

As previously discussed, the classical thermodynamics for gas and
liquids can be obtained by substituting r, f with V ,P.
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4.4 relationship between helmholtz and gibbs parti-
tion functions

By taking into consideration Eqs.(4.3) and (4.41), as well as the
known integral∫

<3
exp
{
−
1

kBT

p ·p
2m

}
dp = (2πmkBT)

3/2 , (4.74)

the exact relationship between Zf and Zr can be obtained asZf and Zr
relationship

Zf(f, T) = (2πmkBT)
3
2

∫
<3
Zr(r, T)e

f·r
kBT dr, (4.75)

showing that the Gibbs partition function is the three-dimensional
(bilateral or two-sided) Laplace transform of the Helmholtz parti-
tion function (except for a non relevant multiplicative constant).
Now, it is important to obtain the inverse relation giving the
Helmholtz partition function in terms of the Gibbs one. For this
purposes, we can adopt two different ways: one by means of the
Fourier Transform, the other, using the Laplace transform.

4.4.1 Fourier transform theory approach

It is useful to invert the previous integral relation. From equa-
tion (4.75), we introduce the imaginary argument f = −ig, so that

Zf(−ig, T) = (2πmkBT)
3
2

∫
<3
Zr(r, T)e

−i g·rkBT dr. (4.76)

Now we have obtained a Fourier transformation between
Zf(−ig, T) and Zr(r, T). Therefore we can write

Zf(−ig, T)

(2πmkBT)
3
2

=

∫
<3
Zr(r, T)e

−i g·rkBT dr. (4.77)

The Fourier transform follows the rules
F(ω) =

∫
<3
f(r)e−iω·r (3D− FT)

f(r) =
1

(2π)3

∫
<3
F(ω)eiω·r (3D− IFT).

(4.78)
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Defining r = g/kBT and performing the change of variable g =

kBTω with ω ∈ <3, we can write

Zf(−ikBTω, T)

(2πmkBT)
3
2

=

∫
<3
Zr(r, T)e−iω·rdr. (4.79)

In the right-hand side we recognize a standard Fourier transform
and the inverse relation is obtained as

Zr(r, T) =
1

(2π)3

∫
<3

Zf(−ikBTω, T)

(2πmkBT)
3
2

eiω·rdω. (4.80)

By the change of variable φ = −kBTω we obtain the relation
dφ = (kT)3dω and, therefore, we get

Zr(r, T) =
1

(2π)3

∫
<3

Zf(iφ, T)

(2πmkBT)
3
2

e
i η·rkBT

dη

(kBT)3
. (4.81)

Since

(2π)3(2πmkBT)
3
2 (kBT)

3 =
[
2πkBT

√
2πmkBT

]3
=
[
(2πkBT)

3
2
√
m
]3

= (2πkBT)
9
2m

3
2 , (4.82)

we finally get

Zr(r, T) =
1

(2πkBT)9/2m3/2

∫
<3
Zf(iφ, T)e−i

φ·r
kBT dφ, (4.83)

which states that, in order to derive the Helmholtz partition func-
tion, one must use the analytic continuation of the Gibbs partition
function over the imaginary argument.

Eqs.(4.75) and (4.83) allow to obtain each partition function with
an integral over <3, which is much easier than the original inte-
gral over the whole phase space. So, when one of the two par-
tition functions is determined, the other can be simply obtained
analytically or numerically, depending on the complexity of the
system. Moreover, the relationship between the two partition func-
tions is very important for enlightening the meaning of the ther-
modynamic limit, as described in Chapter 6.
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4.4.2 Laplace transform theory approach

As a matter of fact, one can obtain the last relation in Eq.(4.83)
also by means of the Laplace transform theory. Referring to
Eq.(4.75), and performing the change of variable f = −kBTS,
where S is the vector Laplace variable, we can write

Zf(−kBTS, T) = (2πmkBT)
3
2

∫
<3
Zr(r, T)e−S·rdr, (4.84)

or equivalently

Zf(−kBTS, T)

(2πmkBT)
3
2

=

∫
<3
Zr(r, T)e−S·rdr. (4.85)

Recalling the Laplace transform property
F(S) =

∫+∞
−∞ f(t)e−Stdt (LT)

f(t) =
1

2πi

∫γ+i∞
γ−i∞ F(S)eStdS (ILT),

(4.86)

and those in three dimensions
F(S) =

∫
<3
f(r)e−S·rdr (3D− LT)

f(r) =
1

(2πi)3

∫
i<3

F(S)eS·rdS (3D− ILT),
(4.87)

we can write

Zr(r, T) =
1

(2πi)3

∫
i<3

Zf(−kBTS, T)

(2πmkBT)
3
2

eS·rdS. (4.88)

From this, with a change of variable S to r, namely

S = −i
φ

kBT
, dS =

(
−

i

kBT

)3
dφ, (4.89)

we obtain again Eq.(4.83),

Zr(r, T) =
1

(2πkBT)9/2m3/2

∫
<3

Zf(iφ, T)
e

−i φ·rkBT

dφ. (4.90)
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The present results can be further simplified when the applied
force is taken to be collinear with the end-to-end vector dis-
tance. We suppose that the Helmholtz partition function exhibits
the spherical symmetry, leading to the scalar relation Zr(r, T) = spherical

symmetryZr(r, T). In other words, Zr depends on r only through its modu-
lus r. In this case the Gibbs partition function shows such a spher-
ical symmetry as well: Zf(f, T) = Zf(f, T). Conversely, a similar
constraint is, in turn, obtained for the Helmholtz function if spher-
ical symmetry is assumed for the Gibbs function. It can be proved
that Zr and Zf fulfill the following relationships

Zf(f, T) = α
∫∞
0
Zr(r, T)

βr

f
sinh

fr

kBT
dr, (4.91)

and

Zr(r, T) = α
∫∞
0
Zf(iη, T)

η

βr
sin

ηr

kBT
dη, (4.92)

where α =
(

2
πkBT

)1/2
and β =

(2πmkBT)
3

m3/2
. We observe that

Eqs.(4.91) and (4.92) are the counterparts of Eqs.(4.75) and (4.83)
for a model with spherical symmetry.

4.5 outline of the results

Here we introduced general extensions of the two most known
models of a single polymer, the FJC and WLC. While both mod-
els describe the polymer with the assumptions of inextensibility
(fixed bond length), we introduced the typical corrections aimed
at describing bond elasticity through additional spring-like terms
[105, 106, 107, 109, 110, 111]. Considering a polymer chain with a
finite numberN of monomers and with an arbitrary potential V on
monomers, we described two different ensembles: the Helmholtz
and the Gibbs ensembles. Some examples in literature testify the
interest on investigate the differences on the elasticity of a poly-
mer chains subjected to different ensembles, showing a different
behavior when out of the thermodynamic limits. Simple models
describing internal barriers to bond rotation [114], single ideal
Gaussian chain [115] and DNA stretching [116] as been consid-
ered. Often, the elasticity of the polymers is investigated by means
of computer simulations [117, 118, 119, 120, 121], or is described
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by some theoretical interpolation formulas [21, 22, 23], but there
are a restricted case of results presenting closed analytical forms
[43, 122, 123]. Considering a polymer subjected to both ensembles,
we determine the proper partition functions and we derive an ex-
act relationship between them. Moreover, we found also a closed
form that allows to analytically switch from one ensemble to an-
other, by means of a simple bilateral Laplace transform of the par-
tition functions. Such a theoretical framework, allows a suitable
investigation of the convergence to the thermodinamic limit for
small systems (see Chapter 6) and the interpretation of some ex-
perimental results (see Chapters 7 and 8), taking advantage from
the exactly theoretical formulas developed.



5
M E T R O P O L I S M O N T E C A R L O M E T H O D

In Chapter 4, we reported our theoretical approach that is
grounded on the statistical mechanics formalism. This means that
we must handle with ensemble averages. Our aim is now to moti-
vate the reasons we need to use a computational method, in par-
ticular, a Monte Carlo (MC) method.

5.1 ensemble average calculations

We remember that, considering a general function f(q,p), we
can get the average of it by the calculation of the integral

〈f(q,p)〉 =
∫
f(q,p)ρ(q,p)dqdp, (5.1)

where the quantity ρ(q,p) is a normalized probability density
function that depends on two generic variables p and q.
We need a method that allows us to solve integrals like Eq.(5.1).
If f(q,p) is a function whose average is of thermodynamic impor-
tance, such a method will allow us to find its average. Actually, it
is important to remember that Monte Carlo methods are used as
well in several fields of science to solve many different problems
such as numerical integration and generation of samples from a
probability distribution, as briefly discussed in Section 5.2.

To be specific, let us remember the probability density function
previously considered for a polymer chain

ρ(q,p) =
1

Z
e
−
H(q,p)
kBT , (5.2)

and the partition function associated

Z =

∫∫
Γ
e
−
H(q,p)
kBT dqdp, (5.3)

where H is the Hamiltonian of the system, which expresses the
total energy of the system as a function of positions q and mo-
menta p of the monomers composing the chain. We known that,

81
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being the Hamiltonian H = K+ V , (K is the kinetic energy and V
the potential energy), it is possible to separate the kinetic part of
the partition function from the potential one [124], thus allowing
us to perform the calculation of the average function separately
for momenta and positions (this is possible only if we use orthog-
onal coordinates). As K is a quadratic function of the momenta,
the integration over the moments can be carried out analytically,
hence is not difficult to calculate in close form the average function
〈f(p)〉. On the contrary, the complication is related to the calcula-numerical

techniques are
mandatory

tion of the average function depending on the positions 〈f(q)〉.
Only in few circumstances it is possible to calculate analytically
the multidimensional integral over the particles; in all other cases
numerical techniques are mandatory [125, 126].

5.2 simulation method

Having clarified that we must deal with a numerical problem,
we now have to specify the reasons that lead us to use a Monte
Carlo method.
There are many ways to perform ensemble average calculations, aswhat

numerical
method?

for instance using Simpson’s rule or other basic quadrature meth-
ods [127, 128]. In any manner, such a methods would request com-
putation of huge magnitude, making them almost useless. More-
over, even if possible, the result that would be obtained would
have been subjected to a large statistical error [125].
One of the most adopted and convenient way to numerically com-Monte

Carlo
methods

pute integrals is by means of Monte Carlo methods. As numer-
ical methods work, also Monte Carlo is efficient only for some
problems (sometimes intractable in other ways) in which all other
numerical methods are less efficient. This happens for examples
for problems of numerical integration in d dimensions. Compar-
ing Monte Carlo integration with the Simpson’s rule, the error
in Simpson’s rule with n nodal points behaves asymptotically as
d/n4 for smooth integrands. In low dimension (d < 8) this is much
better than Monte Carlo integration, but in high dimension (d > 8)
it is much worse [129]. This is the reason because Monte Carlo
is used for performing high-dimensional integrals and a general
domain of its application are systems with many degrees of free-
dom (far from the perturbative regime). Such systems are part of
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the ones of greatest interest in statistical mechanics, and some of
them are largely investigated by means of molecular simulations
[127, 129, 130].

As a matter of fact, there are two most widely used methods of Monte Carlo
or
Molecular
Dynamics?

molecular simulation: one is Monte Carlo and the other is molec-
ular dynamics (MD). The two procedures have typically the same
system setup, ranging from the representation of molecules re-
garded as collections of atom-centered interaction sites, to the po-
tential energy terms, and the implementation of periodic bound-
ary conditions. The principal differences are in the modes of sam-
pling the configuration space available to the system [125, 126].
These differences, and the fact that in this work we are investigat-
ing the statistical mechanics of equilibrium, lead us to consider a
Monte Carlo method instead of molecular dynamics. In fact Monte
Carlo methods are well suited to investigations of equilibrium situ-
ations [131]; this is due to two important characteristics of Monte
Carlo approaches. On the one hand, the temperature is control-
lable [125, 126], and this allows investigation of phase transitions
such as melting, in a simple way. Oppositely, in molecular dynam-
ics there is no simple way of assigning a temperature to the system
in advance. Instead, the temperature is calculated from the kinetic
energy of the particles. On the other hand, unlike molecular dy-
namics simulations, Monte Carlo simulations are free from the re-
strictions of solving Newton’s equations of motion. This freedom
allows for cleverness in the proposal of moves that generate trial
configurations within the statistical mechanics ensemble of choice.
In addition, Monte Carlo methods are generally easily paralleliz-
able with some techniques being ideal for use with large CPU
clusters. Sometimes no effort is required to separate the problem
into a number of parallel tasks and the problem is said to be an
embarrassingly parallel problem [132].

The incontestable importance of the Monte Carlo and molecular
dynamics methods is however in contrast with the investigations
of their efficiencies comparison, which is nowadays still lacking.
Conformational equilibrations of a box of liquid hexane molecules
showed Monte Carlo runs to be 1.6− 3.8 times faster than those of
molecular dynamics [133]. Another investigation on folding simu-
lations of small polypeptides showed that, while both Monte Carlo
and molecular dynamics methods successfully gave the same ex-
pected results, they do so at different speed: Monte Carlo was
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found to be 2 − 2.5 times faster than molecular dynamics [134].
Of course, this efficiency is highly dependent on the level of per-
formance of the individual Monte Carlo and molecular dynamics
programs [135].

For all the previous reasons Monte Carlo methods are the mostMonte Carlo
methods are
appropriate

convenient way to investigate systems with many degrees of free-
dom in thermal equilibrium. Although, we must remark that
Monte Carlo techniques are used in several fields of science and
they can be referred to many different things. As stated in the ex-
cellent review by Robert Q. Topper et al., the one and only thing
that all Monte Carlo methods have in common is that they all use
random numbers to help calculate something [136]. It is hence nec-
essary to specify what we mean by referring to Monte Carlo meth-
ods. We refer here, to the utilization of random-walk processes for
the purpose of drawing samples from a desired probability func-
tion. Such a rationale is called the Metropolis Monte Carlo (MMC)Metropolis

Monte Carlo algorithm, and it was originally developed by Metropolis et al. in
1953 as the Monte Carlo importance sampling-algorithm [137].

5.2.1 The Metropolis Monte Carlo algorithm

The importance of this algorithm lies on the way in which itwhy Metropolis
algorithm? draws samples: rather than simply picking them at random, it gen-

erates configurations distributed according to a specified proba-
bility distribution function, which is usually the actual probability
function of the physical system of interest. More precisely, the sim-
ple Monte Carlo algorithm generates random configurations ac-
cording to a uniform distribution, assigning them a weight equal
to the Boltzmann factor. In practice, this simple approach is not
feasible because uniform random sampling yields many config-
urations which have a very small Boltzmann factor: such config-
urations make a very little contribution to the ensemble average.
Actually, a very large number of configurations would provide the
correct calculation, but this is prohibitively in many practical prob-
lems. The limitations of uniform random sampling is then avoided
with the Metropolis sampling that generates random configura-
tions according with the Boltzmann distribution and counts each
of them equally. Hence, the Metropolis solution generates config-
urations that make a large contribution to the ensemble average;
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this means that the sampling biases the generation of configura-
tions towards those that make the most significant contribution to
the ensemble average.

The Metropolis Monte Carlo algorithm is a particular type of
an important sampling procedure, and it differs from the various
existent algorithms for the sampling scheme; other sampling tech-
niques are used as well [96, 138]. In any manner, for statistical
mechanics, the Metropolis method (grounded on the correspond-
ing algorithm) is certainly the most used one [136].
The MMC algorithm generates successive configurations of the
considered system creating a particular random walk: a Markov
chain [139, 140]. This walk is made in order to asymptotically
(i.e., in the limit that the number of configurations becomes large)
generate a distribution of configurations corresponding to the re-
quested probability distribution function.

Defining the transition probability as K(qo → qn) to go from the
old configuration qo to the new one qn, the probability of moving
to the new configuration is

P(qo → qn) = K(qo → qn)ρ(qo). (5.4)

This means that, in equilibrium, the average number of accepted
moves to any other state is exactly as it is for moving in the reverse
direction [125, 126, 136]. It is convenient to impose that in equilib-
rium the average number of accepted moves from qo to any qn is
balanced by the number of reverse moves. This is a much stronger
condition known as the detailed balance condition: detailed

balance
conditionK(qo → qn)ρ(qo) = K(qn → qo)ρ(qn). (5.5)

Many possible forms of the transition matrix satisfy this equation
[125, 136]. Considering Eq.(5.5) and summing over all states qn,
we get∑
n

K(qn → qo)ρ(qn) =
∑
n

K(qo → qn)ρ(qo) = ρ(qo)
∑
n

K(qo → qn),

(5.6)

and recalling that, being K a stochastic matrix, its rows add to one

∑
n

K(qo → qn) = 1, (5.7)
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we get∑
n

K(qn → qo)ρ(qn) = ρ(qo). (5.8)

This means that ρ(qo) is an eigenvector of the stochastic matrix
with eigenvalue unity, and because of the properties of K, the
other eigenvalues are 6 1 [125, 136]. Now, imaging to start the
Markov process by any given distribution ρ(1), (for the standard
MMC, starting from a configuration the initial distribution is a
Dirac delta function), it is possible to express it as a convex linear
combination of the eigenvector of the stochastic matrix. Applying
this stochastic matrix to the initial distribution an infinite number
of times, namely:

ρ = lim
τ→∞ ρ(1)Kτ, (5.9)

the limiting distribution must satisfy the eigenvalue equation
Eq.(5.8), with eigenvalues equal to 1. This proves that Metropo-
lis Monte Carlo is independent of the initial distribution.

If we denote the probability of accepting a trial move from qo to
qn as the acceptance probability acc(qo → qn), we have

K(qo → qn) = α(qo → qn)acc(qo → qn), (5.10)

where α is the transition matrix that determines the probability of
performing a trial move from qo to qn. The possibility of choosing
α with great flexibility, is one of the power of Monte Carlo meth-
ods [136].
From Eqs.(5.5) and (5.10), we obtain the ratio of acceptance proba-
bilities

acc(qo → qn)

acc(qn → qo)
=
ρ(qn)

ρ(qo)

α(qn → qo)

α(qo → qn)
, (5.11)

which is major or equal to zero. If α is chosen to be a symmetric
matrix, α(qo → qn) = α(qn → qo) (as in the original Metropolis
scheme [137]), and considering Eq.(5.11), it follows that

acc(qo → qn)

acc(qn → qo)
=
ρ(qn)

ρ(qo)
= exp{−β[V(qn) − V(qo)]}, (5.12)

where β = 1/kBT . According with Eq.(5.12), with the obvious con-
dition that acc(qo → qn) < 1, a trial move should be accepted
with a probability

acc(qo → qn) = min{1, exp{−β[V(qn) − V(qo)]}. (5.13)
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To conclude, we have to explain how we can decide whether a random
numbers
generation

trial move is to be accepted or rejected. In order to do that, it is
needed the generation of a random number rand from a uniform
distribution in the interval [ξ ∈ (0, 1)].

Figure 5.1: Flowchart of the MMC algorithm for sampling in the canonical en-
semble. Once an initial configuration has been generated, a trial
move is made to generate a new trial configuration according to
a move strategy rule. U ≡ V indicates the potential energy. Taken
from: [136]

We will accept the trial move if ξ < acc(qo → qn), and we will accept
a trial
move

reject it oppositely. Finally, as remarked by Topper et al., for MMC
calculations it is often convenient to work in Cartesian coordinates
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[136]. For this reason, they presented a flowchart of the Metropolis
Monte Carlo algorithm in Cartesian coordinates (see Fig. 5.1).

The initial state of the system (a polymer chain in our case) isinitial
state of

the system
defined by a set of randomly chosen positions for the particles
(monomers). Then we have to chose a single particle of the sys-
tem. The fact we choose a single particle is in accordance with
the original MMC procedure (single-particle moves) [137]. How-
ever, depending on the system, single-particle moves alone are
inefficient [136]. The choice of the particle to be moved can be ran-choose a

particle domly done or in sequence, at the discretion of the programmer.
Once we have selected a particle x = xo, we calculate the total
energy V(xo). Then we give the particle a random displacement,
namely the new position will be

xn = xo + δx, (5.14)

which is a trial move. We then calculate the associated energyenergy
calculation V(xn). In the canonical ensemble, if ∆V = V(xn) − V(xo) 6 0,

the trial configuration will be accepted. The probability of move
acceptation is

acc(xo → xn) = min{1, exp{−β[V(xn) − V(xo)]}. (5.15)

On the contrary, if ∆V > 0, the trial move will not directly
refused, but it may still be conditionally accepted by compar-
ing exp(−β∆V) with a random number [ξ ∈ (0, 1)] (Boltzmann
test). If ξ 6 exp(−β∆V) the trial move will be accepted, oth-
erwise rejected. This procedure is repeated until equilibration
[126, 141, 142]. Once equilibration is reached, any properties of
interest must be accumulated. In both cases, accepted or rejected
move, the configuration must be included in the average, other-
wise the potential energies will not be distributed according to
the Boltzmann probability density function [125, 126, 136].

5.2.2 Make a trial move

As we can see, a trial move generates a new trial configura-
tion starting from a selected particle, according to a precise rule
called move strategy [136]. There are different ways to perform a
trial move, but the simple move strategy, originally proposed by
Metropolis et al. [137], is still the most used method. It consists
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to preselect a maximum stepsize X, and to randomly moves each
particle (monomer) within a cube of length |X|, centered on the
particle original position.

The displacement extent, δx = ξX, (where ξ is a random number displacement
extent∈ (0, 1)) of the position vectors, governs the magnitude of the trial

move and the overall efficiency of the configurational space sam-
pling. However, adopting a too small δx most of the trial moves
are accepted but the configurational space is explored too slowly,
while a too large δx leads to a high rejection frequency, result-
ing in little movements through the configurational space. There-
fore, one must analyzed several runs in order to optimize its value
[125, 126]. For this reason one generally chooses δx so that it en-
sures an acceptance of the moves (acceptance ratio) between 30% acceptance

ratioand 70%. A common and reasonable choice is to maintain the ac-
ceptance ratio near 50% [125, 126].
There are other different ways to impose the δx parameter. One
of this is the so called dynamical adjustment. In this case, δx is ad-
justed during the simulation so that about half of trial moves are
rejected. This adjustment is normally handled automatically [126].
However, one should be very cautious using this. In fact, the dy-
namical adjustment can lead to serious problems, such as the vio-
lation of the detailed balance, as excellently discussed by M. A.
Milleret et al. in Ref. [143].

5.3 pseudo random-number generation

Because the Metropolis Monte Carlo method is based on ran-
dom sampling, one should be careful about the choice of the
random generator algorithm. As a matter of fact, some applica-
tions require orders of 1015 (or more) random numbers [144]; this
means they need a high-quality random-number generator in or-
der to obtain reliable results. Firstly, it is important to clarify what
we mean when referring to random-number generators: actually
they do not produce random numbers. Instead, they utilize a de-
terministic technique that initializes a pseudo-random sequence
of numbers starting from an integer called seed. Hence, given the
same initial seed, a function for generating random number will
produce exactly the same sequence of numbers. These sequences
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look like real random numbers only in the case of high-quality
generators [136].

Another important consideration for any random-number gen-
erator is its period: as the complexity of Monte Carlo studies in-
crease, the period size of the generated sequences must be accu-
rately evaluated. Indeed, even if a long period is not a guarantee
of quality in random number generating, short periods can be
problematic and they should be avoided. The minimal standard
generator of Park and Miller [145] has a period of 231 − 1. Nowa-
days, this period is not sufficient for the majority of Monte Carlo
studies [146]. The problem of random number generators with a
small period, lies in the inability to visit all points in the sample
space.

One of the oldest standard algorithm for generating pseudo-linear
congruential

algorithm
random numbers is the linear congruential generator (LCG) that is
based on the standard linear congruential algorithm, developed by
D. H. Lehmer [147]. In the LCG, each single number determines
its successor with a simple linear function followed by a modular
reduction [144]. LCG is very fast and requires minimal memory,
but at the same time should not be used for applications where
high-quality randomness is critical [144, 148]. For example, it is
not suitable for Monte Carlo simulations because of the serial cor-
relation between successive values of the sequence [136].

When higher quality random numbers are needed, there areMersenne
Twister

algorithm
better options. For instance, the Mersenne Twister algorithm, is a
typical choice that, moreover, has been optimized for use with
Monte Carlo simulations in a large number of different fields
including biochemical problems, cellular biology and computa-
tional finance [149, 150, 151]. Its name derives from the fact that
the period length is chosen to be a Mersenne prime. This algo-
rithm provides a vastly longer period than the linear congruential
one and a variate uniformity [152], as well as it furnishes a very
long period: 219937 − 1 (many orders of magnitude larger than the
estimated number of particles in the observable universe) [152].
Further, the algorithm allows the generation of 623-dimensionally
equidistributed uniform points, and it passes numerous tests for
statistical randomness, including the Diehard tests [152]. For our
investigations, we adopted a pseudo-random generator based on
Mersenne Twister algorithm.
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5.4 a sampling problem : the quasi-ergodicity

Even if the Metropolis Monte Carlo method is very powerful
and it allows to solve many complex phenomena, there are crit-
ical circumstances where the scheme must be modified. In some
cases this modification will improve the sampling efficiency; in
other more critical cases, a modification is needed to avoid incor-
rect results. The treatment of all the possible problems one can
have when dealing with Monte Carlo methods is out of the scope
of the present discussion. At the same time, one of these is of our quasi-ergodicity

probleminterest as we have to handle with: the quasi-ergodicity problem
[136, 153, 154].
We remark that, in statistical mechanics, the ergodic hypothesis
is fundamental [57, 96, 153, 155] (see Section 3.4.3). Consequently
in Monte Carlo computations of thermodynamic properties, it is
mandatory that the sampling is ergodic [154, 155]. Thus far, we
already stated that a random walk should be ergodic. In this con-
text, when speaking of ergodic random walk, we refer to a random ergodic

random
walk

walk that can eventually reach every possible state starting from
every possible initial state. The quasi-ergodicity or meta-stability
problem, is typical for systems having two or more wells (or meta
stable states) in the potential energy surface separated by high
barriers (see Fig. 5.2).

In this case the system must overcome high-energy barriers to multiple
well
potentials

reach other regions of phase space, and the sampling is confined
in some wells. This problem appears even in the simplest double
well problem, when the two wells are separated by a large barrier
[156]. This kind of unsuitable sampling is indicated as quasi-ergodic
sampling [157, 158]. Moreover, when a system is quasi-ergodic, it
often appears to be ergodic, hence making the problem particu-
larly difficult to be detected. This complication is not unique to
Monte Carlo simulations since it appears as well in molecular dy-
namics methods [159]. In general, we might not know the poten-
tial energy surface of our system, nor the locations of its minima
or its depths, as well as for those of the barriers. Looking at Fig.
5.2, there are some possible cases easy to imagine happening in a
simulation where the system has the depicted potential surface.
If we imagine the initiated configuration of our system in the high-
est energy well, it is simple to figure out that, at low temperatures
a finite Monte Carlo walk may never leave this well. Unfortunately,
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Figure 5.2: Asymmetric one-dimensional double-well potential V(x); γ is the
depth of the variable well. Taken from: [156]

thermodynamic properties of such a walk would appear reason-
able, even if, the computed thermodynamic properties would re-
flect the contribution only of the well the simulation started from,
hence producing incorrect results. On the contrary, for higher tem-
peratures, a finite Monte Carlo walk may visits both wells, hop-
ping between them at a certain frequency. However, this frequency,
might be not properly weighted, thereby still producing incorrect
results. In the case where the system must overcome high-energy
barriers, the problem would be hypothetically fixed by augment-
ing the length of a simulation in order to obtain enough statistical
samples of all the phase space regions. Nevertheless, in practical
applications, this may be extremely long when not totally impracti-
cal. An approach that works for simple problem (as the one dimen-
sional we are here considering), is to extend the original Metropo-
lis scheme. One of the simplest adjust consists, for example, in con-how to

fix the
problem?

sidering more then one maximum displacement [136]. While in
the original scheme one considers just a single maximum displace-
ment, we can introduce for this case a second stepsize. As long as,
the first would be used for most moves, with a size chosen in or-
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der to have an acceptance-ratio equal of 50%, the second one must
be chosen to have a length equal to the distance that separates
the two minima. In this case, we will use this magnified stepsize
just for a portion of the moves. With this expedition, the barrier
between the wells would be overcome even at low temperatures.
This criterion is called mag-walking and it satisfies the detailed bal-
ance [156]. This would be, for us, sufficient to handle with a Monte
Carlo simulation in which we have a mono-dimensional energy
surface with two asymmetric wells as the one in Fig. 5.2. However,
in general, mag-walking is sufficiently only in simple cases, but
is impractical for other important applications. In fact, in general,
considering potential with a high number of wells, one should
introduce the same number of stepsizes and knows all of them
in term of its minima and depths. More sophisticated methods
have been proposed to overcome quasi-ergodicity problem from
Monte Carlo methods, as umbrella sampling method [153, 160],
which is used to reconstruct the Landau free energy when it is
known (or hypothesised) a suitable collective variable (direction
of metastability). Others solutions are the generalized simulated
annealing method to locate the global minimum [161, 162]. Tem-
pering method is used to find the absolute minimum over the
configuration space, J-walking and parallel tempering (or replica
exchange method) address sampling problems by using informa-
tion about the underlying potential surface obtained from a high-
temperature [163, 164], and histogram methods [165].
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As previously discussed, the analytical developments of the FJC
and WLC models work under some assumptions. From one hand,
we argued that the polymer is modeled as a chain of beads con-
nected by rigid bonds. On the other hand, the FJC and WLC mod-
els work under the assumption of the finite, but large enough,
contour length. In other words, the contour length Lc (see Section
1.2.1) is supposed very large. The first assumption should not be
adopted if we consider a large applied force as explained in Chap-
ter 4. The second assumption is related to the concept of thermo-
dynamic limit. In fact, the standard rules of equilibrium thermody-
namics may not apply to experiments on individual, short-length
polymer molecules. In such a case the results may depend on the
boundary conditions imposed for stretching the polymer, namely:
a fixed end-to-end distance, pertinent to the Helmholtz ensemble
of statistical mechanics, or a fixed force applied at one or both
ends, rather representing a realization of the Gibbs ensemble. The
differences between the two conditions should vanish in the ther-
modynamic limit (N → ∞), when the polymer contour length Lc
is much larger than its persistence length Lp (or to the individual
bond length, for completely flexible chains). This phenomenon has
been studied and observed for simple models describing internal

97
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barriers to bond rotation [114], for the single ideal Gaussian chain
[115] and for DNA stretching [116].

It is important to observe that from the experimental point of
view both assumptions, inextensibility and attainment of thermo-
dynamic limit, are often not fulfilled for many practical reasons
(e.g. too large applied forces and force-rates, different configu-
rations of the experimental devices, actual procedures for force
and distance measurements, and so on). Therefore, in this Chap-
ter we study the effects of the superposition of the two aspects, by
considering the mechanical stretching response of extensible poly-
mer chains of arbitrary length. Of course, the above two assump-
tions are completely independent and, therefore, one can consider
all their possible combinations: short chains without extensibil-
ity (leading to the FJC or WLC for short chains), extensible long
chains at the thermodynamic limit, or short chains with extensibil-
ity.

In particular, we take into consideration the quantitative dif-
ference between the thermodynamic behaviour within either the
Helmholtz or Gibbs ensemble, by investigating the foundations of
the statistical mechanics for small systems. This will be done by
taking into account flexible (or semiflexible) and extensible poly-
mer chain models of biological interest. It will be showed that in
the cases in which the thermodynamic limit is not satisfied, differ-
ent macroscopic boundary conditions, corresponding to different
statistical mechanics ensembles, yield different force-displacement
curves. We adopt both analytical and Metropolis Monte Carlo sim-
ulations: while the analytical approach is useful to obtain the ex-
plicit partition function in some specific cases, MMC simulations
are crucial to determine the scaling laws controlling the conver-
gence to the thermodynamic limit.

To this aim, we recall the thermodynamics of a polymer chain
with an arbitrary bond potential in the two different approaches,
respectively the Helmholtz and the Gibbs ensembles (see Chapter
4). Then, we recall as well the exact relationship between the parti-
tion functions pertinent to the different ensembles. From the latter
relationship, we then formally prove the existence of the thermo-
dynamic limit for long chains. Furthermore, we evaluate the dif-
ference between the two ensembles for FJC and WLC models with
extensible bonds. To this aim we develop Metropolis Monte Carlo
simulations performing the typical experiment in which the elas-
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ticity of single polymer is probed with an AFM tip and we quan-
titatively evaluate the stretching response differences between the
Helmholtz and Gibbs ensembles. In all cases we show that the
convergence to the thermodynamic limit upon increasing contour
length is described by a suitable power law and a specific scaling
exponent, characteristic of each model.

6.1 general theoretical framework

Let us recall the chain of monomers discussed in Section 4.1.
We remember that, assuming that one terminal monomer is fixed
at position r0 ≡ (0, 0, 0) and that monomers interact through an
arbitrary potential, the dynamics of the system is described by the
Hamiltonian in Eq.(4.1), namely

h0(r1, .., rN,p1, ..,pN) =
N∑
i=1

pi ·pi
2m

+ V(r1, .., rN). (6.1)

where ri (i = 1, ...,N) are the set of positions and pi (i = 1, ...,N)

are the momenta. Considering the system in thermal equilibrium
with a reservoir at temperature T , its statistical properties are de-
scribed by the canonical ensemble distribution in Eq.(4.2), namely

ρ(q,p) =
1

Z
e
−
h0(q,p)
kBT . (6.2)

6.1.1 Polymer with fixed end-to-end distance

By fixing positions r0 and rN, we can use the reduced Hamilto-
nian in Eq.(4.3), in terms of which the system partition function is
written as

Zr(r, T) =
∫∫
ΓN−1

e
−
h(q,p,r)
kBT dqdp with ΓN−1 = <6(N−1), (6.3)

where the microscopic variables are defined as q = (r1, . . . , rN−1)

and p = (p1, . . . ,pN−1). The net force exerted on the monomer at Helmholtz
or isometric
ensemble

position can be used to define the mechanical constitutive equa-
tion of the chain, providing Eq.(4.8), which is

f(r, T) = −kBT
∂

∂r
logZr =

∂F(r, T)
∂r

, (6.4)
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where F(r, T) = −kBT logZr is the Helmholtz free energy.

6.1.2 Polymer under constant load

On the other hand, assuming that a given force f is applied
to the terminal monomer at rN, while the end-to-end distance is
free to fluctuate, we have that the system is described by the aug-
mented Hamiltonian in Eq.(4.40), in terms of which the system
partition function is written as

Zf(f, T) =
∫∫
ΓN

e
−
h̃(q,p,f)
kBT dqdp with ΓN = <6N, (6.5)

where q = (r1, ..., rN) and p = (p1, ...,pN) are the microscopic vari-
ables and f acts as a macroscopic variable. Calculating the meanGibbs or

isotensional
ensemble

position of the last monomer of the chain through the average
value r = 〈rN〉 we get Eq.(4.46) , which is the constitutive equa-
tion in terms of the partition function Zf, namely

r(f, T) = kBT
∂

∂f
logZf = −

∂G(f, T)
∂f

, (6.6)

where G(f, T) = −kBT logZf is the Gibbs free energy.

6.2 on the thermodynamic limit

At this point, our previous discussion on the two ensembles,
ended with the perspective that it is possible to prove that both
the Helmholtz and Gibbs ensembles provide the same constitutive
equation for large systems (N → ∞). We want to prove it in the
following.

The two expressions given in Eqs.(6.4) and (6.6), namely

f =
∂F

∂r
(r, T), r = −

∂G

∂f
(f, T), (6.7)

would represent, in fact, the same constitutive equation if the first
relation coincides with the inverse function of the second one and
vice-versa. In other words, our statement above is proved as longLegendre

transformation as it is shown that the Helmholtz and the Gibbs energy functions
are related by a Legendre transformation

G = F− f · r (6.8)
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as discussed elsewhere [57].
This happens if F and G are the Legendre transform of the other

function. In other words

f =
∂F

∂f
is equivalent to r = −

∂G

∂f
, (6.9)

if and only if Eq.(6.8) is verified.
In fact, defining r = Φ(f) and f = Φ−1(r), we obtain

∂G

∂f
=

∂F(Φ(f), T)
∂f

−
∂

∂f
(f ·Φ(f))

=
∂F

∂r
· ∂Φ
∂f

−Φ(f) − f · ∂Φ
f

= f · ∂Φ
∂f

− f · ∂Φ
∂f

− r = −r. (6.10)

On the other hand, we can write

∂F

∂r
=

∂G(Φ−1(r), T)
∂r

+
∂

∂r
(r ·Φ−1(r))

=
∂G

∂f
· ∂Φ

−1

∂r
−Φ−1(r) + r · ∂Φ

−1(r)

∂r

= −r · ∂Φ
−1(r)

∂r
+ r · ∂Φ

−1(r)

∂r
+ f = f. (6.11)

While Eq.(6.8) is the Legendre transform of F, the following

F = G+ f · r (6.12)

is the Legendre transform of G.
We have to show that F and G are reciprocally Legendre trans- F and G

relationship
under
thermodynamic
limit

form under the thermodynamic limit.
To do this we observe the relations among the free energy and the
partition function

1

Zr
= e

F
kBT and

1

Zf
= e

G
kBT , (6.13)

which are derived from Eq.(4.15) and (4.51). In the previous sec-
tion we obtained a relation between Zr and Zf in the form

Zf(f, T) = (2πmkBT)
3
2

∫
<3
Zr(r, T)e

f·r
kBT dr
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and therefore, we may looking for the relation between F and G.
By inserting Eqs.(6.4) and (6.6) in Eq.(4.75) we obtain

e
−
G(f,T)
kBT = (2πmkBT)

3
2

∫
<3
e
−
F(r ′,T)
kBT e

f·r ′
kBT dr ′, (6.14)

which is an exact relation between F and G, always satisfied (i.e.
valid for any N). Now, expanding F(r, T) up to the second orderexpansion

of F(r, T) in r we get

F|r ′ ' F|r +
∂F

∂r
(r ′ − r) +

1

2
(r ′ − r) · ∂

2F

∂r2
(r ′ − r), (6.15)

where we did not consider the third order term and higher since,
for large N, their effects are negligible with respect to the lead-
ing terms (first and second order). This is a typical approximation
adopted and justified within the Laplace method useful for obtain-
ing the asymptotic behavior of integrals (e.g. used for proving the
standard Stirling approximation for the factorial function, largely
used in several statistical mechanics evaluations) [166]. With the
expansion in Eq.(6.15), and substituting

f =
∂F

∂r
(r, T) and the inverse r = r(f) (6.16)

we get

e
−
G(f,T)
kBT = (2πmkBT)

3
2 (6.17)

×
∫
<3

exp
[
−
F(·r ′, T)
kBT

−
f · r ′
kBT

+
f · r
kBT

]
× exp

[
−

1

2kBT
(r ′ − r)

∂2F

∂r2
(r ′ − r) +

f · r ′
kBT

]
dr ′,

which we can better rewrite as

e
−
G(f,T)
kBT = e

−F−f·rkBT

× (2πmkBT)
3
2

∫
<3
exp

[
−

1

2kBT
(r ′ − r)

∂2F

∂r2
(r ′ − r)

]
dr ′.

(6.18)

Indicating with Γ the multiplicative term on the right and side of
Eq.(6.18), namely

Γ = (2πmkBT)
3
2

∫
<3
e
− 1
2kBT

(r ′−r)∂
2F

∂r2
(r ′−r)

dr ′, (6.19)
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and taking the logarithm, we can write

−
G(f, T)
kBT

= −
F− f · r
kBT

+ log Γ ,

and we finally obtain

G = F− f · r− kBT log Γ . (6.20)

The quantities G, F, Γ and f · r assume an extensive character (i.e.
they are proportional to N) and, therefore, the logarithmic term in
Eq.(6.20) becomes negligible for large systems. Thus, for N → ∞,
the Legendre transformation is fulfilled.

In the following we will quantitatively address the convergence
to the thermodynamic limit by comparing the Helmholtz and
Gibbs ensembles for increasing values of N, and we will evaluate
their differences for small systems (i.e. for short length polymer
chains).

6.3 equivalence of statistical ensembles

We previously discussed that two different statistical ensembles
can be considered for extending a single polymer chain. One is
the Gibbs (or isotensional) ensemble characterized by a determin-
istic force applied to the free end of the chain (the other being
fixed in a given reference frame), and the other is the Helmholtz
(or isometric) ensemble obtained with both the ends of the poly-
mers tethered at two different points of the space. Shortly, the
Helmholtz and Gibbs ensemble for a single polymer chain un-
der stretch yield different force extension relations when N is
small. The reason lies on the fact that the degrees of freedom of
the single molecule is small. This fact has been proven for dif-
ferent models elsewhere [43, 122, 123]. Moreover, the ensemble
equivalence for flexible polymers has been addressed theoretically
[43, 115, 116, 117, 167, 168, 169, 170] and by means of computer
simulations [117, 118, 119, 120, 121]. However, there is not an over-
all consensus on this topic. There are some authors that find agree-
ment between averages determined by different ensembles in the
thermodynamic limit, [43, 116, 117, 122, 169] while others empha-
size deviations [115, 119, 120, 121, 167] even in the thermodynamic
limit.
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Ensemble inequivalence is typically demonstrated by compar-ensemble
inequivalence ing force-extension relations [115, 117, 121]. From the one hand

this seems a natural choice, since such relations the one measured
in experiments, however, it is preferable to consider conjugated
partition functions and the corresponding thermodynamic poten-
tials as pointed out in Ref. [171, 172]. In Section 6.2 we rigorously
proved that when the thermodynamic limit is satisfied (the num-
ber of monomers approaches infinity) these ensembles are equiva-ensemble

equivalence lent from the thermodynamic point of view: it means that the con-
stitutive equations (vector force-extension relations) assume the
same mathematical form in both isotensional and isometric con-
ditions. Equivalently, the Helmholtz and Gibbs free energies are
linked by a Legendre transform. This general result is coherent
with some “forms of inequivalence” observed and they are not in
conflict.

In order to clearly explain these points we rewrite our results in
two different statements hereafter referred to as Property A and
Property B. The results of Section 6.2 can be formalized as follows.

Property A: we consider a polymer system with N monomers de-
scribed by F(r) = −kBT logZr(r, T) with Helmholtz isometric condi-
tions (r constant) and by G(f) = −kBT logZf(f, T) with Gibbs isoten-
sional conditions (f constant). See the definitions of the partition func-
tions Zr and Zf in Eqs.(6.3) and (6.5). The corresponding constitutive
equations valid for any value of N are

〈f〉 =
∂F(r)

∂r
, φ(r) (Helmholtz), (6.21)

〈r〉 = −
∂G(f)

∂f
, ψ(f) (Gibbs). (6.22)

Moreover, in the thermodynamic limit (i.e. N→∞):
– (i) we have that φ = ψ−1 or, equivalently, ψ = φ−1 (where φ and
ψ are vector functions mapping <3 in <3);

– (ii) the following Legendre transforms are valid:

G(φ(r)) = F(r) −φ(r) · r, (6.23)

F(ψ(f)) = G(f) + f ·ψ(f). (6.24)

While the second point (ii) it has been verified through Eq. (6.20),
the equivalence between (i) and (ii) is a standard result in the
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theory of Legendre transforms [119, 173]. A formal and unequiv-
ocally proof of Property A for Gaussian polymers and for chains
of rigid rods can be found in Ref. [171], which is a recent work
of great importance to clarify this subject. We want to stress an
important point: we proved the equivalence for N → ∞ between
〈f〉 = φ(r) and 〈r〉 = ψ(f) (i.e. φ = ψ−1 for N→∞). Conversely, it
is possible that other average values may exhibit different behav-
iors; hence our conclusions are valid only for previous quantities.

Moreover, we remark that the Property A does not state that
the density probability is the same for the Helmholtz and the
Gibbs ensembles: rather, we proved that the mathematical form
of the constitutive equations Eqs. (6.21) and (6.22) are identical in
the thermodynamic limit. Consequently some “form of inequiva-
lence”, investigated elsewhere are correct and not conflicting with
Property A [115, 167]. We observe that the constitutive laws given
in Eqs.(6.21) and (6.22) map different quantities: 〈f〉 and r for the
Helmholtz ensemble and 〈r〉 and f for the Gibbs one. For exam-
ple, in Fig. 6.4 (see the next Section 6.4) we plot on the same graph
|r| versus |〈f〉| for the Helmholtz results and |〈r〉| versus |f| for the
Gibbs ones (we adopted scalar dimensionless variable for conve-
nience). For N → ∞ the two ensembles converged to the same
curve, because of the Property A. We also underline that numer-
ical results are further confirmed by the fact that the expression
of the asymptotic (N large) force-extension curve was analytically
determined (see Eqs.(6.35) and (6.36)).

Furthermore, we observe that different comparisons, based on
different average values [115, 167], can be useful and show some
“inequivalences”: they can be summarized as follows.

N →∞ N →∞ N →∞
β

α−1

|〈~r〉|
|~r|

|~f | |〈~f〉|

|〈~r〉|
|~r|

|~f | |〈~f〉|0 0 0

β

〈|~r|〉

|~f |

|~r|

〈|~f |〉

γ−1
δ

α−1

, , ,
Figure 6.1: Schematic representation of the relationships among the functions

defined in Property B. The central panel corresponds to Fig. 6.4. The
right panel corresponds to Fig.4 or 5 of Ref.[121].
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Property B: for spherically symmetric systems we can consider these
force-extension responses

|〈f〉| = α(|r|) (6.25)

〈|f|〉 = γ(|r|) (6.26)

for the Helmholtz case and the following relations

|〈r〉| = β(|f|) (6.27)

〈|r|〉 = δ(|f|) (6.28)

for the Gibbs one. The functions α and β are the scalar counterparts of φ
and ψ defined in Property A. Hence, we have β = α−1 (or α = β−1) in
the thermodynamic limit. On the contrary, one can prove that γ−1 6= β,
α−1 6= δ and γ−1 6= δ for any polymer length N and, therefore, also for
systems in the thermodynamic limit.

It is easy to verify that γ(0) > 0 and δ(0) > 0 for any value
of N by writing the expressions of the average values with the
pertinent canonical probability densities. Since it is always true
that α(0) = 0 and β(0) = 0, it is not difficult to prove the Prop-
erty B. The different behavior between γ and β or between α−1

and δ is not related to the length of the polymer but rather to the
transformation of random variables introduced to determine the
average value of the modulus (2-norm) of the vectors r and g (see
Eqs.(6.26) and (6.28)). In Fig.1 one can find three plots explain-
ing the relations among the above functions. We observe that the
differences between the curves γ−1 and β (or α−1 and δ) are ob-
servable in the regime of small forces or extensions, as predicted
in Refs. [115, 167]. Indeed, the function δ has been analytically
studied in the Gaussian approximation and the results have been
confirmed in Ref. [121] through molecular dynamics simulations
(also with quite smallN). The dual function γ is less tractable from
the analytical point of view (because describes the Helmholtz case)
but it could be numerically investigated, e.g. with Monte Carlo
techniques or molecular dynamics simulations.
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6.4 flexible polymer with elastic bonds

In Eq.(6.1), we considered a polymer chain with an arbi-
trary potential V(r1, .., rN). We want now to specify this poten- harmonic

potentialtial considering a model in which each bond is represented
by a harmonic spring with finite extension, while no poten-
tial is acting on bending or torsional degrees of freedom.

l l+Σ xl −∆0

V (x) = 1
2k(x− l)2

Figure 6.2: Potential energy function for the
stretching of a single bond in the
polymer chain.

Each spring is defined
by the potential energy
V(x) = (1/2)k(x − l)2

for x ∈ (l − ∆, l + Σ)

where k is the spring
constant, l is the equi-
librium bond length and
x is the actual exten-
sion of the bond. As it
can be seen in Fig. 6.2, limited

spring
extensions

the potential is set to
infinity for x /∈ (l −

∆, l + Σ) in order to im-
pose a limited extension
of the spring both for
expansion and compres-
sion. This assumption is
consistent with what dis-
cussed in Ref.[174], where it is shown that a strong force may in-
duce structural transitions or even the breaking of the polymer
under tension: two phenomena that we want to avoid in this first
analysis. For this reason, we limit the model to the regime of har-
monic bond potentials.

We start with the Gibbs ensemble and we consider the aug- augmented
Hamiltonian
for a chain with
elastic bonds

mented Hamiltonian

h̃(r1, ..., rN,p1, ...,pN, f) (6.29)

=

N∑
i=1

pi ·pi
2m

+
1

2
k

N−1∑
i=0

(‖ri+1 − ri‖− l)2 − f · rN.

In this case the determination of the spherically-symmetric parti-
tion function can be made in closed form. First of all, we separate
the kinetic part of the partition function and we adopt the change
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of variables ξi+1 = ri+1− ri (i = 0, ...,N− 1). Further, by represent-
ing the vector ξi in spherical coordinates, we get

Zf(f, T) =
(√

2πmkBT
)3N(4πkBT

f

)N
(6.30)

×
[∫ l+Σ
l−∆

exp
{
−

k

2kBT
(ξ− l)2

}
sinh

(
fξ

kBT

)
ξdξ

]N
.

The calculation can be explicitly carried out by making use of the
known integral

I (α,β, x0,a,b) =
∫b
a
xe−α(x−x0)

2
eβxdx (6.31)

= eβx0e
β2

4α

{
1

2α

(
e−A2 − e−B2

)
+

√
π

α

β+ 2αx0
4α

[erf (B) − erf (A)]

}
,

where

A =
√
α

(
a− x0 −

β

2α

)
, B =

√
α

(
b− x0 −

β

2α

)
, (6.32)

and the function erf (z) is defined as[175]

erf (z) =
2√
π

∫ z
0
e−t

2
dt. (6.33)

From Eq.(7.13) we can further define the following auxiliary func-
tion

Π (α,β, x,a,b) = I (α,β, x,a,b) − I (α,−β, x,a,b) . (6.34)

The calculation leads to the exact expression of the Gibbs partitionGibbs
partition
function

function in the form

Zf(f, T) =
(√

2πmkBT
)3N(2πkBT

f

)N
(6.35)

×
[
Π

(
k

2kBT
,
f

kBT
, l, l−∆, l+ Σ

)]N
.

This partition function directly provides the (scalar) constitutiveGibbs
constitutive

equation
equation r = r(f) as

r = kBT
∂ logZf(f, T)

∂f
. (6.36)
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Figure 6.3: Constitutive relation provided by Eq.(6.36) for a flexible polymer
with elastic bonds described by the potential reported in Fig. 6.2.
The elongation r and the traction f are reported, respectively, in the
vertical and horizontal axis in dimensionless units (see text). Differ-
ent relations in the Gibbs ensemble are reported, corresponding to a
spring constant varying in the range 3 6 k 6 2000 (units of 4 · 10−3
N/m).

It is interesting to observe that, as expected, in the limit of k→∞
the partition function of the FJC model is recovered

Zf(f, T) = cost.×
(

sinh( lf
kBT

)

lf
kBT

)N
, (6.37)

and the constitutive equation r = NlL( lf
kBT

) is found, where
L(x) = coth x− 1/x is the Langevin function [16, 57].

In Fig. 6.3 we plot the constitutive equations (at constant tem-
perature T = 293K) obtained by applying Eqs.(6.35) and (6.36).
We adopted the parameters l = 2.5nm (typically used for DNA
[22, 23]), placing the walls at l − ∆ = 0 and Σ + l = 5nm. The
plot represents elongation versus traction curves for different val-
ues of the spring constant k = 3, 5, 10, 20, 50, 2000 in units of
kBT/(nm)2 = 4 · 10−3 N/m. While the smallest value of the stretch-
ing modulus describes a very soft chain, the largest one actually
mimics a FJC. Three different regimes can be detected in Fig. 6.3:
the first one, corresponding to a very small applied force, is the
entropic region characterized by a linear relation r = Nl2f/(3kBT),
as it is well known from classical polymer theory [16, 57]; by in-
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creasing the applied load, the chain experiences an elastic region
characterized by a slope proportional to k; finally, the saturation is
reached when the bond extension approaches the energy barrier
at l+ Σ. The length of the polymer chain in the configuration of
largest extension (f → ∞) is N(l+ Σ). It is important to remark
that each curve is independent of N, since the partition function
given in Eq.(6.35) is an exact power with exponent N.

For the Helmholtz ensemble we use instead Eq.(4.92) combined
with the analytic continuation of Eq.(6.35) with f = iη. From thisHelmholtz

constitutive
equation

equation we obtain the scalar constitutive equation f = f(r) (see
Eq.(6.4))

f = −kBT
∂ logZr(r, T)

∂r
, (6.38)

representing the elastic behaviour in the Helmholtz ensemble that
depends on the number of monomers N. We expect a family of
curves approaching the Gibbs solution for large N (thermody-
namic limit).
While the numerical implementation of Eq.(6.36) is straightfor-
ward, the Helmholtz case (see Eq.(6.38)) is more difficult to han-
dle because of some numerical instabilities and it can be used in
a limited range of cases. Therefore, we exploited a Monte Carlo
approach that can bypass such problems and can be also adopted
for studying more complex chains, such as the WLC model.

The Monte Carlo approach simulates the stretching of the poly-Monte Carlo
approach

and results
mer under a force provided by a cantilever (mimiking, for instance,
the loading by an atomic force microscope) with a proper ad-
justable elastic stiffness. In the limit of a soft cantilever the gen-
eralized ensemble of the coupled molecule/cantilever system re-
duces to the Gibbs ensemble for the isolated molecule subjected
to a constant force. On the other hand, for a stiff cantilever we
obtain the Helmholtz ensemble for the isolated molecule held at a
fixed extension by the fluctuating force [168]. This simulation pro-
tocol has been already used to prove the existence of transitions
from the flexible to the rigid phase for the WLC model under the
Helmholtz ensemble [123, 176]. Simulations were performed by
using a rather conventional implementation of the Metropolis ver-
sion of the Monte Carlo algorithm [177]. The initial state of the
chain is defined by a set of randomly chosen positions for the
monomers. The displacement extent δri of the positions vectors
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Figure 6.4: Constitutive relation provided by Monte Carlo simulations for a FJC
model, both under Helmholtz (H) and Gibbs (G) boundary condi-
tions. The elongation r and the traction f are reported, respectively,
on the vertical and horizontal axis in dimensionless units (see text).
The Helmholtz constitutive relation is reported for different polymer
lengths, given by the number N of monomers in the chain.

governs the magnitude of the trial move and the overall efficiency
of the configurational space sampling. However, while a larger δri
could speed up the search for the minimum, a too large δri leads
to a high rejection frequency. Therefore, we analyzed several runs
in order to optimize its value [125, 126]. We avoided the dynam-
ical adjustment of this parameter since this approach can violate
the detailed balance [143].

In Fig. 6.4 we report our Monte Carlo results for the FJC model FJC
inextensible
bonds

in both statistical mechanics ensembles. While we observe a sin-
gle curve for the Gibbs ensemble (since the Langevin function de-
rived from Eq.(6.37) is independent of N), we get different elastic
response curves for the Helmholtz ensemble with polymer length
N = 4, 5, 10 and 50. It is interesting to note that the Helmholtz
curves approach the Gibbs one for large N, as expected for the
convergence to the thermodynamic limit. Fig. 6.4 shows that dif-
ferences between the two ensembles are considerable for short
chains.

In order to better characterize the convergence toward the ther- convergence
toward the
thermodynamic
limit

modynamic limit, we investigate the ratio between the elongation
rH(N) = r/(Nl) calculated in the Helmholtz ensemble and the
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Figure 6.5: Comparison between the elongations rH and rG for the pure FJC
model. The elongations are calculated, respectively in the Helmholtz
and Gibbs ensembles as a function of the polymer lengths (given by
the number N of monomers in the chain). All sets of data are nicely
fitted by Eq. (6.39) with the same scaling exponent α = 1.15± 0.05.

elongation rG = r/(Nl) for the Gibbs ensemble corresponding to
the same number of monomers. Fig. 6.5 proves that Monte Carlo
simulations are nicely fitted by the power law

rH(N)

rG
= 1+

a

Nα
, (6.39)

where a and α are fitting parameters. Each curve corresponds to
a different value of the normalized force fl/(kBT). All data sets
were interpolated by linear regression and they provided the same
scaling exponent α = 1.15± 0.05. Therefore, we argue that the con-
vergence to the thermodynamic limit of the FJC model is quanti-
tatively controlled by a unique scaling exponent.

Further, we are interested in understanding whether this valueFJC
extensible

bonds
depends on the specific microscopic model of polymer adopted
for the Monte Carlo simulations. To this aim we set a lower
value for the elastic constant of the spring between the monomers.
In particular, we selected the value k = 10kBT/(nm)2 already
used in Fig. 6.3. The Monte Carlo simulation results for both the
Helmholtz and Gibbs ensemble are shown in Fig. 6.6. As before,
we find a single curve for the Gibbs ensemble and a family of
curves for the Helmholtz ensemble (corresponding to N =4,5,10
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Figure 6.6: Constitutive relation provided by Monte Carlo simulations for a
FJC model with elastic bonds between the monomers, both under
Helmholtz (H) and Gibbs (G) boundary conditions. The elongation
r and the traction f are reported, respectively, on the vertical and
horizontal axis in dimensionless units (see text). The Helmholtz con-
stitutive relation is reported for different polymer lengths, given by
the number N of monomers in the chain.

and 50, from the top to the bottom). We checked and confirmed
the agreement between Eq.(6.38) and the Monte Carlo results also
for the Helmholtz ensemble. Once again, the curves in Fig. 6.6 can
be used to address the thermodynamic limit issue, as shown in
Fig. 6.7. We observe that the linear regression leads now to the
scaling exponent α = 0.80± 0.05 for any value of the normalized
force fl/(kBT). This result suggests that different polymer models,
e.g. rigid versus elastic in this case, have different scaling expo-
nents or, in other words, that they progress differently to reach
the thermodynamic limit.
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Figure 6.7: Comparison between the elongations rH and rG for the FJC model
with elastic bonds between the monomers. The elongations are
calculated, respectively in the Helmholtz and Gibbs ensembles as
a function of the polymer length (given by the number N of
monomers in the chain). All sets of data are nicely fitted by Eq. (6.39)
with the same scaling exponent α = 0.80± 0.05.

6.5 semiflexible polymer with elastic bonds

In order to make the model polymer more physically sound, we
now extend our formal device to a semiflexible chain that incorpo-
rates elastic bonds into a discrete version of the WLC model. The
augmented Hamiltonian for the Gibbs ensemble is

h̃(r1, ..., rN,p1, ...,pN, f) =
N∑
i=1

pi ·pi
2m

− f · rN (6.40)

+
1

2
κ

N−1∑
i=1

(ti+1 − ti)
2 +

1

2
k

N−1∑
i=0

(‖ri+1 − ri‖− l)2 ,

where κ is the bending modulus, k is the stretching modulus and
ti = (ri+1− ri)/‖ri+1− ri‖ is the unit vector collinear with the i-th
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bond. The corresponding reduced Hamiltonian for the Helmholtz
ensemble is given by

h(r1, ..., rN−1,p1, ...,pN−1, r) =
N−1∑
i=1

pi ·pi
2m

(6.41)

+
1

2
κ

N−1∑
i=1

(ti+1 − ti)
2 +

1

2
k

N−1∑
i=0

(‖ri+1 − ri‖− l)2 ,

where the position of the last monomer rN corresponds to the end-
to-end vector r. As well known, it is not possible to determine
the partition functions in closed form for ensembles described
by Eqs.(6.40) and (6.41) [21]. Therefore, we take full profit from
our Monte Carlo approach and we critically address some ap-
proximated solutions. In particular, by considering an inextensi- WLC

inextensible
bonds

ble WLC model, the Hamiltonian function in the Gibbs ensemble
is given by

h̃ =

N∑
i=1

pi ·pi
2m

− f · rN +
1

2
κ

N−1∑
i=1

(ti+1 − ti)
2 , (6.42)

while in the Helmholtz ensemble it is

h =

N−1∑
i=1

pi ·pi
2m

+
1

2
κ

N−1∑
i=1

(ti+1 − ti)
2 . (6.43)

We remark that we have set the spring constant k to such a very
large value that the bond length remains fixed at the value l. The
constitutive equations are now expected to depend on the num-
ber of monomers N in any ensemble since, for the WLC model,
both partition functions given in Eqs.(6.3) and (6.5) cannot be writ-
ten as an exact power with exponent N. In Fig. 6.8 we report the
Monte Carlo results for the inextensible WLC model: while the
Helmholtz family of curves converges from the top to the bottom,
upon increasing the polymer length, the Gibbs curves follow the
opposite trend. We remark once more the convergence to a central
common curve, representing the behavior of the system when the
thermodynamic limit is reached. The example summarized in Fig.
6.8 corresponds to the value κ = 10kBT for the bending modulus
at T = 293K. This value is comparable to that of polymer chains of
biological interest (for example for DNA κ = 15kBT [21, 22, 23]).
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Figure 6.8: Constitutive relation provided by Monte Carlo simulations for the
pure WLC model, both under Helmholtz (H) and Gibbs (G) bound-
ary conditions. The elongation r and the traction f are reported, re-
spectively, on the vertical and horizontal axis in dimensionless units
(see text). The Helmholtz constitutive relation is reported for differ-
ent polymer lengths, given by the number N of monomers in the
chain.
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Figure 6.9: Comparison between the elongations rH and rG for the pure WLC
model. The elongations are calculated, respectively in the Helmholtz
and Gibbs ensembles as a function of the polymer length (given by
the number N of monomers in the chain). All sets of data are nicely
fitted by Eq. (6.46) with the same scaling exponent α = 1.30± 0.05.
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Figure 6.10: Same as Fig. 6.8 where the approximated solutions by Marko and
Siggia (see Eq.(6.44) and by Rosa et al. (see Eq.(6.45) are reported
for the sake of comparison.

These results can be compared with the approximations pub- Marko
and
Siggia
formula

lished in literature for the WLC model. A first interpolation for-
mula was given by the classical Marko and Siggia result [21]

fl

kBT
=
l

Lp

[
1

4(1− ζ)2
−
1

4
+ ζ

]
, (6.44)

where ζ = r/(Nl) is the polymer extension normalized to the con-
tour length and Lp = lκ/(kBT) is the persistence length.

This result is asymptotically exact both in the large- and small-
force limits of the continuous WLC model. Another, more recent
result was derived for the discrete version of the WLC model,
where the finite size of the equilibrium length l is also accounted
for [22, 23]

fl

kBT
=

2Lp

l

√1+( l

2Lp

)2
1

(1− ζ)2
−

√
1+

(
l

2Lp

)2

+

31−L
(
Lp
l

)
1+L

(
Lp
l

) −

l
2Lp√

1+
(

l
2Lp

)2
 ζ, (6.45)

L(x) = coth x − 1/x being the Langevin function. It is easy to
verify that in the continuum limit l → 0 one recovers Eq.(6.44),



118 elasticity of polymers in the gibbs and helmholtz ensembles

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

lf
kBT

r N
l

 

 

H N=4

H N=5

H N=10

H N=50

G N=50

G N=10

G N=5

G N=4

Figure 6.11: Constitutive relation provided by Monte Carlo simulations for the
WLC model with elastic bonds between the monomers, both un-
der Helmholtz (H) and Gibbs (G) boundary conditions. The elon-
gation r and the traction f are reported, respectively, on the ver-
tical and horizontal axis in dimensionless units (see text). The
Helmholtz constitutive relation is reported for different polymer
lengths, given by the number N of monomers in the chain.

as expected. Other interesting expressions for the force-extension
curves can be found in Ref.[178]. In Fig. 6.10 we report an enlarged
detail of Fig. 6.8 together with the constitutive equations given
in Eqs.(6.44) and (6.45): plots corresponding to both analytical
approximations are contained between the Gibbs and Helmholtz
Monte Carlo solutions for the larger value of N considered. There-
fore, the interpolation formulas in Eqs.(6.44) and (6.45) are in very
good agreement with the behaviour of the WLC model when the
thermodynamic limit is reached (N > 50 in this case).

We can next analyse the convergence toward the thermody-
namic limit. To this aim, we consider again the data in Fig. 6.8
and the ratio rH(N)

rG(N) at a given fixed value of the normalized force.
As before, it is found that Monte Carlo simulations are nicely fit-
ted by the power law

rH(N)

rG(N)
= 1+

a

Nα
(6.46)

where a and α are fitting parameters. All sets of data have been
interpolated by linear regression in Fig. 6.9 and they provided the
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Figure 6.12: Comparison between the elongations rH and rG for the WLC
model with elastic bonds between the monomers. The elongations
are calculated, respectively in the Helmholtz and Gibbs ensembles
as a function of the polymer length (given by the number N of
monomers in the chain). All sets of data are nicely fitted by Eq.
(6.46) with the same scaling exponent α = 1.40± 0.05.

same scaling exponent α = 1.30 ± 0.05. We finally consider the WLC
extensible
bonds

semiflexible discrete WLC model with extensible bonds. We set
the parameters κ = 10kBT (for the bending) and k = 10kBT/(nm)2

(for the stretching). In Fig. 6.11 we report the Monte Carlo re-
sults for both ensembles: the two families of curves are converging
(from the top for the Helmholtz case and from the bottom for the
Gibbs one) to the same constitutive relation for an increasing con-
tour length, or number of monomers N.

As before, the curves in Fig. 6.11 can be used to analyze the
convergence toward the thermodynamic limit through Eq.(6.46).
Fig. 6.12 shows that in this case the linear regression leads to a
scaling exponent α = 1.40± 0.05 for any value of the normalized
force.

6.6 outline of the results

We discussed here the notion of thermodynamic limit showing
that different experimental strategies used for stretching the poly-
mer lead to the same results when the number of monomers is
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large enough. The development of ad-hoc MMC simulations has
been necessary for investigate the convergence to the thermody-
namic limit, which we found to be well described by suitable
power laws with well defined scaling exponents. The results of
this work and the demonstration of different scaling laws, may
help to discriminate the response of polymers with different inter-
nal chemical structure, in the short–length limit. A similar treat-
ment can be followed also for different deformation modes. For
example the twisting experiments can be performed by means of
magnetic tweezers [179]: the equivalent of the present fixed–ends
versus fixed–force scheme would be substituted with the fixed–
twist versus fixed–torque scheme.
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So far, we discussed how the direct probing of the elasticity
of individual molecules is obtained by means of the atomic-force
microscope (AFM), laser- or magnetic-tweezers apparatus, or the
biomembrane force probe [1, 2, 12, 70]. These mechanical devices
are quite different from one another. One prominent difference
is their equivalent stiffness, in the range of 10−4 − 1 pN/nm for
tweezers, versus 10− 102 pN/nm for the AFM [70] (see Table 2).
The typical experiment is a mechanically-induced unfolding of
a biological polymer made of N domains, e.g. a polysaccharide
such as dextran [10], a protein such as titin [62], a DNA or RNA
strand [180], and so on. As a function of increasing force levels dif-
ferent mechanical response regimes are observed, beginning with
the entropic unfolding of the polymer chain (now well understood
in terms of simple worm-like chain (WLC) or freely-jointed chain
(FJC) models [21]); to the linear-elastic extension of the straight-
ened chain; to the so-called overstretching, typically interpreted as
a conformational transformation of the domain geometry; up to
the eventual fracturing of the polymer [181, 182, 183, 184].

In spite of the richness of experimental results and the large
number of models devoted to explain specific situations, a uni-
versal theoretical approach able to describe the different observed
responses is not yet available. Typically the experimental results
can be subdivided in two separated classes showing cooperative

121
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and non-cooperative mechanically induced unfolding. Any of the
above discussed polymer model is able to explain only one of
these two observed responses.

Several theoretical models have been introduced to shed light on
the force-induced transformations, notably in DNA. For example,
a macroscopic thermodynamics analysis led to a melting interpre-
tation of the overstretching transition [185], with double-strained
DNA (dsDNA) separating into non-interacting single-strained DNA
(ssDNA) strands. This model was subsequently extended in or-
der to consider different conditions of temperature, pH and ionic
strength [186]. However, a more recent thermodynamics analy-
sis [187] compared DNA melting (the process by which dsDNA
unwinds and separates into single-stranded strands through the
breaking of hydrophobic stacking attractions between the bases)
with the conformational transformation from dsDNA to a sup-
posed stretched-DNA, or S-DNA form, and found the latter to be
in much better agreement with available experimental data. On
the other hand, recent experimental results show that when the
content of Adenine-Thymine (AT) pairs is high, a force induced
denaturation (melting) is observed; by contrast, sequences with
a prevalence of Guanine-Cytosine (GC) pairs are found to un-
dergo an overstretch transition into a distinct base-paired form
[188]. Comparisons of experimental results with ad-hoc models
have been also drawn for analysing structural transitions of simul-
taneously twisted and stretched DNA molecules [189]. Some other
general properties of bi-stable systems have been studied through
the Fermi-Pasta-Ulam chain model [190, 191], by a two-state FJC
polymer [192, 193], and by the so-called discrete persistent chain
that borrows features from both the FJC and the WLC chain mod-
els [194]. Also atomic-scale computer simulations based on molec-
ular dynamics have been used to analyze physicochemical details
of different polymers and biomolecules [195, 196]. As an exam-
ple, concerning the DNA mechanics, it has been shown that the
double helix can be extended to twice its normal length before its
base pairs break [197]. Moreover, the force needed to completely
separate the two strands has been numerically determined [198],
and some non-canonical forms generated by DNA stretching and
compression have been predicted [199].

We propose here a statistical mechanics analysis of the finite-
size elasticity of model polymers, consisting of domains that can
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Figure 7.1: Potential energy function with an energy barrier. Folded and un-
folded configurations of the domains are schematically represented.

exhibit transitions between more than one stable state at large ap-
plied force. A unifying model capturing at the same time the main
features of both cooperative and non-cooperative behaviors is pre-
sented. Also in this case, the constant-force (Gibbs) and constant-
displacement (Helmholtz) formulations of single molecule stretch-
ing experiments are shown to converge in the thermodynamic
limit. Monte Carlo simulations of continuous three dimensional
polymers of variable length are carried out, based on this formula-
tion. We demonstrate that the experimental force-extension curves
for short and long polymers are described by a unique universal
model, despite the differences in chemistry and rate-dependence
of transition forces.

7.1 general framework

We deal here with the problem of the interpretation of the over-
stretching regime (or conformational transitions regime), which
we describe in terms of the internal dynamics of a chain of two–
state systems undergoing a conformational transformation, as de-
scribed by the double-well potential in Fig. 7.1.

For the sake of argument we call “folded” and “unfolded” the folded and
unfolded
conformations

two conformations; however the transformation occurs, more gen-
erally, between two principal local minima of the domain free-



124 two-state theory of single polymer stretching

energy hypersurface (e.g., for DNA it could as well represent the
melting transition [105]). Then, we firstly develop a theoretical
model describing experiments at constant applied force (a realiza-
tion of Gibbs ensemble statistics) and we show that the conforma-
tional change must occur simultaneously for all the domains at a
given threshold force. On the other hand, experiments performed
at constant–displacement are a realization of the Helmholtz en-
semble of statistical mechanics. In Chapter 6, we showed that the
outcome of the two types of experiment converge in the thermo-
dynamic limit of infinite chain length, N → ∞. Moreover, the
equivalence of the different statistical ensembles in the thermo-
dynamic limit (for Gaussian polymers and chains of rigid rods)
is largely discussed in Ref. [171]. On the contrary, if the thermo-
dynamic limit is not reached, it has been shown that different
boundary conditions (Helmholtz and Gibbs ensembles) imposed
for stretching the polymer lead to different force-extension curves
[114, 123, 124, 171, 200] . In practice, real experiments always fallreal

experiments
always fall
inbetween

the two
ideal extremes

inbetween these two ideal extremes. Therefore, here we focus on
the intermediate cases described by finite values of the kc/k ra-
tio, k and kc being the equivalent spring constant (i.e., stiffness)
of the domain and of the pulling device, respectively. We demon-
strate by means of Monte Carlo simulations that the typical “saw-
tooth” pattern [62], observed for the unfolding of large protein
domains (such as the Ig units in titin), and the “plateau” or kink
[10, 180], observed in the overstretching of DNA and polysaccha-
rides (e.g. dextran), have a common origin in the size-dependence
of the polymer response to the external force, the plateau shape
being attained in the limit of large N. On the same grounds, at
a fixed number N of domains, the transition from the “plateau”plateau and

sawtooth
patterns

(cooperative) to the “sawtooth” (non-cooperative) response is re-
covered for increasing values of kc/k. Notably, such a behavior of
the force-extension curves is universal with respect to the specifi-
cation of any additional parameters, such as chemical, structural
or mechanical constants of the domains.

7.2 theoretical model and calculations

We work out a simple model containing the minimal ingredients
fully describing the overall complex behavior of a polymer chain.
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It consists of an N-domain, non-branched chain clamped at one
end, able to describe conformational transitions across an energy
barrier. The internal state of each domain is described by a poten- bistable

potentialtial energy V(x) that exhibits two minima corresponding to the
lengths x = xf (folded conformation) and x = xu (unfolded con-
formation), connected via an energy barrier M at x = x0 (see Fig.
7.1). The energy is written as a C2 piecewise function, constructed
by imposing continuity and differentiability at the joining points
x1 and x2

V(x) =


1
2k(x− xf)

2 0 < x < x1

−1
2k(x− x0)

2 +M x1 < x < x2
1
2k(x− xu)

2 +∆E x > x2.

(7.1)

For chosen values of the lengths xf and xu, the domain spring
constant k, and the energy difference ∆E between the two confor-
mations, the other parameters are simply given by:

δ = xu − xf, (7.2)

which represents the length rise per base-pair generated by the
force-induced conformational transition,

x0 =
xu + xf
2

+ 2
∆E

kδ
, (7.3)

the energy barrier M

M =
k

4

[
δ

2
+ 2

∆E

kδ

]2
, (7.4)

and the extremes of the domains x1 and x2, namely

x1 = xf +
δ

4
+
∆E

kδ
, (7.5)

and

x2 = xu −
δ

4
+
∆E

kδ
. (7.6)

Therefore, this model properly gives a barrier with

xf < x0 < xu (7.7)
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only for

|∆E| 6 k
δ2

4
. (7.8)

The model is based on the equilibrium statistical mechanics and
therefore it should be applied to the case of very slow stretch-
ing cycles or for all transitions occurring much faster than the
characteristic velocity of the experiment. Then, we will investigate
and obtain the mechanical equation of state and all other ther-
modynamic properties under equilibrium conditions. Important
enough, we underline that the model represents a multi-domain
polymer chain as a sequence of domains connected each other
(see Fig. 7.1). Each domain is intended to represent a series of
monomers that can exhibit a conformational transition. Actually,
to modelize the bistability, instead of really consider a series of
monomers composing each domain, each former is represented
by the short-ranged bond potential V(x) in Eq.(7.1). Under the
influence of an external force, the multi-domain polymer extends
according to the WLC model. In addition, because each domain in
the modular polymer can undergo a transition, the total contour
length of the polymer changes during a transition; this change
is modulated by the external force applied to the end of the last
domain.

7.2.1 Gibbs ensemble: cooperative response

Upon application of a constant force f to the end of the polymer
identified by the position vector rN = (xN,yN, zN) (the other end
being fixed in the origin), the statistics of the fluctuating chain is a
realization of the Gibbs ensemble [124]. The partition function in
thermodynamic equilibrium is given by

Zf(f, T) =
∫ ∫

ΓN

e−h̃/kBTdqNdpN, (7.9)

with ΓN = <6N. The augmented Hamiltonian h̃ includes the classi-
cal kinetic energy of the domains with massm, their total potential
energy, and a term, −fzN, describing the applied force along the
z-axis [124]. In the framework of the present minimal model, theGibbs

partition
function



7.2 theoretical model and calculations 127

partition function can be explicitly calculated as

Zf(f, T) =

(
2πm

β

)3N/2(
2π

βf

)N
(7.10)

×
[
Π (βk,βf, xf, 0, x1)

+ e−βMΠ (−βk,βf, x0, x1, x2)

+ e−β∆EΠ (βk,βf, xu, x2,+∞)
]N

,

with β=(kBT)−1 and

Π (α,γ, x0,a,b) = 2
∫b
a
xe−

α
2 (x−x0)

2
sinh (γx)dx. (7.11)

The function Π can be written as

Π (α,γ, x0,a,b) = I (α,γ, x0,a,b) − I (α,−γ, x0,a,b) , (7.12)

where the integral I can be calculated in closed form

I (α,γ, x0,a,b) =

∫b
a
xe−α(x−x0)

2
eγxdx (7.13)

= eγx0e
γ2

4α

{
1

2α

(
e−A2 − e−B2

)
+

√
π

α

γ+ 2αx0
4α

[
Erf (B) − Erf (A)

]}
,

with

A =
√
α
(
a− x0 −

γ

2α

)
, (7.14)

and

B =
√
α
(
b− x0 −

γ

2α

)
. (7.15)

The extension r at a given force is obtained from the partition
function as

r = kBT(∂ logZf/∂f). (7.16)

Since the extension is linearly dependent on N, the data for chains
of different lengths can be scaled to a single curve upon diving by
N.

Figure 7.2 shows the results of the normalized force-extension theoretical
results



128 two-state theory of single polymer stretching

0 1 2 3 4
0

10

20

30

40

50

n
o

rm
a

li
z
e

d
 f

o
rc

e

normalized extension

k

∆ E

Figure 7.2: Force-extension curves for the Gibbs ensemble: normalized force
f/fβ vs normalized extension r/(Nxf). The black solid lines corre-
spond to different values of the energy ∆E=0, 10, 20, 30, 40, 50 kBT

(increasing values from the bottom up) for a fixed spring constant
k = 2000 kBT/(nm)2. The blue dashed lines correspond to different
values of the spring constant k=10, 15, 30, 100 kBT/(nm)2 (increas-
ing values from the right to the left) for a fixed value of the energy
barrier ∆E = 30 kBT .

curves, f/fβ (where f−1β = βxf) in terms of r/(Nxf) for different
values of the energy barrier ∆E=0, 10, 20, 30, 40, 50 kBT (black
solid lines) at a fixed value of k=2000 kBT/(nm)2, and for differ-
ent values of the spring constant k (blue dashed lines) at a fixed
value of ∆E=30 kBT . As an example, we also adopted xu = 3xf or,
equivalently, δ = 2xf. Both sets of curves display a force plateau at
f ' ∆E/δ, for any ∆E > 0, with a normalized width equal to δ. In
our model, the plateau indicates a transition in the polymer con-
formation, meaning that for f < ∆E/δ each domain is found in the
folded conformation at x=xf, while for f > ∆E/δ domains are in
the unfolded conformation at x=xu; i.e., the ensemble of domains
respond cooperatively to the external force. Important enough, we
stress the fact that for the Gibbs ensemble the pattern of the force
extension curve shows always a “plateau”, independently of the
number of monomers composing the chain (see Fig. 7.2): this is
the reflection of the linear dependence on N in the constitutive
equation Eq.(7.16). Furthermore, we notice that also the value of
the plateau force inducing the conformation transition does not
depend on the spring constant, k, nor on the temperature. Such a
result is readily interpreted in the framework of the Bell expres-
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sion [201], as the threshold value of force necessary to make the
unfolding rate equal to the (reverse) folding one, i.e. lowering the
difference ∆E to zero.

As an example of application, in the case of dsDNA, which dis- biophysical
examplesplays a plateau at f=65 pN with a δ ≈ 2.4 Å, our criterion gives

an energy estimate ∆E=3.8 kBT . Here, the value of f is the ob-
served transition force and the parameter δ represents the mea-
sured length rise per base pair in the transition from dsDNA to its
stretched version (experimentally estimated [105, 180] to be a fac-
tor of ∼1.7 larger than the normal value of 3.4 Å [6, 202]). It turns
out that the above theoretical ∆E=3.8 kBT fits quite well with the
available experimental data [105, 203]. On the other hand, the dif-
ference of extension between dsDNA and ssDNA is characterized
by a smaller factor of ∼1.5 [180] and the energetic difference ∆E is
about 2.5kBT (per base pair) [204, 205]. Since 2.5kBT < 3.8kBT the
process should be interpreted as a melting transition (at lower en-
ergy and therefore preferred). As a matter of fact, there is a wide
debate on the interpretation of the dsDNA transition by means of
a melting process or through the emerging of a stretched (S-DNA)
structure; the problem is still awaiting conclusive experimental evi-
dences. In our context we have simply used the experimental data
(f,∆E, δ) of the transition, which are valid independently of the
real nature of the process.

To further show the complexity of this problem, we also note
that it has been recently approached by analyzing the behavior
of DNA sequences with controlled base content [188]. It has been
proved that when the AT content is around 70% the application of
a force of about 62pN generates a denaturation (melting) with an
extension factor of ∼1.7. Conversely, sequences with GC content of
60%, under the same force, show a reversible transition into a new
stable structure extent by a factor ∼1.5 [188]. Unfortunately no en-
ergetic data are available to make a comparison with our theory. A
similar plateau was observed for other long chain polymers, such
as dextran withN=275, xf=0.5 nm, xu=0.56 nm, ∆E = 13.2 kBT [10],
for which the simple criterion f ≈ ∆E/δ gives plateau forces in the
range of ≈900 pN, as indeed observed [206]. From the theoreti-
cal point of view, another description of the cooperative response
can be found in Refs. [192, 193, 194]. Nevertheless, our formula-
tion is appropriate to obtain the force-extension curves also under
Helmholtz conditions, as described below.
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7.2.2 Helmholtz ensemble: non-cooperative response

While Gibbs ensemble statistics are sampled with a constant
applied force, a dual situation can be realized by imposing the
extension. The statistics of the fluctuating polymer in this latter
scheme is a realization of the Helmholtz ensemble. As shown in
Ref. [124], the corresponding partition function Zr cannot be writ-
ten in closed form and, as opposed to the Gibbs case, the corre-
sponding extension r is non-linearly dependent on N. However,
we showed that the partition functions in the two ensembles are
formally related via a Laplace transform, and we demonstrated
[124] that they lead to a common force-extension curve in the ther-
modynamic limit. It should be noted that any AFM or tweezers
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Figure 7.3: Monte Carlo force-extension curves at T=293 K, for: (right panel)
different decreasing values of the device spring constant kc =5, 2,
1, 0.5, 0.01 kBT/(nm)2 (from the top down) and N=4; (left panel) in-
creasing number of domains N = 4, 30, 300 with kc = 2 kBT/(nm)2.
The red dashed line corresponds to the Gibbs ensemble. The remain-
ing parameters are ∆E = 30 kBT , xf = 2.5 nm, xu = 3xf and k = 100

kBT/(nm)2.

experiment falls in an intermediate regime between the two ideal
extremes, of purely constant–force or constant–extension, since ei-
ther constraint on the terminal domain of the chain is mediated
by a mechanical device (such as the AFM cantilever, or the laser–
bound microsphere, plus a molecular spacer providing adhesion).
The device is characterized by its own effective elastic constant kc,
which is coupled in series to the chain of domain springs k. In
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the limit of a soft device, kc/k →0, the statistics of the coupled
system reduces to the Gibbs ensemble for the isolated molecule
fluctuating under a constant force. On the other hand, for a very
stiff device, kc/k → ∞, one recovers the Helmholtz ensemble for
the isolated molecule held at a fixed extension by the fluctuating
force [168].

To describe such a situation, we adopt a Monte Carlo (MC) Monte Carlo
approachnumerical approach, simulating the stretching of the chain pro-

duced by a device with a proper adjustable elastic stiffness. Com-
pared to previous MC simulations of the polymer stretching
[207, 208, 209, 210], we adopted a scheme ensuring a very efficient
exploration of the bimodal configuration space [211, 212]. While
in the Metropolis method one usually adopts a single step size for
each MC move [124], in the present simulations we added a sec-
ond step size, equal to δ=xf–xu [211]. The first step size is used for
most moves, while the second one is sampled for a small fraction
of the moves, ensuring the overcoming of the barrier at any tem-
perature, while still preserving the detailed balance [212]. In Fig-
ure 7.3, left panel, we report the results of the MC simulations at
T=293 K, for decreasing values of the kc/k ratio, from 0.05, that is
well within the Helmholtz statistics regime, down to 1× 10−4, i.e.,
approaching Gibbs ensemble statistics. The remaining parameters
are set toN=4, ∆E=30 kBT , xf=2.5 nm, xu=3xf and k=100 kBT/nm2,
which can be considered representative of a medium–sized, multi–
domain chain protein. At large values of kc/k, the domains ex-
hibit a sequence of independent conformational transitions to the
unfolded configuration, generating a series of N peaks (sawtooth sawtooth

patternpattern) that closely resemble the experimental results obtained
for short chains (e.g., a titin fragment with N=8, xf=4 nm, xu=32

nm, ∆E=11.1 kBT [206]). For kc/k → 0 the peak-to-valley width,
∆f, of the sawtooth shrinks and the curve approaches the kc=0 co-
operative plateau of Gibbs statistics. In substantial agreement with plateau

patternthis finding, pulling experiments on native titin by means of op-
tical tweezers [213], having a very small equivalent kc compared
to the AFM one, do not reveal the sawtooth pattern, but rather a
smooth, monotonic branch reminiscent of the horizontal plateau.

On the other hand, a similar asymptotic trend is observed (Fig. asymptotic
trend7.3, right panel) when the chain length, i.e. the number of domains,

is increased, at a fixed value of kc/k. As N increases, the width
∆f is decreased until, at a large enough N, the force-extension
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Figure 7.4: Definition of ∆f and θ for a typical force-extension curve withN = 4.
Dashed lines for the growing branches fitted to FJC with increasing
contour length.

curves approach again the plateau curve of the Gibbs ensemble. It
is worth noting that a similar trend was observed in experiments
performed on native titin, comprising several hundreds of Ig do-
mains, for which the width ∆f was of the order of 80 pN [62],
compared to the much shorter 8-monomer titin, for which ∆f >
200 pN. The experiments performed on dextran, a long polysac-
charide with N = 275, [10, 206] whose response to the applied
force shows a plateau closer to the typical DNA-like behavior, can
also be rationalized on this basis.

In summary, we proved that the macroscopically different be-
havior of small-N polymers (such as titin) vs. long polymers (such
as dextran, DNA), as well as experiments done on a same polymer
but with devices having widely different stiffness, can be inter-
preted with the very same unifying model, interpolating between
the two extremes of pure Gibbs or Helmholtz statistics. A similar
dependence of the results on the type of loading devices has been
found in recent literature for a one-dimensional chain of bi-stable
elements [190, 191]: the authors prove that the system “snaps” for
a soft device, while it “pops” for a hard device. Our results ex-
tend these previous ones by considering thermal fluctuations in
the whole three-dimensional space.

As observed by several authors, each branch of the sawtoothinterpretation
of the

sawtooth
pattern

pattern can be nicely fitted by a sequence of FJC, or WLC curves
(see Fig. 7.4, dashed lines) with a proper value of the persistence
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length, up to the unfolding of each domain (see e.g. titin [62],
spectrin [214], fibronectin [215], synaptotagmin [183]). Beyond this
point, the force relaxes to a smaller value, until the next curve
is met and the force can start rising again upon increasing dis-
placement. By considering Fig. 7.4, we determine the position rn
of the peaks as follows: in correspondence of the n-th peak we
have n− 1 domains in the unfolded configuration (extension xu)
and N−n+ 1 domains in the folded configuration (extension xf).
Therefore

rn

Nxf
= 1+

(n− 1)(xu − xf)

Nxf
(7.17)

for n = 1, ...,N (n = N + 1 corresponding to the final asymp-
tote). We also note that the increasing parts of the force-extension
curve (dashed lines in Fig. 7.4) can be represented by polymers
with N domains described by simple harmonic potentials V(x) =
(1/2)k(x− rn/N)2. Since the physical origin of the growing branch
of the curves is well understood on the basis of FJC or WLC mod-
els, we analyzed the decreasing branch, as identified by the com-
mon width ∆f and angle θ in Fig. 7.4 which were extracted from
our MC simulations as a function of N and kc/k.

By looking at Fig. 7.5 (left panel), the peak-to-valley width thermodynamic
limitshows a power-law decrease with the chain length, ∆f ∼ N−α, the

exponent α = 1.3 being remarkably independent on the kc/k ra-
tio. This finding indicates that attainment of the thermodynamic
limit is mainly dictated by the thermal force scale, fβ, and to a
much lesser extent by other structural and chemical details of the
polymer. It is worth noting that the value of the exponent is in
agreement with previous results on mono-stable FJC and WLC
models with extensible bonds [124].

The plot on the right of Fig. 7.5 reports the behavior of tan(θ)
as a function of the device stiffness, kc. The observed linear de-
pendence is another remarkable result, completely describing the
transition between the two extremes (Gibbs and Helmholtz en-
sembles), while taking into account all the intermediate cases. For
kc/k → ∞ we have tan(θ) → −∞ or, equivalently, θ → π/2. In
other words, the decreasing branches of the force-extension curve
must be exactly vertical in the case of the Helmholtz ensemble.
Interestingly enough, as can be observed from Fig. 7.4, once the
values of ∆f and θ are determined, it is possible to uniquely de-
fine the entire shape of the force-extension curve via a graphic
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parameters ∆E = 30 kBT , xf = 2.5 nm, xu = 3xf and T=293 K.

procedure, connecting each others the growing branches fitted to
FJC (or WLC) with increasing contour length (dashed lines in Fig.
7.4).

7.3 outline of the results

Starting from experimental results on forced unfolding of multi-
domain polymers, we developed a theory that explains these ex-
periments by a unique universal model. As a matter of fact, vari-
ous efforts have been made in this topic: experimental [10, 62, 180]
and computational [195, 196] results showed the different be-
haviour of the force-extension curve for specific type of polymers,
as proteins, polysaccharides, and nucleic acids. The majority of
the results points out a number of difficulties in their interpreta-
tion [181], and makes suggestions for further experiments [182],
even thought, it appears clear the lack of universality in the pre-
sented models, which are often circumscribed to a specific type
of molecules [183, 184]. One advantage of our approach is that it
shows that the force-extension curves is universal with respect to
the specification of any multi-domain polymer. This is due to the
original interpretation of the two different mechanical behaviour
discussed for the exactly same polymer chain. In fact, while exper-
iments showed a different behaviour for different polymer chains,
here we observed two different behaviours for the same polymer
chain. A primary cause of the different elasticity is found on the
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finite values of the ratio, between the stiffness of the domain and
the one of the pulling device. On the other ground, considering the
same type of polymer chain, but with different size, we observed
as well the “sawtooth” and “plateau” response being recovered
for different contour length. Apart from providing a unified pic-
ture for such apparently contrasting experimental situations, this
framework and the presented results stress some important fac-
tors to take into account for a more accurate interpretation of a
single molecule stretching experiment.
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We profusely discussed how modern methods for stretching sin-
gle molecules provide a valuable insight about the response of
polymers to external forces. Typically, mechanical methods allow
the manipulation of a polymer molecule in two ways: the stretch-
ing of the chain by the direct action of an external force or by the
application of an external field. If we consider homogeneous poly-
mers (with all monomers described by the same effective elastic
stiffness), then we obtain a uniform strain with the external force
and a non-uniform strain with the applied field.

To exert an external force on a polymer fixed at one end, laser
optical tweezers (LOTs) [3], magnetic tweezers (MTs) [4] or atomic
force microscope (AFM) [5] can be used. Many experiments have
been performed over a wide class of polymers with biological rel-
evance, such as the nucleic acids (DNA, RNA) [6], allowing the
stretching of the entire molecule and providing the reading and
the mapping of genetic information along the chain [60, 61]. Fur-
thermore, it has been possible to describe the elastic behaviour of
single polymers consisting of domains which may exhibit transi-
tions between different stable states [10, 62, 216].

Alternatively, it is possible to manipulate single molecules by
an external field (see Sections 1.3 and 1.3.5). The flow field tech-

139
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nique was extensively applied in single-molecule study of DNA
elasticity [20] as well as to characterize the rheological properties
of individual DNA molecules [90, 91, 92].

In order to understand the response of polymers to external
fields and to study their statistics, some theoretical models have
been proposed. As for the case of external applied forces, these
models are typically based on the FJC and WLC schemes, gener-
alized with the inclusion of the given applied field. Some studies
have shown that in a weak external field the persistence length
along the field direction is increased, while it is decreased in the
perpendicular direction; moreover, as the external field becomes
stronger, the effective persistence length grows exponentially with
the field strength [14, 217, 218]. The behavior of a Gaussian chain
in an elongational flow has been studied through the dumbbell
model [219]. Other investigations under a constant velocity flow
have shown that a flexible polymer displays three types of con-
formation: unperturbed at low velocity; “trumpet” shaped when
partially stretched; “stem and flowers” shaped, with a completely
stretched portion (the stem) and a series of blobs (the flowers),
at larger loading [220, 221, 222]. Polymer models have been stud-
ied in elongational flows to analyze the coil stretching and chain
retraction as a function of polymer and flow parameters, find-
ing good agreement with experimental data [223, 224]. Conforma-
tional properties of semiflexible polymer chains in uniform force
field were also studied for two-dimensional models [225]. Some
important results have been obtained for the dynamic behavior
of polymers containing positive and negative charges in the pres-
ence of external electrical fields [226, 227, 228, 229]. In spite of all
these relevant efforts, it is yet a challenge to base on one same
unified theoretical framework and understanding of all aspects of
polymer mechanics in an external field.

In this Chapter we study the conformational and mechanical
properties of flexible and semi-flexible non-branched polymer
model chains tethered at one end and immersed in an external
force field. This situation is useful to describe at least two physi-
cal conditions of interest: a polymer chain immersed in a fluid in
a uniform motion (our model is valid only when the action of the
fluid motion can be described by a distribution of given forces ap-
plied to all monomers) and an arbitrarily charged chain inserted
in a uniform electric field.
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We adopt both analytical (statistical mechanics [57, 96]) and nu-
merical techniques (Monte Carlo simulations [177, 209]). While the
analytical approach is useful to obtain the explicit partition func-
tion in some specific cases, Monte Carlo simulations are crucial
to study more generic cases, inaccessible to analytical treatments.
In particular, while we develop our theoretical framework starting
from the more tractable FJC model, we take full profit from our
MC simulations to extend our study also to the WLC model.

We first introduce the mathematical formalism adopted and we
derive a generic form of the partition function in <d for a gen-
eralized FJC model where the extensibility of the bonds is taken
into account. Next, we find the two specific forms of the partition
function for the 2D- and the 3D-case for the pure FJC polymer
with non extensible bonds. Moreover, we obtain in both cases the
variance and the covariance among the positions of the monomers.
Generalization of previous results to the semi-flexible WLC model
are then discussed. We present two closed-forms approximations
for the 2D- and the 3D-case and the comparisons with MC simula-
tions. Finally, we analyze the behavior of a polymer in an external
field taking into account also an external force applied at the end
of the chain. The case with the force not aligned with the field is
particularly interesting and shows the power of the MC method.

8.1 general theoretical framework

As argued in Ref.[230], for weak tension and weak external
field, it is acceptable to model the polymer as a FJC model. This
model breaks down only when the curvature of the conforma-
tion is very large because it ignores the consequent great bend-
ing energy. Since we will look upon this problem in the end of
this Chapter, we now give way to the case of a FJC. In particular
we consider a FJC with two additional hypothesis. Firstly we con-
sider the possible extensibility of the bonds of the chain through a
standard quadratic potential characterized by a given equilibrium
length: such an extension mimics the possible stretching of the
chemical bond between two adjacent monomers. If necessary, the
extensibility of the bonds, here described by linear springs, can be
easily extended to more complex, nonlinear springs [231]. More-
over, we take into account a series of arbitrary forces applied to series of

arbitrary
forces
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Figure 8.1: A polymer chain in an external field. The first monomer is clamped
at position r0 while the others are free to fluctuate. Each monomer is
subjected to an external force gK (different in strength and direction
for any K): all these forces mimic an external field. Another external
force, playing the role of a main pulling load, f, is applied to the last
monomer at the position rN.

each monomer: these actions mimic the effects of an external phys-
ical field applied to the system. In addition, we contemplate the
presence of an arbitrary force applied to the terminal monomer of
the chain. All calculations will be performed in <d and we will
specialize the results both in the 2D-case and in the 3D-case when
needed. The idea is to write the complete form of the Hamilto-
nian of the system and to build up the corresponding statistical
mechanics [124]. The starting point is therefore the calculation of
the classical partition function. In fact, when this quantity is de-
termined, it is possible to obtain the force-extension curve (the
equation of state) through simple derivations.

Let us consider a non-branched linear polymer with Nour model
monomers (see Fig. 8.1) at positions defined by r1, ..., rN ∈ <d

(for considering d = 2 or d = 3 according to the specific problem
of interest). To each monomer a given external force is applied and
named g1, ...,gN. Another external force, playing the role of main
pulling load, f, is applied to the last monomer at the position rN.



8.1 general theoretical framework 143

While the chain is clamped at position r0, the monomers are free
to fluctuate. The Hamiltonian of the system is therefore given by

h =

N∑
i=1

pi ·pi
2m

+
1

2
k

N∑
K=1

(|rK − rK−1|− l)
2 (8.1)

−

N∑
K=1

gK · rK − f · rN

where pi are the linear momenta, m the mass of the monomers,
k the spring constant of the inter-monomer interaction, and l the
equilibrium length of the monomer-monomer bond. We search for the

generalized
Gibbs
partition
function

the partition function of the system defined as:

Zd = c

∫
<d

...
∫
<d︸ ︷︷ ︸

2N−times

exp
(
−
h

kBT

)
dr1...drNdp1...dpN (8.2)

where c is a multiplicative constant which takes into account
the number of microstates. As well known, the kinetic part
can be straightforwardly integrated and it yields a further non-
influencing multiplicative constant; then we can write the parti-
tion function as an integral over the positional space only. This
integral can be easily handled through the standard change of
variable

ξ1 = r1 − r0

ξ2 = r2 − r1
...

ξN = rN − rN−1

(8.3)

having the Jacobian determinant J =
∣∣∣ ∂(r1...rN)
∂(ξ1...ξN)

∣∣∣ = 1. We consider
the terminal r0 of the chain fixed in the origin of axes, i.e. r0 = 0.
So, we cast the positions ri in terms of the variables ξJ as follows

r1 = ξ1 + r0 = ξ1

r2 = ξ2 + r1 = ξ2 + ξ1
...

rN = ξN + ξN−1 + ... + ξ1

(8.4)
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By setting the general solution as ri =
∑i
K=1 ξK, the partition func-

tion becomes

Zd = c

∫
<d

...
∫
<d︸ ︷︷ ︸

N−times

exp

[
−

k

2kBT

N∑
K=1

(|ξK|− l)
2

]
(8.5)

× exp

 1

kBT

N∑
K=1

gK ·
K∑
J=1

ξJ


× exp

[
1

kBT
f ·

N∑
K=1

ξK

]
dξ1...dξN

Inverting the two summation symbols

N∑
K=1

gK ·
K∑
J=1

ξJ =

N∑
K=1

ξK ·
N∑
i=K

gi (8.6)

we obtain

Zd = c

∫
<d

...
∫
<d︸ ︷︷ ︸

N−times

exp

[
−

k

2kBT

N∑
K=1

(|ξK|− l)
2

]
(8.7)

× exp

[
1

kBT

N∑
K=1

ξK ·
N∑
i=K

gi

]
exp

[
1

kBT
f ·

N∑
K=1

ξK

]
dξ1...dξN

= c

N∏
K=1

∫
<d

exp
[
−

k

2kBT
(|ξK|− l)

2

]
exp

[
1

kBT

(
f+

N∑
i=K

gi

)
· ξK

]
dξK

= c

N∏
K=1

∫
<d
e−a(|ξ|−l)

2

eVK·ξdξ

where

a =
k

2kBT
> 0 (8.8)

VK =
1

kBT

(
f+

N∑
i=K

gi

)
(8.9)

It exists a deep conceptual connection between the last integral for
the partition function and the theory of the d-dimensional Fourier
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transforms. The Fourier integral of an arbitrary function f(ξ) is
defined as

F(ω) =

∫
<d
f(ξ)e−iω·ξdξ (8.10)

with inverse transform given by

f(ξ) =
1

(2π)d

∫
<d
F(ω)eiω·ξdω (8.11)

If we consider connection
with the
Fourier
transform

f(ξ) = e−a(|ξ|−l)
2

(8.12)

it is easy to realize that the integral in Eq. (8.7) is the Fourier
transform of f(ξ) calculated for ω = iVK, i.e.

Zd = c

N∏
K=1

F(iVK) (8.13)

with a e VK defined respectively in Eq. (8.8) and Eq. (8.9). It is
important to remark that the function in Eq. (8.12) has a spherical
symmetry (i.e. it depends only on the length of the vector ξ) and,
therefore, also its Fourier transform F(ω) exhibits the spherical
symmetry, depending only on the quantity |ω| in the transformed
domain. In fact, for such spherically-symmetric functions it holds Fourier

transform
for spherically
symmetric
functions

that: if f(ξ) = f(|ξ|) then F(ω) = F(|ω|). Furthermore, we have
that

F(Ω) =

∫+∞
0

2πρf(ρ)

(
2πρ

Ω

)d
2−1

Jd
2−1

(ρΩ)dρ (8.14)

for d = 2n (even), and

F(Ω) =

∫+∞
0

4πρ2f(ρ)

(
2πρ

Ω

)d−3
2

jd−3
2
(ρΩ)dρ (8.15)

for d = 2n+ 1 (odd), where ρ = |ξ| and Ω = |ω| [232] (see Ap-
pendix A.2 for a complete proof). Here Jν(z) and jν(z) are the cylin-
drical and spherical Bessel functions of the first kind respectively,
correlated by the standard relation jν(z) =

√
π
2zJν+12

(z) [175, 233].
In our calculations we have to set ω = iVK and, therefore, we ob-
tain Ω = i|VK|. Moreover, when the argument of Jν(z) and jν(z)
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is supposed imaginary we obtain the modified Bessel functions of
the first kind [175, 233]

Iν(z) = (i)−νJν(iz)

iν(z) = (i)−νjν(iz)
(8.16)

For example we have the explicit expression j0(z) = sin z
z and

i0(z) =
sinh z
z while, on the contrary, I0(z) and J0(z) cannot be writ-

ten in closed form. So, for d even we eventually obtain

F(iVK)

2π
=

∫+∞
0

ρ e−a(ρ−l)
2

(
2πρ

|VK|

)d−2
2

Id−2
2
(ρ|VK|)dρ (8.17)

and, on the other hand, for d odd we have

F(iVK)

4π
=

∫+∞
0

ρ2 e−a(ρ−l)
2

(
2πρ

|VK|

)d−3
2

id−3
2
(ρ|VK|)dρ (8.18)

Finally, by using Eq. (8.13), the partition function is given bypartition
functions

in terms of
Bessel

functions
Zd = c

N∏
K=1

∫+∞
0

ρ e−a(ρ−l)
2

(
ρ

|VK|

)d−2
2

Id−2
2
(ρ|VK|)dρ (8.19)

for d even, and

Zd = c

N∏
K=1

∫+∞
0

ρ2 e−a(ρ−l)
2

(
ρ

|VK|

)d−3
2

id−3
2
(ρ|VK|)dρ (8.20)

for d odd, where a and VK are given in Eqs.(8.8) and (8.9). In the
framework of statistical mechanics, the knowledge of the partition
function allows to determine all needed expected values describ-
ing the statistics of the chain (i.e., average values of the positions,
variances of the positions and so on).

8.2 freely-jointed chain under external field

8.2.1 Average values of positions

In the previous section we obtained the general expression of
the partition function for the case where the extensibility of the
bonds is taken into account. This is described by the parameter k,
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which characterizes the elastic bond between adjacent monomers.
In the present Section we want to study the effects of an arbi- FJC inextensible

modeltrary distribution of forces on a pure freely jointed chain model
(FJC). Therefore we need to obtain the specific form of the parti-
tion function in the case of rigid bonds of fixed length l. From the
mathematical point of view it means that we will consider k→∞,
a condition representing a inextensible spring. Because of the re-
lation

√
α
πe

−αx2 = δ(x) when α → ∞ we may determine the limit
of Eq. (8.19) and Eq. (8.20) for a → ∞ (i.e. for k → ∞, FJC limit).
Since the arbitrariness of the constant c, we may consider in Eqs.
(8.19) and (8.20) a multiplicative constant term (

√
a
π)
N. Then, by d-dimensional

FJC
partition
function

using the translated property
√
a
πe

−a(ρ−l)2 → δ(ρ− l) for a → ∞
we perform all the integrals thereby obtaining

Zd = c

N∏
K=1

1

|VK|
d−2
2

Id−2
2
(l|VK|) d even (8.21)

Zd = c

N∏
K=1

1

|VK|
d−3
2

id−3
2
(l|VK|) d odd (8.22)

Similar forms for the partition function can be found in Ref. [44]
where, however, the external field was not taken into account. A
different important analysis concerning the determination of the
partition function for the FJC model can be found in literature
[234, 235, 236]. In these investigations all holonomic constraints 2D and 3D

partition
functions

have been explicitely considered. In particular, for d = 2 we have

Z2 = c

N∏
K=1

I0

(
l

kBT

∣∣∣∣∣f+
N∑
i=K

gi

∣∣∣∣∣
)

(8.23)

while for d = 3 we obtain

Z3 = c

N∏
K=1

sinh
(

l
kBT

∣∣∣f+∑N
i=K gi

∣∣∣)
l
kBT

∣∣∣f+∑N
i=K gi

∣∣∣ (8.24)

All the expressions given in Eqs.(8.21), (8.22), (8.23), (8.24) can be
summarized in the general form

Zd = c

N∏
K=1

f(|VK|) (8.25)
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with a suitable function f(x). By using this expression of the parti-
tion function we can find the average position of the i-th monomer
of the chain; indeed, from the definition of the Hamiltonian in Eq.
(8.1) we state that ri = − ∂h

∂gi
and, therefore, we get

〈ri〉 = kBT
∂

∂gi
lnZd (8.26)

which represents the shape of the polymer chain under the effectsshape of
the polymer of the external field gi and the applied force f. Now we can sub-

stitute Eq. (8.25) into Eq. (8.26), obtaining

〈ri〉 = kBT
∂

∂gi
ln

[
c

N∏
K=1

f(|VK|)

]
(8.27)

= kBT
∂

∂gi

[
ln c+

N∑
K=1

ln f(|VK|)

]

= kBT

N∑
K=1

∂

∂gi
ln f(|VK|)

= kBT

N∑
K=1

1

f(x)

∂f(x)

∂x

∂x

∂gi

where we have defined x = |VK|; we calculate ∂x
∂gi

as follows:

∂x

∂gi
=

∂

∂gi

√
VK ·VK =

2VK

2
√
VK ·VK

∂VK
∂gi

(8.28)

=
VK√
VK ·VK

∂

∂gi

 1

kBT

f+ N∑
J=K

gJ


=

1

kBT

VK
|VK|

N∑
J=K

δiJ

we observe that
∑N
J=K δiJ = δik + δik+1 + ... + δiN is equal to 1 if

k 6 i and equal to 0 elsewhere. Therefore, by substituting Eq.
(8.28) in Eq. (8.27) we obtain

〈ri〉 =
i∑

K=1

VK
|VK|

[
1

f(x)

∂f(x)

∂x

]
x=|VK|

(8.29)
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In the 2D-case we have f(x) = I0(lx) and therefore

1

f(x)

∂f(x)

∂x
= l
I1(lx)

I0(lx)
(8.30)

where VK = 1
kBT

(
f+
∑N
J=K gJ

)
and x = |VK|.

In the end we obtain 2D average
value of
positions

〈ri〉 = l
i∑

K=1

I1

(
l
kBT

∣∣∣f+∑N
J=K gJ

∣∣∣)
I0

(
l
kBT

∣∣∣f+∑N
J=K gJ

∣∣∣) f+
∑N
J=K gJ∣∣∣f+∑N
J=K gJ

∣∣∣ (8.31)

For such a 2D case, by applying Eq. (8.31), the average values of
the longitudinal component of the positions have been calculated
and are plotted in Fig. 8.2 as a function of the chain length N

and the field strength g. We have considered only the action of an
external uniform field with gJ = g and amplitude g.

Although this case lends itself to a full analytical solution, nu- Monte Carlo
methodmerical simulations were also performed by using a conventional

implementation of the Metropolis version of the Monte Carlo al-
gorithm [177]. The initial state of the chain is defined by a set
of randomly chosen positions. The displacement extent of each
step governs the efficiency of the configurational space sampling.
Therefore, we analysed several runs in order to optimize its value
[125, 126]. The perfect agreement between the theory and the MC
simulations provides a strict check of the numerical procedure, to
be used in the foregoing.

On the other hand, in 3D we have f(x) = sinh(lx)
lx , and deriving

1

f(x)

∂f(x)

∂x
=

∂

∂x
ln f(x) =

∂

∂x
ln
(

sinh(lx)
lx

)
(8.32)

=
∂

∂x
[ln sinh(lx) − ln(lx)] = l

cosh(lx)
sinh(lx)

−
l

lx
= lL(lx)

In the end we obtain 3D average
value of
positions

〈ri〉 = l
i∑

K=1

L

 l

kBT

∣∣∣∣∣∣f+
N∑
J=K

gJ

∣∣∣∣∣∣
 f+

∑N
J=K gJ∣∣∣f+∑N
J=K gJ

∣∣∣ (8.33)

where L(x) = coth x − 1
x is the Langevin function. By using Eq.

(8.33), as before, it is possible to plot the average values of the



150 effect of a sequence of forces on monomers chains

0 0.5 1
0

10

20

30

40

50

〈r i
,l
〉/l

i/N

N

2D−FJC

0 0.5 1
0

5

10

15

20

25

〈r i
,l
〉/l

i/N

g
2D−FJC

Figure 8.2: Average values of the longitudinal component of the positions in-
duced by the external field for the 2D FJC case. The red solid lines
correspond to the analytical results Eqs.(8.31) and (8.36), MC re-
sults are superimposed in black circles. Left panel: each curve cor-
responds to different chain lengths N = 10, 20, 30, 40, 50 for a fixed
value gl/(kBT) = 1 (e.g., corresponding to l = 1nm, g = 4pN at
T = 293K). Right panel: each curve corresponds to the different val-
ues gl/(kBT) = 0.1, 0.25, 0.5, 1, 2, 10 for a fixed chain length N = 20.

longitudinal component of the positions for the 3D case (Fig. 8.3).
Also in this case we adopted a uniform field g and the good agree-
ment with the MC simulations is evident. As particular case, if
there is only the force f applied to the system we obtain the stan-
dard scalar force-extension curves linking r = |〈rN〉| with f = |f|.
In 2D we have2D and 3D

single external
force equations

r

lN
=
I1

(
lf
kBT

)
I0

(
lf
kBT

) (8.34)

in agreement with recent results, [178] while in 3D we obtain

r

lN
= L

(
lf

kBT

)
(8.35)

which is a classical result [16, 124]. The simple results in Eqs.(8.34)
and (8.35) have been used to obtain the limiting behaviors under
low (f → 0) and high (f → ∞) values of the applied force, as
shown in Table 3.

Building on such first results we now focus on some particular
interesting approximations. More specifically, it can be interesting
to find approximate results for the case of a homogeneous field
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Figure 8.3: Average values of the longitudinal component of the positions in-
duced by the external field for the 3D FJC case. The red solid lines
correspond to the analytical results Eqs.(8.33) and (8.37), MC re-
sults are superimposed in black circles. Left panel: each curve cor-
responds to different chain lengths N = 10, 20, 30, 40, 50 for a fixed
value gl/(kBT) = 1. Right panel: each curve corresponds to the dif-
ferent values gl/(kBT) = 0.1, 0.25, 0.5, 1, 2, 10 for a fixed chain length
N = 20.

and no end-force, f = 0 and gJ = g for any J. In this case we
search for the scalar relation between r = |〈rN〉| and g = |g|. In the
2D case, from Eq. (8.31), we have 2D -FJC

force-extension
curve
interpolationr

lN
=

1

N

N∑
k=1

I1

(
lg
kBT

(N− k+ 1)
)

I0

(
lg
kBT

(N− k+ 1)
)

' 1

N

∫N
0

I1

(
lg
kBT

(N− x+ 1)
)

I0

(
lg
kBT

(N− x+ 1)
)dx

=
1

N

1
lg
kBT

log
I0

(
lg
kBT

(N+ 1)
)

I0

(
lg
kBT

) (8.36)

On the other hand, for the 3D case we obtain 3D -FJC
force-extension
curve
interpolation
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r

lN
=

1

N

N∑
K=1

L

(
l

kBT
(N− k+ 1)

)
' 1

N

∫N
0
L

(
l

kBT
(N− x+ 1)

)
dx

=
1

N

1
lg
kBT

log
e2

lg
kBT

(N+1)
− 1

(N+ 1)

(
e2

lg
kBT − 1

) − 1 (8.37)

We have usefully exploited the fact that, for large N, the sums can
be approximately substituted with the corresponding integrals,
which are easier to be handled. The closed-form expressions given
in Eqs.(8.36) and (8.37) are very useful to obtain the limiting be-
haviors of the polymer under low (g → 0) and high (g → ∞)
values of the applied field, as shown in Table 3. Moreover, we
have verified the validity of Eqs.(8.36) and (8.37) through a series
of comparisons with MC results (see Fig. 8.6 in the next Section
for details).

8.2.2 Covariances and variances of positions

In this Section, we search for the covariance among the positions
of the monomers. It is important to evaluate such a quantity in
order to estimate the variance of a given position (measuring the
width of the probability density around its average value) and the
correlation among different monomer positions (measuring the
persistence of some geometrical features along the chain). In order
to do this, we identify the α-th component of the i-th monomer as
riα. The covariance of the generic monomer simply defined as (it
represent the expectation value of the second order):

Cov(riα, rJβ) = 〈(riα − 〈riα〉)(riβ − 〈riβ〉)〉 (8.38)
= 〈riαrJβ − 〈riα〉rJβ − riα〈rJβ〉+ 〈riα〉〈rJβ〉〉
= 〈riαrJβ〉− 〈riα〉〈rJβ〉.

It is important to evaluate such a quantity in order to estimate the
variance of a given position (measuring the width of the probabil-
ity density around its average value) and the correlation among
different monomer positions (measuring the persistence of some
geometrical features along the chain). Taking the derivative of the
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partition function with respect to the α and the β components of
the force vectors gi and gJ we can solve the problem as follows.
We consider the standard expression for the partition function

Z = c

∫ ∫
e
− h
kBT dqdp, (8.39)

and we obtain the successive derivatives

∂Z

∂giα
= c

∫ ∫
−
1

kBT

∂h

∂giα
e
− h
kBT dqdp (8.40)

=
c

kBT

∫ ∫
riαe

− h
kBT dqdp,

∂2Z

∂giα∂gJβ
= c

∫ ∫
−

riα
(kBT)2

∂h

∂gJβ
e
− h
kBT dqdp (8.41)

=
c

(kBT)2

∫ ∫
riαrJβe

− h
kBT dqdp.

Noting that the probability density can be written as

ρ = c
e
− h
kBT

Z
, (8.42)

we can obtain the following expression

〈riαrJβ〉 =

∫ ∫
riαrJβρdqdp (8.43)

= c

∫ ∫
riαrJβ

e
− h
kBT

Z
dqdp

=
(kBT)

2

Z

∂2Z

∂giα∂gJβ

=
(kBT)

2

Z

∂

∂giα

∂Z

∂gJβ

=
(kBT)

2

Z

∂

∂giα

(
Z
∂

∂gJβ
lnZ

)
=

(kBT)
2

Z

(
∂Z

∂giα

∂

∂gJβ
lnZ+Z

∂2

∂giα∂gJβ
lnZ

)
= (kBT)

2

(
∂ lnZ
∂giα

∂ lnZ
∂gJβ

+
∂2 lnZ
∂giα∂gJβ

)
.
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Now substituting Eq. (8.25) in Eq. (8.43) we have

〈riαrJβ〉 = (kBT)
2

[(
∂

∂giα

N∑
K=1

ln f(|VK|)

)(
∂

∂gJβ

N∑
h=1

ln f(|Vh|)

)

+
∂2

∂giα∂gJβ

N∑
K=1

ln f(|VK|)

]

= (kBT)
2

(〈riα〉
kBT

〈rJβ〉
kBT

+
∂

∂gJβ

〈
riα
kBT

〉)
= 〈riα〉〈rJβ〉+ kBT

∂

∂gJβ
〈riα〉,

but we can simply determine that

∂

∂gJβ
〈riα〉 =

∂

∂gJβ

i∑
K=1

VK · eα
|VK|

[
1

f(x)

∂f(x)

∂x

]
x=|VK|

, (8.44)

where we have defined the unit vector eα as the basis of the or-
thonormal reference frame. Being

VK · eα =
1

kBT

(
fα +

N∑
i=K

giα

)
, (8.45)

we simply obtain

∂

∂gJβ
〈riα〉 =

∂

∂gJβ

i∑
K=1

1
kBT

(
fα +

∑N
l=K glα

)
|VK|

f ′(|VK|)
f(|VK|)

(8.46)

=
1

kBT

i∑
K=1

1

|VK|f(|VK|)

×
{

N∑
l=K

∂glα
∂gJβ

f ′(|VK|) + f
′′(|VK|)

∂|VK|

∂gJβ

(
fα +

N∑
l=K

glα

)

−

(
fα +

N∑
l=K

glα

)
f ′(|VK|)

[
∂|VK|

∂gJβ

1

|VK|
+
f ′(|VK|)
f(|VK|)

∂|VK|

∂gJβ

]}
,

and noting that

∂|VK|

∂gJβ
=

1

kBT

VK · eβ
|VK|

N∑
q=K

δJq, (8.47)
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we also have

kBT
∂

∂gJβ
〈riα〉 =

min{i,J}∑
K=1

1

|VK|f(|VK|)
(8.48)

×
{
δαβf

′(|VK|) + f
′′(|VK|)

VKαVKβ

|VK|

− VKαf
′(|VK|)

VKβ

|VK|2
− VKα

f ′(|VK|)2

f(|VK|)

VKβ

|VK|

}
.

Ordering the terms we finally obtain

〈riαrJβ〉− 〈riα〉〈rJβ〉 = kBT
∂

∂gJβ
〈riα〉 (8.49)

=

min{i,J}∑
K=1

δαβ

|VK|

f ′(|VK|)
f(|VK|)

+

min{i,J}∑
K=1

VKαVKβ

|VK|2f(|VK|)

×
{
f ′′(|VK|) −

f ′(|VK|)
|VK|

−
f ′(|VK|)2

f(|VK|)

}
.

So the important result is covariances

Cov(riα, rJβ) =

min{i,J}∑
K=1

δαβ

|VK|

f ′(|VK|)
f(|VK|)

+

min{i,J}∑
K=1

VKαVKβ

|VK|2f(|VK|)

×
{
f ′′(|VK|) −

f ′(|VK|)
|VK|

−
f ′(|VK|)2

f(|VK|)

}
.

If we look at the variance of a single component of a single posi- variances
tion (i = J, α = β) we have the simpler result

σ2iα =

i∑
K=1

f ′(|VK|)
|VK|f(|VK|)

+

i∑
K=1

V2Kα
|VK|2f(|VK|)

(8.50)

×
{
f ′′(|VK|) −

f ′(|VK|)
|VK|

−
f ′(|VK|)2

f(|VK|)

}
.
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It could be interesting to consider the sum of the variances for the
d-components (in d-dimension) of a given monomer position; we
have

d∑
α=1

σ2iα =

d∑
α=1

〈(riα − 〈riα〉)2〉 (8.51)

=

i∑
K=1

d

|VK|f(|VK|)
f ′(|VK|) +

i∑
K=1

1

f(|VK|)
(8.52)

×
{
f ′′(|VK|) −

f ′(|VK|)
|VK|

−
f ′(|VK|)2

f(|VK|)

}
=

i∑
K=1

1

f(|VK|)

{
f ′′(|VK|) +

(d− 1)

|VK|
f ′(|VK|) −

f ′(|VK|)2

f(|VK|)

}
.

This quantity is a measure of the incertitude on the knowledge of
the position of the monomer around its average value. In order to
use the previous expressions we have to specify the function f and
its derivatives for the two-dimensional and the three-dimensional
case. In the 2D case we have

f(x) = I0(lx)→ f ′(x) = lI1(lx)→ f ′′(x) =
l2

2
[I0(lx) + I2(lx)] .

On the other hand, for the 3D case we have f(x) = sinh(lx)
lx ,

f ′(x) = lL(lx)→ f ′′(x) =
1

lx

(
l2 +

2

x2

)
sinh(lx) −

2

x2
cosh(lx),

then f ′(x)/f(x) = lL(lx) and f ′′(x)/f(x) = l2 − 2lL(lx)/x.
This completes the determination of the covariance.

We report in Fig. 8.4 and Fig. 8.5 the longitudinal and transver-
sal component of the variance as a function of the chain length
and the field strength for the 3D case (with f = 0). The 2D case is
very similar and it has not been reported here for sake of brevity.
We can observe some interesting trends: the longitudinal variancetrends

of the
variances

of the position is a decreasing function of the number of polymers
N while the transversal one is a increasing function (with a fixed
amplitude of the external field g). Moreover, both variances are
rapidly increasing along the chain, assuming the largest value in
the last free monomer, which is more subject to strong fluctuations.
It interesting to observe that the variance (both longitudinal and
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Figure 8.4: Longitudinal (left panel) and transversal (right panel) component of
the variance of positions for the 3D FJC case. The red solid lines
correspond to the analytical result Eq. (8.50), MC results are super-
imposed in black circles. Each curve corresponds to different chain
lengths N = 10, 20, 30, 40, 50 for a fixed value of the external field
defined by gl/(kBT) = 1.

transversal components) is a linear function of the position i along
the chain (it linearly intensifies along the chain itself) with a sim-
ple force f applied at the free end: conversely, with a uniform field
g, the distribution of forces generates a strongly non-linear inten-
sification of the variances moving towards the free end-terminal.
So, from the point of view of the variances, the application of a different

responsesfield or the application of a single force generates completely dif-
ferent responses. In Fig. 8.5 we can also observe that the variances
are decreasing functions of the strength of the field (both for the
longitudinal and transversal components); in fact, the intensity of
the fields tends to reduce the fluctuations of the chain, increasing,
at the same time, the tension within the bonds.

These trends are in qualitative agreement with results reported
in Refs. [220, 221, 222]. In fact, the behavior of the variances re-
flect the fluctuations of the chain shape. As already discussed the
polymer assumes different shapes for different external field am-
plitudes. For moderate field the trumpet regime was observed,
while for larger values of the field the stem and flower shape was
predicted.
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Figure 8.5: Longitudinal (left panel) and transversal (right panel) component
of the variance of positions for the 3D FJC case. The red solid
lines correspond to the analytical result Eq. (8.50), MC results are
superimposed in black circles. Each curve corresponds to differ-
ent values of the external field amplitude defined by gl/(kBT) =

0.1, 0.25, 0.5, 1, 2, 10 for a fixed chain length N = 20.

8.3 freely-jointed chain with elastic bonds

In the general case Eq. (8.29) remains still valid and the function
f(x) assumes the form given below for even or odd dimensionality

f(x) =

∫+∞
0

ρ e−a(ρ−l)
2
(ρ
x

)d−2
2
Id−2
2
(ρx)dρ d even, (8.53)

f(x) =

∫+∞
0

ρ2 e−a(ρ−l)
2
(ρ
x

)d−3
2
id−3
2
(ρx)dρ d odd. (8.54)

We can also write the simplified versions

f(x) =
1

x
d−2
2

∫+∞
0

ρ
d
2 e−a(ρ−l)

2
Id−2
2
(ρx)dρ d even, (8.55)

f(x) =
1

x
d−3
2

∫+∞
0

ρ
d+1
2 e−a(ρ−l)

2
id−3
2
(ρx)dρ d odd. (8.56)

We develop now a method to calculate f(x) when a (or k) is large
enough. Indeed, when a is very large, we are in the FJC case and
the exponential term converges to a Dirac delta function centered
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in ρ = l. When a is lower, the integral is dominated by the interval
around ρ = l. So we can develop the Bessel functions around
ρ = l as follows. We use a generic development (Taylor series) of
a function centered in a given point:

g(x) =

∞∑
K=0

fK(x0)

K!
(x− x0)

K. (8.57)

So, we have

Id−2
2
(ρx) =

+∞∑
K=0

1

K!
∂K

∂ρK

[
Id−2
2
(ρx)

]
ρ=l

(ρ− l)K, (8.58)

where

∂K

∂ρK
Id−2
2
(ρx) =

∂K−1

∂ρK−1

[
xI

(1)
d−2
2

(ρx)

]
(8.59)

=
∂K−2

∂ρK−2

[
x2I

(2)
d−2
2

(ρx)

]
= ...
= xKI

(K)
d−2
2

(ρx),

and therefore we obtain:

Id−2
2
(ρx) =

+∞∑
K=0

xK

K!

[
I
(K)
d−2
2

(lx)

]
(ρ− l)K. (8.60)

Similarly, we have:

id−3
2
(ρx) =

+∞∑
K=0

xK

K!

[
i
(K)
d−3
2

(lx)

]
(ρ− l)K. (8.61)

We remark that the K-th derivatives of the Bessel functions In and
im can be evaluated through the standard recursive formulas (see
Abramowitz-Stegun).
By using Eq. (8.60) in Eq. (8.55) we get for d even:

f(x) =

∞∑
K=0

1

x(
d−2
2 −K)

1

K!
I
(K)
d−2
2

(lx)

∫+∞
0

ρ
d
2 (ρ− l)K e−a(ρ−l)

2
dρ, (8.62)

and for d odd:

f(x) =

∞∑
K=0

1

x(
d−3
2 −K)

1

K!
i
(K)
d−3
2

(lx)

∫+∞
0

ρ
d+1
2 (ρ− l)K e−a(ρ−l)

2
dρ.
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(8.63)

We have therefore to calculate the integral

EnK =

∫∞
0
ρn(ρ− l)K e−a(ρ−l)

2
dρ. (8.64)

In order to do so, we define η = ρ− l from which dρ = dη and we
get

EnK =

∫∞
−l
ηK(η+ l)n e−aη

2
dη. (8.65)

By means of the binomial Newton formula we obtain

EnK =

∫∞
−l
e−aη

2
n∑
i=0

(
n

i

)
ηil(n−i)ηKdη (8.66)

=

n∑
i=0

(
n

i

)
l(n−i)

∫∞
−l
e−aη

2
η(i+K)dη,

where we use the integral

Sm =

∫∞
−l
e−aη

2
ηmdη, (8.67)

which can be solved by the following recursive relations

S0 =
1

2

√
π

a

[
1+ erf(l

√
a)
]

S1 =
1

2a
e−al

2

S2 = −
∂

∂a
S0

S3 = −
∂

∂a
S1

...

SK+2 = −
∂

∂a
SK.

(8.68)

So we have

EnK =

n∑
i=0

(
n

i

)
l(n−i)Si+K, (8.69)
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and therefore we get:

f(x) =

∞∑
K=0

1

K!

Ed
2 ,K

x(
d−2
2 −K)

I
(K)
d−2
2

(lx), (8.70)

for d even, and

f(x) =

∞∑
K=0

1

K!

Ed+1
2 ,K

x(
d−3
2 −K)

i
(K)
d−3
2

(lx) (8.71)

for d odd. It is important to remark that for high values of the
parameter a, a small number of terms in the series is necessary.
In the extreme case with a → ∞ we obtain the FJC results. For a
smaller value of a a larger number of terms in the series is neces-
sary.

8.4 worm-like chain under external field

In previous Sections we treated systems described by the FJC
model, characterized by the complete flexibility of the chain and,
therefore, by the absence of any bending contribution to the
total energy. Nevertheless, in many polymer chains, especially
of biological origin, the specific flexibility (described by the so-
called persistence length [237]) has a relevant role in several bio-
mechanical processes. In order to take into consideration these im-
portant features, with relevant applications to bio-molecules and
bio-structures, in this Section we introduce the semi-flexible poly-
mer chain characterized by a given bending energy added to the
previous Hamiltonian WLC

Hamiltonian

h =

N∑
i=1

pi ·pi
2m

+
1

2
k

N∑
K=1

(‖rK − rK−1‖− l)2 (8.72)

+
1

2
κ

N−1∑
i=1

(ti+1 − ti)
2 −

N∑
K=1

gK · rK − f · rN

where κ is the bending stiffness, k is the stretching modulus and
ti = (ri+1− ri)/‖ri+1− ri‖ is the unit vector collinear with the i-th
bond.

In particular we take into consideration the classical WLC inextensible
WLC modelmodel, describing an inextensible semi-flexible chain: it means
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that the spring constant k is set to a very large value (ideally
k → ∞) so that the bond lengths remain fixed at the value l. It
is well known that it is not possible to calculate the partition func-
tions in closed form for the WLC polymers. Nevertheless, some
standard approximations exist for such cases leading to simple ex-
pressions for the force-extension curves when a single force f is
applied to one end of the chain. In the following, starting from
these results, we search for the force-extension curves when the
polymers is stretched through a constant field g.

We start with the result for the 2D-WLC with an applied force f:
the approximated force extension curve is given by [238]

fl

kBT
=
l

Lp

[
1

16(1− ζ)2
−
1

16
+
7

8
ζ

]
, (8.73)

where ζ = r/(lN) is the dimensionless elongation and Lp =

lκ/(kBT) is the persistence length . We suppose that such a consti-
tutive equation is invertible through the function F, leading to the
expression ζ = r/(lN) = F(fl/(kBT)). When f = 0 and gJ = g for
any J we search for the 2D scalar relation between r and g = |g|.
As discussed in a previous section (see Eqs.(8.36) and (8.37)), we
can write

r

lN
=

1

N

N∑
k=1

F

(
lg

kBT
(N− k+ 1)

)
' 1

N

∫N
k=0

F

(
lg

kBT
(N− x+ 1)

)
dx

=
1

N

1
lg
kBT

∫ lg
kBT

(N+1)

lg
kBT

F (y)dy, (8.74)

where we have defined the change of variable y = lg
kBT

(N− x+ 1).
We adopt now a second change of variable through the relation
z = F(y) or y = F−1(z); it leads to

r

lN
=

1

N

1
lg
kBT

∫F( lg
kBT

(N+1)
)

F
(
lg
kBT

) z
F−1 (z)

dz
dz

=
1

N

1
lg
kBT

l

Lp
(8.75)

×
[
7

16
z2 −

1

8(1− z)
+

1

16(1− z)2

]F( lg
kBT

(N+1)
)

F
(
lg
kBT

)
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where we used the notation [h(z)]ba = h(b) − h(a). This result
represents (although in implicit form) the approximated force-
extension curve for the 2D-WLC under external fields. To evalu-
ate Eq. (8.75) we need to know the inverse function F(·), a task
that can be performed numerically. Similarly, we may consider
the standard 3D-WLC model with an applied force f; the classical
Marko-Siggia result [21] is

fl

kBT
=
l

Lp

[
1

4(1− ζ)2
−
1

4
+ ζ

]
, (8.76)

where as before, ζ = r/(lN) is the dimensionless elongation and
Lp = lκ/(kBT) is the persistence length. We suppose again that
such constitutive equation is invertible through the function G,
leading to the expression ζ = r/(lN) = G(fl/(kBT)). When f = 0

and gJ = g for any J we search for the 3D scalar relation between
r and g = |g|. By repeating the previous procedure, we can write

r

lN
=

1

N

1
lg
kBT

∫G( lg
kBT

(N+1)
)

G
(
lg
kBT

) z
G−1 (z)

dz
dz

=
1

N

1
lg
kBT

l

Lp
(8.77)

×
[
1

2
z2 −

1

2(1− z)
+

1

4(1− z)2

]G( lg
kBT

(N+1)
)

G
(
lg
kBT

)
which represents the implicit form of the approximated force-
extension curve for the 3D-WLC under external fields.

It is interesting to compare the very different force-extension force-extension
curves
comparison

curves for a single molecule in the two cases of a uniform (only
f applied) and non-uniform (only g applied) stretch. In particular,
taking advantage of our approximated formulas, we can analyse
the case of a FJC and a WLC polymer. The 2D and 3D FJC re-
sults are plotted in Fig. 8.6; on the other hand, the 2D and 3D
WLC curves have been shown in Fig. 8.7. For the WLC case we
assumed κ = 10kBT for the bending modulus at T = 293K. This
value is comparable to that of polymer chains of biological interest
(e.g., for DNA κ = 15kBT ) [21]. In all cases three curves have been
reported for drawing all the possible comparisons: the response
under the field g, the response under the force f = g and, finally,
the response to an external force f = Ng. Interesting enough we
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Figure 8.6: Force-extension curves of a FJC polymer in an external field (or ex-
ternal force) with N=20. The red line corresponds to the approxi-
mated expressions given in Eqs.(8.36) and Eqs.(8.37) while the black
circles have been obtained through MC simulations. The 2D (Eq.
(8.34)) and 3D (Eq. (8.35)) FJC expressions (without an external field)
are plotted for comparison with f = g and f = Ng.

note that the curve corresponding to the field g is always com-
prised between the cases with only the force f = g and f = Ng.
The response with the field g is clearly larger than that with the
single force f = g since the field corresponds to a distribution of N
forces (of intensity f) applied to all monomers; therefore, the total
force applied is larger, generating a more intense effect. However,
the case with a single force f = Ng shows a response larger than
that of the field g. In this case the total force applied in the two
cases is the same but the single force Nf is applied entirely to
the last terminal monomer, generating an overall stronger effect
compared to the same force evenly distributed on the monomers.
In fact, a force generates a stronger effect if it is placed in the re-
gion near the free polymer end (its effect is redistributed also to
all preceding bonds). The curves in Fig. 8.6 and Fig. 8.7 have been
obtained with the theoretical formulations presented in this Sec-
tion and confirmed by a series of MC simulations. In all case we
obtained a quite perfect agreement between the two formulations.
The knowledge of the closed-form expressions allowed us to ana-comparison

of the
closed-form
expressions

lytically analyze the behavior of the chains for very low and very
high applied forces (or fields). The results are shown in Table 3: in-
terestingly, we note that the extension is always a linear function
of the small applied perturbation. Nevertheless, the correspond-
ing constant of proportionality depends on N only when a field
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Figure 8.7: Force-extension curves of a WLC polymer in an external field (or
external force) with N=20. The red line corresponds to the approxi-
mated expressions given in Eqs.(8.75) and Eqs.(8.77) while the black
circles have been obtained through MC simulations. The 2D (Eq.
(8.73)) and 3D (Eq. (8.76)) WLC expressions (without an external
field) are plotted for comparison with f = g and f = Ng. The value
of the bending spring constant is κ = 0.4 · 10−19 Nm ' 10kBT at
T = 293K.

is applied to the chain; conversely, it is independent of N with a
single force applied at one end. On the other hand, with a large
perturbation applied to the molecule, we observe a 1/x behavior
for the FJC models and a 1/

√
x behavior for the WLC models.

To conclude we also remark that the order of the curves ob-
served in Fig. 8.6 and Fig. 8.7 is confirmed also in the low and
high force (or field) regime by the following inequalities: 1 <
1+N/2 < N (low force regime) and 1 < log(N+ 1) < N (high
force regime) for the FJC model and 1 < 1+N/2 < N (low force
regime) and

√
N < 2(

√
N+ 1− 1) < N (high force regime) for the

WLC model (always for N > 2). Interesting enough, we can write
two explicit approximate expressions for the WLC polymer under
an applied field, which represent a generalization of the classical
Marko-Siggia results. Starting from the asymptotic forms shown
in the last two lines of Tab. 3 , we can derive the interpolations
with the same technique adopted in Ref. [21]. To perform this cal-
culation we assume a very large number N of monomers. For the 2D and 3D

WLC
interpolation

2D case we obtain

N
gl

kBT
=
l

Lp

[
1

4(1− ζ)2
−
1

4
+
3

2
ζ

]
, (8.78)
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Table 3: Asymptotic forms of the force-extension curves for all cases described
in this Chapter: FJC and WLC models in 2D and 3D geometry with
force applied f or field applied g.

Asymptotic form Asymptotic form
Polymer chain︸ ︷︷ ︸

Equation

of r
lN for f,g→ 0 of r

lN for f,g→∞
(
x = lf

kBT
or lg

kBT

) (
x = lf

kBT
or lg

kBT

)

FJC (2D) f︸ ︷︷ ︸
Eq.(8.34)

1

2
x 1−

1

2x

FJC (3D) f︸ ︷︷ ︸
Eq.(8.35)

1

3
x 1−

1

x

FJC (2D) g︸ ︷︷ ︸
Eq.(8.36)

1

2

(
1+

N

2

)
x 1−

log(N+ 1)

2N

1

x

FJC (3D) g︸ ︷︷ ︸
Eq.(8.37)

1

3

(
1+

N

2

)
x 1−

log(N+ 1)

N

1

x

WLC (2D) f︸ ︷︷ ︸
Eq.(8.73)

Lp

l
x 1−

1

4

1√
Lp

l
x

WLC (3D) f︸ ︷︷ ︸
Eq.(8.76)

2

3

Lp

l
x 1−

1

2

1√
Lp

l
x

WLC (2D) g︸ ︷︷ ︸
Eq.(8.75)

Lp

l

(
1+

N

2

)
x 1−

1√
Lp

l
x

√
N+ 1− 1

2N

WLC (3D) g︸ ︷︷ ︸
Eq.(8.77)

2

3

Lp

l

(
1+

N

2

)
x 1−

1√
Lp

l
x

√
N+ 1− 1

N
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and for the 3D one we have

N
gl

kBT
=
l

Lp

[
1

(1− ζ)2
− 1+ ζ

]
. (8.79)

These relationships represent the approximation of the results
given in Eqs.(8.75) and (8.77). They can be compared with the
classical results concerning the system with the applied force (see
Eqs.(8.73) and (8.76)) [21, 238]. First of all we note that in place of
the force f we find the total force Ng applied to the polymer (by
means of the field action). Moreover, the coefficients of 1/(1− ζ)2,
ζ and the constant term are different because of the different dis-
tribution of forces.

A brief comparison with previously published limiting values comparisons
with
recent
investigations

follows. Our asymptotic forms for the WLC model with applied
force (f → ∞) are perfectly coincident with those obtained in Ref.
[47] by means of the small-fluctuation assumption leading to the
fluctuating rod limit of a semiflexible polymer (see Eq.(22) of Ref.
[47]). Moreover, the limiting value for three-dimensional case is
the well-known result at the base of the Marko-Siggia relation [21].
Also the asymptotic results for the WLC model under an applied
field (g → ∞) are in agreement with Eq.(42) of Ref. [47] where,
however, a large number of monomers N was considered. Our re-
sults for the WLC under field (g → ∞) lead for large N to the
expressions: r/(Nl) = 1− 1/

√
4LpNx/l for the 2D geometry and

r/(Nl) = 1− 1/
√
LpNx/l for the 3D case, actually coinciding with

Eq.(42) of Ref. [47]. It should be noted that the limiting value for
the 2D geometry has been also derived with different phenomeno-
logical arguments [229].

8.5 action of a pulling force not aligned with the

external field

In previous Sections we considered the polymer chain immersed
in an external field with an external force equal to zero at its end.
However, since we developed a form of the partition function also
taking into account an external force applied at the end of the
chain (at least for the FJC model), we can directly study the im-
portant case with a non zero force superimposed to an external
field, in general having different orientation. To do this, we keep
fixed the origin of the chain and apply a constant force at the end
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Figure 8.8: Action of a pulling force f (along the y-axis) perpendicular to the
applied field g (along the z-axis). We adopted different values of
the bending spring constant: κ = 0.08, 0.6, 2, 8 · 10−19 Nm. The chain
length is fixed (N = 20), the external field amplitude is g = 4 pN
and the force applied to the last monomer of the chain corresponds
to f = 8 pN. The red solid lines correspond to the analytical results
for the FJC case (see Eqs.(8.33) and (8.50)). Black circles correspond
to the MC simulations with the different bending spring constants.
In the left panel we reported the average positions, while in the
others the three variances of the x, y and z components.

of the polymer with different angles with respect to the direction
of the applied field. We will analyse such a problem for both the
FJC and WLC cases. To begin, we consider a pulling force per-pulling force

perpendicular
to the

direction of
the field

pendicular to the direction of the applied field, respectively the
y and z axis of our reference frame. For increasing values of the
bending spring constant κ going from nearly zero (FJC model) to
8 · 10−19Nm (WLC model, including the bending constant of the
DNA given by κ = 0.6 · 10−19 Nm ' 15kBT ). In Fig. 8.8 we re-
ported the results for the average monomers positions and their
variances. The red solid lines correspond to the analytical results
for the FJC case, while the black symbols correspond to the MC



8.5 action of a pulling force not aligned with the external field 169

−10 0 10
0

5

10

15

〈r i
,y
〉/l

〈ri,z〉/l
Figure 8.9: Average positions of the chain for different angles between the ex-

ternal traction force f and the direction of the applied field g. We
adopted N = 20, g = 4 pN and f = 60 pN. The red solid lines
correspond to the FJC analytical result, Eq. (8.33). The symbols rep-
resent the MC results for the WLC model with κ = 0.08, 0.6, 2 · 10−19
Nm (circles, triangles and squares, respectively). For both FJC and
WLC models we used different values of the angle between the ap-
plied field and the traction force θ = π/2, 3π/4, 5π/6, 15π/16 from
the right left.

simulations. It is interesting to observe the effect of the persis-
tence length (or, equivalently of the bending stiffness): in fact, in
the left panel of Fig. 8.8 we note that the chains with an higher
bending spring constant tend to remain more straight under the
same applied load. At the same time, in the fourth panel of Fig.
8.8 we observe a decreasing variance along the z-axis (direction
of the applied field) with an increasing bending spring constant;
this fact can be easily interpreted observing that an higher rigidity
of the chain reduces the statistical fluctuations in the direction of
the applied field. The situation is more complicated for the vari-
ances along the x and y directions: in fact, along the chain, there
are some monomers with variances larger than the corresponding
FJC case and others with smaller values. In Fig. 8.9 the average pulling force

with different
directions

positions of the monomers for different directions of the external
force are reported. The figure shows how the average monomer
positions depend on the bending rigidity κ and on the external
force angle θ. As expected, we observe that the persistence length
of the chain tends to maintain a low curvature in the shape of the
chain. This phenomenon is more evident with an increasing angle
between the force and the field. In fact, in Fig. 8.9, the deviation
between the FJC results and the WLC ones is higher for the an-
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Figure 8.10: Monomer variances versus the position along the chain (i) and the
angle between force and field (0 < θ < π) for the FJC model. As
before we used N = 20, g = 4 pN and f = 60 pN.
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Figure 8.11: Monomer variances versus the position along the chain (i) and the
angle between force and field (0 < θ < π) for the WLC model. As
before we used N = 20, g = 4 pN and f = 60 pN. We also adopted
a bending stiffness κ = 0.6 · 10−19 Nm.

gles approaching π, where the force and the field are applied in
opposite directions.

In Figs.8.10 and 8.11 the three components of the variance are re-a very
complex
scenario

for the
variances

ported versus the position of the monomer along the chain and the
angle between the field and the force directions, for the FJC and
WLC case, respectively. We can extract some general rules about
this very complex scenario: as for the variance along the x direc-
tion we observe it to be an increasing function both of the position
i along the chain an of the angle θ between f and g. Both behav-
iors can be interpreted with the concept of persistence length, as
discussed above. Conversely, the description of the variance along
the y direction is more complicated. In fact, while the increasing
trend of the variance with the position i along the chain is main-
tained, we observe a non monotonic behavior in terms of the angle
θ, with a minimum of the variance at about θ = 2π/3. Finally, the
variance along the z direction is always increasing along the chain,
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but it shows a maximum near θ = π (at least in the first part of
the polymer chain).

8.6 outline of the results

Here we investigated the mechanical and conformational prop-
erties of flexible and semi-flexible polymer chains immersed in
external fields. Some examples in literature testify the interest
on investigate the elasticity of a polymer chains subjected to ex-
terna fiedls, analyzing the average configurational properties of
the polymer [14, 217, 218], and reporting the behavior of the vari-
ances [220, 221, 222]. However, there is a prominent lacking of
investigations presenting closed analytical forms. In this context,
our contribution has been focused in developing a statistical the-
ory based on the exact analytical determination of the partition
function. We obtained expressions in closed form for both the av-
erage conformation of the chain and its covariance distribution.
This theoretical formula can be used as a reference for interpreting
experimental results on single polymers for some physical condi-
tions as a polymer chain immersed in a fluid in a uniform mo-
tion or an arbitrarily charged chain inserted in a uniform electric
field. Moreover, we derived new approximate expressions describ-
ing the force-extension curve under the effect of an external field
that can be considered as the extensions of the classical Marko-
Siggia relationships [21] describing the polymer pulled by a single
external force applied at the free end of the chain.
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In this thesis we investigated the thermo-elastic behaviour of
single polymer chains under stretching.

As a first analysis, we studied how the force-extension curve of
a model polymer chain is affected by the loading protocol which
can be typically fixed-ends or fixed-force. We showed how such
macroscopic boundary conditions can be formulated within the
Helmholtz and the Gibbs ensembles of the statistical mechanics.
We adopted flexible and semiflexible polymer models, with and
without extensible bonds. Extensible bonds were described by lin-
ear springs for simply comparing analytical and Metropolis Monte
Carlo (MMC) results.

After a theoretical introduction on different boundary condi-
tions, we discussed the notion of thermodynamic limit. In par-
ticular, we proved that different experimental strategies used for
stretching the polymer lead to the same results when the number
of monomers is large enough. On the other hand, by MMC sim-
ulations we showed that for short chains the two ensembles are
characterized by very different elastic behaviors. In all cases here
investigated (FJC, WLC and their extensible versions) we found
that the convergence to the thermodynamic limit is well described
by suitable power laws with well defined scaling exponents. More
specifically, we proved that such power laws can fit the MMC re-
sults with high accuracy and that different polymer models have
different scaling exponents. The presented results and the demon-
stration of different scaling laws, may help to discriminate the re-
sponse of polymers with different internal chemical structure, in
the short–length limit.

Moreover, we described the statistical mechanics of chain poly-
mers composed by domains with two stable states, subjected to a
pulling force by a molecular-scale mechanical device. We showed
that for short chain length, or large stiffness of the device, the do-
main response is uncorrelated and originates the typical sawtooth
force-extension curve observed in many experiments. On the other
hand, upon increasing chain length, or vanishing device stiffness,
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the response is cooperative and results in the plateau-like curve,
also observed in other experiments. Despite the simplicity of the
model, such a framework provides a unified picture for such ap-
parently contrasting experimental situations.

After having considered the elasticity effects on single polymer
chains loaded by external forces, we investigated the mechanical
and conformational properties of flexible and semi-flexible poly-
mer chains immersed in external fields. As for the FJC model we
developed a statistical theory, based on the exact analytical de-
termination of the partition function, which generalizes previous
results to the case where an external field is applied to the system.
In particular we obtained closed form expression for both the av-
erage conformation of the chain and its covariance distribution.
For sake of completeness, all calculations have been performed
both in two-dimensional and three-dimensional geometry. On the
other hand, as for the WLC model we derived new approximate
expressions describing the force-extension curve under the effect
of an external field. They can be considered as the extensions of
the classical Marko-Siggia relationships describing the polymer
pulled by a single external force applied at the free end of the
chain. All our analytical results, for both FJC and WLC models,
have been confirmed by a series of Monte Carlo simulations, al-
ways found in very good agreement with the theory. The overall
effects generated on the tethered polymer by the application of
an external field can be summarized as follows. As for the aver-
age configuration of a chain, it is well known that a single pulling
force generates a uniform deformation along the chain (for a ho-
mogeneous polymer with all monomers described by the same
effective elastic stiffness). On the contrary, the application of an ex-
ternal field produces a non uniform deformation along the chain,
showing a larger deformation in the portion of the chain closest
to the fixed end. Moreover, the variances of the positions increase
linearly along the chain with a single force applied to the polymer.
Conversely, the polymer subjected to an external field exhibits a
non-linearly increasing behavior of the variances along the chain.
More specifically the variances assume the largest values nearby
the last free monomers, where we can measure the highest fluctua-
tions. The use of the MMC method, once validated against known
analytical solutions, has been crucial for analyzing models condi-
tions which are beyond reach of a full analytical calculation. We
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took full profit of this approach for analyzing the effects of the
combination of an applied force at the free end together with an
external field, especially when the two are not aligned. We have
analyzed the average configurational properties of the polymer,
observing a very complex scenario concerning the behavior of the
variances.

In conclusion, it is useful to look at the whole work to gain some
perspectives for future studies.
In a biophysical context, the understanding of the rheological
properties of bundle of polymers is important to investigate the
assembly of bio-molecules as filaments of DNA, actin, or micro-
tubules. Starting from our theoretical approach, would be intrigu-
ing to extend our models for investigating bundles of polymers
winded together and interacting with each others, giving particu-
lar attention to the viscosity of the system. The description of the
polymer viscosity requires the formalism of the statistical mechan-
ics of non-equilibrium. Furthermore, the implementation of non-
equilibrium molecular simulations would be mandatory in order
to better correlate the theoretical and experimental results with
the complex living-cell DNA.
The mechanical behaviour of bundle of polymers is taking increas-
ing interest also in the medical context. In clinical radiotherapy
recent experimental methods have been proposed to establish a
direct correlation between the ionizing radiation and its damag-
ing effects on DNA. For example, a silicon Nanotweezers (SNT)
has been employed, to directly measure the rate of breaking of
DNA placed under a radiation beam [239]. The real-time DNA
bundle degradation was observed in terms of biomechanical stiff-
ness and viscosity reduction. The obtained results trace the way
for both fundamental and clinical studies of DNA degradation
mechanisms under ionizing radiation. This can allow the improv-
ing of tumor treatments. In this context, a first theoretical investi-
gation of interest would be consider the behaviour of the elasticity
of DNA bundles subjected to a degradation in time trapped and
held straight in parallel strands between the tips of a cantilever
(mimiking, for instance, the loading by the SNT device).
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a.1 beta euler function

We introduce here some properties of the Beta Euler function
which will be used in Appendix A.2. The convolution theorem
affirms that the Laplace transform of the convolution integral

u(t) =

∫ t
0
x(ξ)h(t− ξ)dξ (A.1)

is given by the product of the Laplace transform of the functions
x and h, namely

U(s) = H(s)X(s). (A.2)

We consider here only causal function which are different from
zero only for a positive argument (so, the second limit of integra-
tion can be considered as t or∞ without changing the result). We
can firstly prove this property as follows. Considering the convo-
lution integral

u(t) =

∫∞
0
x(ξ)h(t− ξ)dξ (A.3)

and its Laplace transform calculated through the standard defini-
tion

U(s) =

∫∞
0
u(t)e−stdt (A.4)

=

∫∞
0

[∫∞
0
x(ξ)h(t− ξ)dξ

]
e−stdt

=

∫∞
0
x(ξ)

[∫∞
0
h(t− ξ)e−stdt

]
dξ.
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Now, performing the change of variable

t− ξ = η→ dt = dη, (A.5)

leading to

t = (0,∞)→ η = (−ξ,∞), (A.6)

we simply obtain the result

U(s) =

∫∞
0
x(ξ)

[∫∞
−η
h(η)e−s(ξ+η)dη

]
dξ (A.7)

=

∫∞
0
x(ξ)e−sξdξ

∫∞
0
h(η)e−sηdη

= X(s)H(s),

which represents the requested convolution theorem.
We take into account now two functions x and t as follows:

x = tα → X(s) =
Γ(α+ 1)

sα+1
, (A.8)

h = tβ → H(s) =
Γ(β+ 1)

sβ+1
. (A.9)

The two Laplace transforms have been simply calculated making
use of the well known Euler Gamma function. Now we can con-
sider the convolution of the previously defined functions:

u(t) =

∫ t
0
ξα(t− ξ)βdξ, (A.10)

and, by the convolution theorem, the Laplace transform of u is
directly written as

U(s) =
Γ(α+ 1)Γ(β+ 1)

sα+β+2
. (A.11)

But, it is evident that such a function has the same form of the
transforms of h and x. So, the inverse Laplace transform is easily
obtained as

u(t) =

∫ t
0
ξα(t− ξ)βdξ =

Γ(α+ 1)Γ(β+ 1)

Γ(α+β+ 2)
tα+β+1. (A.12)
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If we let t = 1 we obtain the definition of the Beta function B

u(1) =

∫1
0
ξα(1− ξ)βdξ =

Γ(α+ 1)Γ(β+ 1)

Γ(α+β+ 2)
= B(α+ 1,β+ 1).

(A.13)

So, we have finally proved the important relationship

Γ(α+ 1)Γ(β+ 1)

Γ(α+β+ 2)
= B(α+ 1,β+ 1), (A.14)

which will be used in Appendix A.2.

a.2 fourier integral for functions with spherical

symmetry

We consider the definition

F(ω) =

∫
<d
f(x)e−iω·xdx (A.15)

of the Fourier transform F(ω) of the original function f(x). We
suppose that f(x) is a function with spherical symmetry and, there-
fore, f is a function of the norm of x only, i.e. f(x) = f(ρ) with
ρ = |x|. Throughout all the discussion we adopt the standard eu-
clidean norm |x| = |x|2 in <d.
We consider x = ρV and ω = ΩW with |V| = |W| = 1. Then

F(ΩW) =

∫
<d
f(ρ)e−iρΩV·Wd(ρV). (A.16)

We use the d-dimensional spherical coordinates defined as

x1 = ρ cos θ1
x2 = ρ sin θ1 cos θ2
x3 = ρ sin θ1 sin θ2 cos θ3
x4 = ρ sin θ1 sin θ2 sin θ3 cos θ4

...
xd−1 = ρ sin θ1... sin θd−2 cos θd−1
xd = ρ sin θ1... sin θd−2 sin θd−1

(A.17)

with Jacobian determinant

J = ρd−1 sind−2 θ1 sind−3 θ2 sind−4 θ3... sin θd−2︸ ︷︷ ︸
d−2 terms

(A.18)
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and with limitations
0 6 θ1, θ2, ..., θd−2 6 π
0 6 θd−1 6 2π

0 6 ρ <∞.

(A.19)

Eq.(A.16) becomes (letting W = ê1)

F(Ω) =

∫∞
0
f(ρ)

∫
[0,π]d−2

ρd−1 sind−2 θ1 sind−3 θ2... sin θd−2

×
∫2π
0
e−iρΩ cos θ1dθd−1dθd−2...dθ1dρ. (A.20)

In fact, from Eq.(A.16) we observe that F does not depend on W
and therefore we may fix an arbitrary direction for W. In particu-
lar, if we fix W = ê1 the result is indicated in Eq.(A.20). It can be
arranged as follows

F(Ω) =

∫∞
0
2πρd−1f(ρ)dρ

∫π
0

sind−2 θ1e−iρΩ cos θ1dθ1 (A.21)

×
∫π
0

sin θd−2dθd−2

∫π
0

sin2 θd−3dθd−3...
∫π
0

sind−3 θ2dθ2︸ ︷︷ ︸
d−3 integrals

.

We use the integral∫π
0

sinK θdθ =
√
π
Γ(K+12 )

Γ(K2 + 1)
, (A.22)

which can be obtained as follows∫π
0

sinK θdθ = 2

∫ π
2

0
sinK θdθ. (A.23)

Performing the change of variable

sin2 θ = x⇒ cos θ =
√
1− x, (A.24)

which means that

sin x =
√
x, (A.25)

we simply obtain∫π
0

sinK θdθ = 2

∫1
0
(
√
x)K

dx

2
√
x
√
1− x

=

∫1
0
x
K−1
2 (1−x)−

1
2dx. (A.26)
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Through the Beta (Euler) function (see Appendix A.2), we obtain

B(x,y) =
∫1
0
tx−1(1− t)y−1 =

Γ(x)Γ(y)

Γ(x+ y)
= B(y, x) x > 0, y > 0,

(A.27)

and therefore∫π
0

sinK θdθ = B

(
K+ 1

2
,
1

2

)
=
Γ(K+12 )Γ(12)

Γ(K2 + 1)
. (A.28)

Finally, using the standard property

Γ(
1

2
) =
√
π, (A.29)

we have the result in Eq.(A.22).

From Eq.(A.21), we have

F(Ω) = (
√
π)d−3

Γ(1)

Γ(12 + 1)

Γ(32)

Γ(2)

Γ(2)

Γ(32 + 1)
· · · Γ(

d−3+1
2 )

Γ(d−32 + 1)
(A.30)

×
∫∞
0
2πρd−1f(ρ)dρ

∫π
0

sind−2 θ1e−iρΩ cos θ1dθ1.

Consequently, we get

F(Ω) =
2π

d−1
2

Γ(d−12 )

∫∞
0
ρd−1f(ρ)dρ

∫π
0

sind−2 θ1e−iρΩ cos θ1dθ1

=
2π

d−1
2

Γ(d−12 )

∫∞
0
ρd−1f(ρ)dρ

∫π
0

sind−2 θ1 cos(ρΩ cos θ1)dθ1.

(A.31)

Recalling the integral representation of the cylindrical and spheri-
cal Bessel functions of the first kind,

Jn(z) =
(12z)

n

π
1
2 Γ(n+ 1

2)

∫π
0

cos(z cos θ) sin2n θdθ (A.32)

jn(z) =
zn

2n+1n!

∫π
0

cos(z cos θ) sin2n+1 θdθ, (A.33)
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(see Ref. [175]), we note that Eqs.(A.32) and (A.33) are simply re-
lated by the cylindrical-spherical connection, namely

jn(z) =

√
π

2z
J
n+12

(z), (A.34)

as well known in standard Bessel function theory.
By using Eqs.(A.32) and (A.33) in Eq.(A.31), we obtain the two
important final results

F(Ω) =

∫∞
0
2πρf(ρ)

(
2πρ

Ω

)d
2−1

Jd
2−1

(ρΩ)dρ d = 2K (even),

(A.35)

F(Ω) =

∫∞
0
4πρ2f(ρ)

(
2πρ

Ω

)d−3
2

jd−3
2
(ρΩ)dρ d = 2K+ 1 (odd).

(A.36)
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