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Derivation of magnetic inertial effects from the classical mechanics of a circular current loop
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The dynamical equation of a single magnetic moment constituted by a rigid circular current loop is derived
from the mechanical Lagrange equations of motion, introducing the Lorentz force and the damping process,
described by a well-defined dissipative mechanism. It is demonstrated that magnetic inertial effects arise
naturally by simple mechanical considerations and superimpose onto the Gilbert original dynamical equation.
The comparison with models proposed in the recent literature is drawn and discussed.
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I. INTRODUCTION

The so-called Landau-Lifshitz-Gilbert (LLG) equation de-
scribes the orientational dynamics of a single magnetic dipole
or the magnetization distribution in a given ferromagnetic
material [1–4]. The first version of this equation was proposed
by Landau and Lifshitz in 1935 to study the magnetic perme-
ability dispersion in ferromagnetic bodies [5]:

d �M
dt

= γ �M ∧ �B − γ
α

M
�M ∧ ( �M ∧ �B). (1)

Here �M is the dipole moment, γ is the gyromagnetic ratio,
α is the damping coefficient, and �B is the effective magnetic
induction. This equation was modified in 1955 by Gilbert to
describe the behavior of materials with large damping [6,7]:

d �M
dt

= γ

1 + α2

[
�M ∧ �B − α

M
�M ∧ ( �M ∧ �B)

]
. (2)

While the two equations exhibit the same mathematical form,
they have a slightly different behavior, especially for large
enough values of α. However, this second-order difference
cannot be appreciated with experimental measurements and
the choice between the models must be made on the basis of
theoretical arguments [8–13]. The problem is still the subject
of debate and different opinions can be found in the literature.
For instance, Ref. [12] is in favor of the Gilbert version since
it corresponds to an isotropic damping action, while Ref. [13]
opts for the Landau-Lifshitz equation being coherent with
irreversible thermodynamics.

Today, the LLG equation is very important since it de-
scribes the magnetization dynamics in several systems and
devices of crucial technological importance [14,15]. A clas-
sical application concerns the modeling of the switching
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state in memory elements based on ferromagnetic materi-
als [16,17]. More generally, magnetoelectroelastic structures
[18–21], typically composed of piezoelectric and magnetoe-
lastic subsystems, are largely investigated, being promising
prototypes for the reduction of the energetic consumption in
data storage and elaboration systems [22–24].

One of the most important features of these systems is
the stability of the stored information over long times. This
means that thermal fluctuations must not alter the informa-
tion recorded in the memory elements [25,26]. To perform
the analysis of this problem one can use the extension of
the LLG equation with the additional term representing the
thermal noise, as proposed by Brown in his pioneering works
[27–30]. This generalization converts the LLG equation into a
stochastic differential equation, or Langevin equation, which
can be typically studied through the Fokker-Planck formal-
ism [31,32]. Several applications of this methodology can be
found in the recent literature [33–37].

The theory of the magnetization dynamics is also of cru-
cial importance to study the movement of a domain wall in
ferromagnetic materials. The first important analytical result
is given by the Walker solution describing, under simple
assumptions, the one-dimensional steady-state motion of a
domain wall in a uniform magnetic field [38]. Because of
the many advantages such as reliability, fast operation, and
low power consumption, devices based on domain walls are
widely seen as promising tools for various applications, in-
cluding data storage, sensing, and logic [39–43]. Also in this
context, the question of whether Landau-Lifshitz damping
or Gilbert damping provides the more natural description of
dissipative magnetization dynamics has been reopened [44].
It has been suggested that the Gilbert damping term is more
adapted, showing the purely energy dissipative property also
in the presence of nonconservative fields (e.g., with spin-
transfer torques) [45].

This state of affairs motivates the present readdressing
of the magnetization dynamics. We propose here an origi-
nal derivation of the corresponding equations based on the
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explicit consideration of the magnetic dipole structure as a
charge distribution (first discrete and then continuous) rotating
around a given axis with an intrinsic angular frequency (circu-
lar current loop). We first develop a model with a fixed angular
velocity ω of charges. This hypothesis allows for the use of
the Lagrange formalism for rheonomic systems, where the
two-variables Lagrangian function explicitly depends on time
(via the angular frequency ω). Then, in order to obtain a more
symmetric formalism, we introduce a second model with an
arbitrarily varying angular velocity of the charges. In this
case the system is scleronomous, but with three generalized
coordinates. In both cases, while the dipole structure is in-
variant during the dynamics, the dipole orientation changes in
response to the external actions. Within these approaches, the
Lorentz and the damping forces can be naturally introduced
without the need to specify a scalar magnetic potential and
a Rayleigh dissipation function. This direct method allows
therefore to obtain the explicit Lorentz contribution due to the
dipole reorientation (always neglected) and a precise descrip-
tion of the damping force, defined by an explicit dissipation
mechanism. Moreover, the introduction of the realistic mag-
netic dipole structure naturally generates in the final equations
the inertial terms, corresponding to the second derivatives of
the orientation angles with respect to the time. It is important
to remark that these inertial terms and the Lorentz terms due
to the reorientation are both of the order of 1/ω and therefore
they are often neglected in practical applications. Neverthe-
less, the possible use of magnetic fields with extremely high
frequencies (at pico- and femtosecond time scales) has re-
cently generated a wide interest for the generalization of the
LLG equation with inertial effects [46–56]. In this context, our
approach yields two generalized sets of second-order differen-
tial equations for the magnetization dynamics, including the
inertial effects and the Lorentz terms due to the reorientation.
To get a simplified description, the concept of ideal dipole,
corresponding to an infinitely small size, an infinitely large
electric current, and a finite dipole moment, can be introduced
through the limit ω → ∞. In this condition, our result reduces
to a set of first-order differential equations in perfect agree-
ment with Eq. (2). This clearly explain why the LLG equation
is a first-order differential equation while the Lagrange equa-
tions are second-order differential equations, coherently to the
Newton law. Moreover, this analysis shows that the Gilbert
form of the damping is more adapted than the Landau-Lifshitz
form to describe dissipation in ferromagnetic materials.

It is interesting to underline that even Gilbert himself rec-
ognized that he was not able to conceive a purely mechanical
system with a behavior described by his magnetic preces-
sional equation. Indeed, the inertia tensor of such a system
would have only one nonzero principal moment [6,7]. As
discussed below, this point is clarified by the models pro-
posed here, where three positive moments of inertia can be
identified. This problem was noticed in particular by We-
growe and co-workers who, in a long series of papers [46,48–
51], following previous experiments regarding ultrafast mag-
netization switching [57], proposed to complete the Gilbert
equation by including inertial terms in their derivation. To this
aim, they introduced a true inertial tensor and constructed a
Lagrangian for which kinetic energy is that of a symmetric
top with one point fixed and the potential energy consists

of the ferromagnetic one. They further utilized the Rayleigh
dissipation function proposed by Gilbert [6,7] and supported
by Brown [58,59] in order to account for damped precession.
In combining these concepts with the gyromagnetic relation
linking the angular momentum of the top and the magnetic
moment, they were able to demonstrate that Eq. (2) is comple-
mented by extra terms, the importance of which rises in time
scales which are shorter than that of gyromagnetic precession
by orders of magnitude. At last, very recently, experimental
evidence of such (resonant) inertial effects were achieved
[56], and were found to occur at a probing frequency in the
terahertz region, involving characteristic time scales that can-
not be described by the classical Gilbert equation. Now, the
derivation of Wegrowe et al. [48], although strongly indicating
a close analogy between a magnetic dipole and a precessing
and nutating symmetric top, does not allow to definitively con-
clude regarding this analogy, which is nevertheless extremely
important for a qualitative understanding. Our analysis allows
for a thorough explanation of this issue and better justifies the
equation proposed by Wegrowe and co-workers.

To summarize, by means of our approach, we clarify the
following points concerning the dynamic equation for the
magnetization reorientation:

(i) We prove that a purely classical mechanics model is
able to reproduce the LLG behavior with three positive mo-
ments of inertia.

(ii) This model supports the Gilbert damping term against
the Landau-Lifshitz counterpart.

(iii) We show that the effect of the externally applied mag-
netic field can be directly described by the general Lorentz
force, without the necessity to introduce a scalar magnetic
potential.

(iv) We are able to precisely define the damping mech-
anism without resting on the Rayleigh function, which is
convenient to use but hides the real dissipative process.

(v) The proposed models automatically yield the terms
describing the Lorentz force due to the reorientation of the
magnetic dipole, a phenomenon always neglected.

(vi) Importantly, the models here developed naturally lead
to the inertial terms that must be added to the classical LLG
equation to describe the specific response at pico- and fem-
tosecond time scales.

(vii) In particular, the second model, when properly ap-
proximated, gives exactly the dynamic equation proposed by
Wegrowe and co-workers [46,48–51].

(viii) We provide evidence that the frequency response
based on the two variants of our models and on the We-
growe equation is exactly the same and show the classical
ferromagnetic resonance together with the inertial or nutation
resonance.

We believe that these points are important to give a clearer
picture of the reorientation process of the magnetization vec-
tor and to get a better understanding of its underlying physics.

The paper is structured as follows. In Sec. II, we develop
the model based on a circular current loop, where the electric
charges rotate at constant angular velocity. Then, in Sec. III,
we propose an alternative approach, with an arbitrarily vary-
ing angular velocity of the charges. This second approach
shows a more elegant symmetry and allows to better explain
the dynamic equation proposed by Wegrowe and co-workers.
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FIG. 1. Physical and geometrical description of the system. (a) Discrete distribution of charge rotating around the center of the system with
angular frequency ω. (b) Position and velocity vectors of the ith particle with charge q0 and mass m0, and definition of the orthonormal bases
(�e1, �e2, �e3). (c) Definition of the precession and nutation angles ϕ and ϑ , and representation of the orthonormal bases (�λ, �μ, �n) rigidly joined
with the magnetic dipole.

Finally, in Sec. IV we analyze the frequency response ob-
tained through the proposed models and with the Wegrowe
equation.

II. DERIVATION OF GILBERT’S EQUATION FROM THE
MOTION OF A CIRCULAR CURRENT LOOP WITH FIXED

CENTER MODEL

A magnetic dipole is typically considered as an elementary
electric current flowing in a circular loop [60,61]. Here, to
follow this idea, we initially consider a very simple magnetic
dipole structure characterized by a sequence of N equally
spaced material points (having mass m0 and charge q0) rotat-
ing on a circular trajectory of radius R with angular frequency
ω. The angular spacing between the points is given by 2π/N
[see Fig. 1(a)]. The resulting dipole moment M can be ob-
tained through the classical expression M = IS, where I =
Nq0ω

2π
= qω

2π
is the effective electric current in the loop, q =

Nq0 is the total charge, and S = πR2 is its surface. The dipole
moment is therefore given by M = 1

2 qωR2. Also, the total
mass can be defined as m = Nm0. In order to obtain a contin-
uous system for the magnetic dipole, we analyze the limiting
case with N → ∞, q0 → 0, and m0 → 0 while keeping a
finite value of q and m. It is also important to define the
classical gyromagnetic ratio γ = q

2m , playing an important
role in the dynamics of the dipole (according to the laws of
classical physics, it is the ratio of the magnetic moment to the
angular momentum). We suppose that the discrete structure of
the dipole is invariant (i.e., q0, m0, N , R, and ω are fixed in
our process), whereas the dipole plane is subject to arbitrary
reorientations around the geometrical center of the system.
From the point of view of the analytical mechanics, this is a
rheonomic system since the mechanical constraint implicates
the time as an explicit variable [62]. It means that the material
points have a preexisting orbital motion, independent of the
dipole reorientation. It must be admitted that this is an op-
erative assumption, which is difficult to be justified from an
energetic point of view. Indeed, in our model, the origin of the
power necessary to maintain the motion of the charges in the
loop is not explained. Of course, the model we are going to
present is useful to describe the dipole moment reorientation
but is not able to discuss the origin of the spin behavior of
magnetized matter. One difficulty comes from the fact that our
model is based on classical physics whereas the origin of spin
and of the magnetic dipole must be actually discussed within
quantum physics. Indeed, the effective electric current in the
loop corresponds, at the atomic scale, to electron spin, nucleon

spin, and electron orbital motions within the atom structure,
and all these phenomena can be only explained through quan-
tum mechanics. Therefore, the energetics of spins or dipoles
is beyond the scope of the present paper.

Anyway, to better explain the system geometry, we observe
that the plane where the dipole is confined can be character-
ized by its unit normal vector �n,

�n = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ ), (3)

where ϕ and ϑ are the precession and nutation angles, respec-
tively [see Figs. 1(b) and 1(c)]. Our aim is to find the equations
governing the time evolution of ϕ and ϑ based on the external
actions applied to the magnetic dipole. On the moving plane
of the dipole, we can define a couple of unit vectors such that
they coincide with �e1 and �e2 when ϕ = ϑ = 0. We have

�λ = ∂�n
∂ϑ

= (cos ϕ cos ϑ, sin ϕ cos ϑ,− sin ϑ ), (4)

�μ = 1

sin ϑ

∂�n
∂ϕ

= (− sin ϕ, cos ϕ, 0). (5)

Therefore, (�λ, �μ, �n) represents an orthonormal basis rigidly
bound to the loop [see Fig. 1(c)]. Now, we can introduce the
motion �ri(t ) of the ith point charge q0 as follows:

�ri(t ) = �λR cos(ωt + pi ) + �μR sin(ωt + pi ), (6)

which manifestly shows the rheonomic character of the con-
straint since the time is explicit within the terms cos(ωt + pi )
and sin(ωt + pi ). Here, pi = 2π

N (i − 1) with i = 1, . . . , N . Of
course, from the trajectory �ri(t ), we can also define the veloc-
ity vector �vi(t ) = d�ri

dt [see Fig. 1(b)]. Within the Lagrangian
mechanics, ϕ(t ) and ϑ (t ) assume the role of generalized co-
ordinates. By adopting this formalism, the motion equations
can be written as [62]

d

dt

∂T

∂ϑ̇
− ∂T

∂ϑ
= Qϑ with Qϑ =

N∑
i=1

�Fi · ∂�ri

∂ϑ
, (7)

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= Qϕ with Qϕ =

N∑
i=1

�Fi · ∂�ri

∂ϕ
, (8)

where T = 1
2 m0

∑N
i=1 �vi · �vi is the kinetic energy of the parti-

cle system, �Fi is the total force applied to the ith particle, and
(Qϑ , Qϕ ) are the so-called generalized forces [62]. We discuss
below the physical contributions to �Fi. We remark that Eqs. (7)
and (8) represent the most general formulation of Lagrangian
mechanics where both conservative and dissipative actions
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can be envisaged [62]. Now, to obtain the kinetic energy, we
develop the velocity vectors as follows:

�vi(t ) = �̇λR cos(ωt + pi ) − �λωR sin(ωt + pi )

+�̇μR sin(ωt + pi ) + �μωR cos(ωt + pi ). (9)

From the orthonormality properties �λ · �μ = 0, �λ · �λ = 1, and

�μ · �μ = 1, we get by differentiation �̇λ · �μ + �λ · �̇μ = 0, �̇λ · �λ =
0, and �̇μ · �μ = 0. Hence, we simply obtain

�vi(t ) · �vi(t ) = �̇λ · �̇λR2 cos2(ωt + pi ) + �̇μ · �̇μR2 sin2(ωt + pi )

+ω2R2 + 2�̇λ · �̇μR2 cos(ωt + pi ) sin(ωt + pi )

−2�λ · �̇μωR2. (10)

To further simplify this expression we can use the
relationships

�̇λ · �̇λ = ϑ̇2 + ϕ̇2 cos2 ϑ, (11)

�̇μ · �̇μ = ϕ̇2, (12)

�λ · �̇μ = −ϕ̇ cos ϑ, (13)

�̇λ · �̇μ = ϕ̇ϑ̇ sin ϑ. (14)

We eventually get the kinetic energy in the final form

T = 1

2
m0R2

N∑
i=1

[ϑ̇2 cos2(ωt + pi ) + ϕ̇2 + ω2

− ϕ̇2 sin2 ϑ cos2(ωt + pi ) + 2ωϕ̇ cos ϑ

+ 2ϕ̇ϑ̇ sin ϑ cos(ωt + pi ) sin(ωt + pi )]. (15)

Now, we can apply the continuous limit to this result. To do
this, we use the relation m0 = m/N and we transform the sum
into an integral over p (i.e., over the distribution of charge and
mass) by observing that d p � 2π/N . Hence, we get

T = 1

2
mR2 1

2π

∫ 2π

0
[ϑ̇2 cos2(ωt + p) + ϕ̇2 + ω2

− ϕ̇2 sin2 ϑ cos2(ωt + p) + 2ωϕ̇ cos ϑ

+ 2ϕ̇ϑ̇ sin ϑ cos(ωt + p) sin(ωt + p)]d p. (16)

A straightforward integration delivers

T = 1
2 mR2

(
1
2 ϑ̇2 + ϕ̇2 + ω2 − 1

2 ϕ̇2 sin2 ϑ + 2ωϕ̇ cos ϑ
)

= 1
4 mR2(ϑ̇2 + ϕ̇2 sin2 ϑ ) + 1

2 mR2(ω + ϕ̇ cos ϑ )2. (17)

This expression allows us to calculate the left-hand side of the
Lagrange equations for our system as follows:

d

dt

∂T

∂ϑ̇
− ∂T

∂ϑ
= mωR2

[
ϕ̇ sin ϑ + 1

2ω
(ϑ̈ + ϕ̇2 sin ϑ cos ϑ )

]
,

(18)

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= mωR2

[
−ϑ̇ sin ϑ + 1

2ω

× (2ϕ̈ − ϕ̈ sin2 ϑ − 2ϑ̇ ϕ̇ sin ϑ cos ϑ )

]
, (19)

FIG. 2. Instantaneous decomposition of the charge velocity �vi

in the two components tangent (�vi,‖) and perpendicular (�vi,⊥) to
the instantaneous position of the dipole circle. The perpendicular
component is crucial for the introduction of the damping force. While

 represents the dipole plane, � is the sphere circumscribed to the
dipole.

where we separated the terms proportional to ω from the
others. We discuss this separation below. In order to com-
plete the Lagrange equations of motion, we need to elaborate
the generalized forces Qϑ and Qϕ . To do this, we assume
that the charged particles are subjected to two kinds of
forces.

First, we consider the Lorentz force �Fi,L = q0�vi ∧ �B gener-
ated by an external magnetic induction �B = (Bx, By, Bz ). Of
course, this is an effective magnetic induction representing
many real factors: the Zeeman effect induced by an applied
magnetic field, the demagnetization effect generated by the
magnetic field created by the magnetization itself, the ex-
change effect depending of the gradients of the magnetization,
the magnetic anisotropy effect induced by the crystalline
structure of the materials, and the magnetoelastic effects
generated by the interaction of magnetic and elastic fields.
Typically, all these contributions are summed up through an
effective energy function, which can be derived with respect
to the magnetization to give the effective magnetic induction
�B applied to the dipole [58,59].

Second, we introduce a damping force describing the effec-
tive viscous drag acting opposite to the reorientation motion
of the dipole plane 
. We precisely describe the dissipation
mechanism as follows. At a given time t , we have a given
orientation of 
 identified by �n or, equivalently, by ϕ and ϑ

(see Fig. 2). At that time t , each charge velocity �vi can be
decomposed in the two components tangent (�vi,‖) and perpen-
dicular (�vi,⊥) to the instantaneous position of the dipole circle
(see Fig. 2). Indeed, while each particle velocity is tangent to
the sphere � circumscribed to the dipole, it is not tangent to
the dipole circle because it is in motion (ϑ̇ 	= 0 and ϕ̇ 	= 0).
Now, since we want to describe the damping of the dipole
motion and not of the particle motion, we apply a drag force
opposite to the perpendicular component of each instanta-
neous particle velocity. Hence, we define the damping force
�Fi,D = −k0�vi,⊥ = −k0(�vi · �n)�n, where �n is defined in Eq. (3).
This is a phenomenological approach able to effectively
represent all the microscopic processes responsible for the
overall dipole damped motion. The two forces can be summed
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to give �Fi = �Fi,L + �Fi,D. In conclusion, we have to calculate
the following contributions to the generalized forces:

Qϑ,L = q0

N∑
i=1

�vi ∧ �B · ∂�ri

∂ϑ
, (20)

Qϑ,D = −k0

N∑
i=1

(�vi · �n)

(
�n · ∂�ri

∂ϑ

)
, (21)

Qϕ,L = q0

N∑
i=1

�vi ∧ �B · ∂�ri

∂ϕ
, (22)

Qϕ,D = −k0

N∑
i=1

(�vi · �n)

(
�n · ∂�ri

∂ϕ

)
, (23)

which can be summed to give

Qϑ = Qϑ,L + Qϑ,D, (24)

Qϕ = Qϕ,L + Qϕ,D. (25)

While the exact expressions of the quantities in Eqs. (20)–(23)
are given in the Appendix, we perform here the continuous
limit of these generalized forces. By recalling that q0 = q/N

and that d p � 2π/N in Eqs. (A1) and (A2), a straightforward
integration, as before, yields the following results for the
components related to the Lorentz force:

Qϑ,L = qωR2

2
�λ · �B + qϕ̇R2

2
cos ϑ �λ · �B, (26)

Qϕ,L = qωR2

2
sin ϑ �μ · �B − qϑ̇R2

2
cos ϑ �λ · �B, (27)

where we used the definitions of �λ and �μ given in Eqs. (4)
and (5), respectively. Concerning the damping terms given
in Eqs. (A3) and (A4), we define k = NK0 and we get the
continuous limit as

Qϑ,D = − 1
2 kR2ϑ̇, (28)

Qϕ,D = − 1
2 kR2ϕ̇ sin2 ϑ. (29)

We have now all the explicit terms to write down the Lagrange
equations for the dipole time evolution. The left-hand sides
are summarized in Eqs. (18) and (19) while the right-hand
sides are given in Eqs. (26)–(29), which can be summed as
in Eqs. (24) and (25). Hence, Eqs. (7) and (8) can be finally
written as

mωR2

[
ϕ̇ sin ϑ + 1

2ω
(ϑ̈ + ϕ̇2 sin ϑ cos ϑ )

]
= qωR2

2

[
�λ · �B + ϕ̇

ω
cos ϑ �λ · �B

]
− 1

2
kR2ϑ̇, (30)

mωR2

[
−ϑ̇ sin ϑ + 1

2ω
(2ϕ̈ − ϕ̈ sin2 ϑ − 2ϑ̇ ϕ̇ sin ϑ cos ϑ )

]
= qωR2

2

[
sin ϑ �μ · �B − ϑ̇

ω
cos ϑ �λ · �B

]
− 1

2
kR2ϕ̇ sin2 ϑ. (31)

By straightforward simplifications, we get

ϕ̇ sin ϑ + 1

2ω
(ϑ̈ + ϕ̇2 sin ϑ cos ϑ ) = γ

[
�λ · �B + ϕ̇

ω
cos ϑ �λ · �B

]
− αϑ̇, (32)

−ϑ̇ sin ϑ + 1

2ω
(2ϕ̈ − ϕ̈ sin2 ϑ − 2ϑ̇ ϕ̇ sin ϑ cos ϑ ) = γ

[
sin ϑ �μ · �B − ϑ̇

ω
cos ϑ �λ · �B

]
− αϕ̇ sin2 ϑ, (33)

where we introduced the gyromagnetic ratio γ = q
2m and

the Gilbert damping coefficient α = k
2mω

. This is the main
achievement of the present section and represents the set of
dynamical equations for the reorientation of the magnetic
dipole subjected to external magnetic field and damping.
These equations have been obtained without any form of
approximation, starting from the basic assumptions reported
above. We further observe that three parameters γ , α, and ω

completely control these dynamical process.
It is important to observe that the obtained equations con-

tain some terms that are proportional to 1/ω. These terms can
be explained as follows. The terms proportional to 1/ω in the
left-hand sides of Eqs. (32) and (33) are responsible for the
inertial behavior of the magnetic dipole and are indeed related
to the second derivatives of precession and nutation angles ϕ

and ϑ . On the other hand, the terms proportional to 1/ω in the
right-hand sides of Eqs. (32) and (33) represent the Lorentz
force generated by the reorientation of the dipole plane 
.
Indeed, such a reorientation produces a charge velocity not
related to ω but rather to ϕ̇ and ϑ̇ . All these kinds of terms
can be typically neglected for the real microscopic dipole or,

equivalently, for the so-called ideal dipole. An ideal magnetic
dipole is indeed characterized by ω → ∞ and R → 0, but
with a finite value of M = 1

2 qωR2. It means that we have a
magnetic dipole with an infinitely small size and an infinitely
large electric current, so that we have a finite dipole moment.
In other words, to deal with an ideal dipole, we have to
suppose that ω 
 ϑ̇ and ω 
 ϕ̇. Equivalently, the intrinsic
rotation of the charged particles is much faster than the reori-
entation process of the dipole plane. Concerning the damping
process, the ideal dipole is characterized by the limiting values
k → ∞ and ω → ∞, performed by taking a finite value for
the damping coefficient α = k

2mω
.

The meaning of the ideal dipole approximation charac-
terized by ω → ∞ can be appreciated by considering the
paradigmatic magnetic dipole constituted by a hydrogen Bohr
atom with one electron and one proton. In this case, we have
q = e = 1.6 × 10−19 C, m = me = 9.1 × 10−31 kg, and the
dipole radius R coincides with the Bohr radius a0 given by

a0 = 4πε0 h̄2

mee2
� 0.5 × 10−10 m. (34)
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Moreover, the Bohr theory allows the determination of the
electron orbital velocity as

ve = e2

4πε0 h̄
� 2.1 × 106 ms−1, (35)

also corresponding to the fine-structure constant (∼1/137)
times the speed of light in vacuum, c = 299 792 458 m/s. The
Bohr radius and the electron velocity can be used to directly
calculate the angular frequency as follows:

ω = ve

a0
= mee4

(4πε0)2h̄3 � 4.2 × 1016 s−1. (36)

Therefore, we observe that for this magnetic dipole, ω as-
sumes a very large value, confirming the validity of the ideal
dipole hypothesis. To conclude, we can also determine the
dipole moment of the electron rotation as

M = evea0

2
= eh̄

2me
� 9.2 × 10−24 A m2, (37)

corresponding to the so-called Bohr magneton. We can state
that, for such a system, the ideal dipole approximation is valid
if the frequency f of the applied magnetic induction �B is much
lower than ω/(2π ) ∼ 1016 s−1. Consequently, the inertial ef-
fect in the magnetization reorientation can be appreciated only
with very large frequencies of the applied magnetic field. We
remark that neglecting the terms of the order 1/ω in Eqs. (32)
and (33) transforms the second-order Lagrange equations in a
set of first-order differential equations. This is coherent with
the classical forms of the LLG equation, as generally used in
micromagnetism [27,28]. As discussed in the Introduction, the
problem of the inertial effect in the dynamics of magnetization
has been investigated in recent literature [46–56]. In these
works, an evolution equation for the magnetization has been
proposed. However, it is not completely consistent with our
Eqs. (32) and (33). Indeed, in the previously proposed equa-
tion, the terms corresponding to the Lorentz force generated
by the reorientation dynamics [our 1/ω terms in the right-hand
sides of Eqs. (32) and (33)] have been completely neglected
and the purely inertial terms are similar but not coinciding
with ours. The origin of the differences between our approach
and previous works is due to the fact that in Refs. [46–56] the
intrinsic rotational motion of the charge defining the magnetic
dipole is not considered as a basic assumption and therefore
the inertial and Lorentz forces are introduced in a different
way. An alternative approach useful to better draw a compar-
ison with the equation proposed by Wegrowe and co-workers
is discussed in the next section.

Anyway, if we neglect the terms of the order of 1/ω in
Eqs. (32) and (33), we get the simplified relations

ϕ̇ sin ϑ = γ �λ · �B − αϑ̇, (38)

ϑ̇ = −γ �μ · �B + α sin ϑϕ̇. (39)

This is a first-order system of differential equations, which
is not written in normal form. To obtain its normal form,
we can substitute ϑ̇ from Eq. (39) into Eq. (38) and, recip-
rocally, ϕ̇ sin ϑ from Eq. (38) into Eq. (39). This procedure

eventually yields

ϕ̇ sin ϑ = γ

1 + α2
(�λ · �B + α �μ · �B), (40)

ϑ̇ = γ

1 + α2
(α�λ · �B − �μ · �B). (41)

These polar forms of the equations for the magnetization
dynamics have been largely used in different applications
[63,64]. To conclude, it is not difficult to prove that Eqs. (38)
and (39) are equivalent to the first form (implicit) of the LLG
equation,

d �M
dt

= γ �M ∧ �B − α

M
�M ∧ d �M

dt
, (42)

while Eqs. (40) and (41) are equivalent to the second form
(explicit) of the LLG equation,

d �M
dt

= γ

1 + α2

[
�M ∧ �B − α

M
�M ∧ ( �M ∧ �B)

]
. (43)

To directly prove these equivalences, it is sufficient to consider
that �M = M�n and use the definition of �n given in Eq. (3).
From this result we deduce that the Gilbert damping process
appears to be more adapted to describe the magnetization
dynamics than the Landau-Lifshitz counterpart since it has
been obtained from a purely mechanical model. Notice that
with the above formulation, it is difficult to close the equations
of motion for �n accounting for inertial effects when ω → ∞,
as all second-order derivatives are, at first glance, wiped out
by such a limiting process. Thus, the purpose of the next
section is to demonstrate that, in the same limit ω → ∞, a
closed-form equation for �n can be found that includes second-
order derivatives, and therefore of magnetic inertial effects
similar with those which have been experimentally evidenced
recently [56].

III. MAGNETIC INERTIA CORRECTED GILBERT
EQUATION FROM THE CIRCULAR LOOP MODEL

The main equations derived in the previous section,
namely, Eqs. (32) and (33), are able to describe all effects
produced by an external magnetic field on a magnetic dipole.
However, as alluded to in the previous section their form is
not symmetric and it is difficult, if not impossible, to obtain
a dynamic equation written only in terms of the vector �n
or �M, as expected to get a generalization of the classical
LLG equation. So, we describe here an alternative approach
eventually yielding a more symmetric formalism and giving a
rigorous justification of the Wegrowe equation.

As before, we consider the moving frame defined by
(�n, �λ, �μ), constituting a convenient basis which is rigidly
bound with the rotating loop. Now, the rotational frequency
of the charges is arbitrarily varying and we can write their
positions as

�ri(t ) = �λR cos (ψ (t ) + pi ) + �μR sin (ψ (t ) + pi ), (44)

where ψ̇ represents the arbitrary angular velocity of the
charges. Notice that here, the constraints are holonomic
and time independent. However, this does not fundamentally
change the basic analysis conducted in the previous section.
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The kinetic energy of the system is in the form

T = mR2

4
(ϑ̇2 + ϕ̇2 sin2 ϑ ) + mR2

2
(ψ̇ + ϕ̇ cos ϑ )2, (45)

which is consistent with Eq. (17) by replacing ψ̇ by ω

in Eq. (45). Here again, we introduced m = Nm0 and we
performed the continuum limit, in exactly the same fash-
ion as discussed in the previous section. Written in this
form, the kinetic energy is identical to that of a symmetric
top with one point fixed, with principal moments of inertia
I1 = I2 = mR2/2 and I3 = mR2 [62]. This point definitively
shows that the classical mechanics is able to mimic the
magnetization dynamics with three positive moments of in-
ertia. Now, the generalized coordinates are three in number,
namely, (q1, q2, q3) = (ϕ, ϑ,ψ ) as it must for a symmetric
top with one point fixed, and the generalized velocities are
(q̇1, q̇2, q̇3) = (ϕ̇, ϑ̇, ψ̇ ). Before writing the equations of mo-
tion, we also write the total force to which the charges are
subjected. This is given by the Lorentz force combined with
the damping force,

�Fi = �Fi,L + �Fi,D = q0�vi ∧ �B − k0(�vi · �n)�n. (46)

Then, we write the Lagrange equations as [62]

d

dt

∂T

∂ q̇k
− ∂T

∂qk
=

N∑
i=1

�Fi · ∂�ri

∂qk
, k = 1, 2, 3. (47)

By introducing the gyromagnetic ratio γ = q
2m = q0

2m0
, the

apparent damping constant k = Nk0, and using the discrete to
continuous limit to evaluate the sums in Eq. (47), we explicitly
obtain the Lagrange equations

d

dt
(2ϕ̇ − ϕ̇ sin2 ϑ + 2ψ̇ cos ϑ )

= 2γ ψ̇ sin ϑ �μ · �B − 2γ ϑ̇ cos ϑ �λ · �B − k

m
ϕ̇ sin2 ϑ, (48)

ϑ̈ + ϕ̇ sin ϑ (ϕ̇ cos ϑ + 2ψ̇ )

= 2γ ψ̇ �λ · �B + 2γ ϕ̇ cos ϑ �λ · �B − k

m
ϑ̇, (49)

and

d

dt
(ψ̇ + ϕ̇ cos ϑ ) = −γ ϑ̇ �λ · �B − γ ϕ̇ sin ϑ �μ · �B. (50)

We set now

� = ψ̇ + ϕ̇ cos ϑ. (51)

From Eq. (50), we may write

γ ϑ̇ �λ · �B = −γ ϕ̇ sin ϑ �μ · �B − �̇, (52)

and this result can be substituted in the first Lagrange equation
given in Eq. (48). After straightforward algebra we get

ϕ̈ sin ϑ + 2ϑ̇ ϕ̇ cos ϑ − 2�ϑ̇ = − k

m
ϕ̇ sin ϑ + 2γ��μ · �B,

(53)

ϑ̈ − ϕ̇2 sin ϑ cos ϑ + 2�ϕ̇ sin ϑ = − k

m
ϑ̇ + 2γ��λ · �B, (54)

while we also have Eq. (50), viz.,

�̇ = −γ ϑ̇ �λ · �B − γ ϕ̇ sin ϑ �μ · �B. (55)

In order to handle the inertial terms, we consider now the
vector �J defined by

�J = �n ∧ d2�n
dt2

= (ϑ̈ − ϕ̇2 sin ϑ cos ϑ )�μ − (ϕ̈ sin ϑ + 2ϑ̇ ϕ̇ cos ϑ )�λ
= Jμ �μ + Jλ�λ. (56)

Then, we may write Eqs. (53) and (54) as

−Jλ − 2�ϑ̇ = − k

m
ϕ̇ sin ϑ + 2γ��μ · �B, (57)

Jμ + 2�ϕ̇ sin ϑ = − k

m
ϑ̇ + 2γ��λ · �B. (58)

This form exhibits a complete symmetry and can be further
developed as follows:

−Jλ − 2ψ̇

(
1 + ϕ̇ cos ϑ

ψ̇

)
ϑ̇

= − k

m
ϕ̇ sin ϑ + 2γ ψ̇

(
1 + ϕ̇ cos ϑ

ψ̇

)
�μ · �B, (59)

Jμ + 2ψ̇

(
1 + ϕ̇ cos ϑ

ψ̇

)
ϕ̇ sin ϑ

= − k

m
ϑ̇ + 2γ ψ̇

(
1 + ϕ̇ cos ϑ

ψ̇

)
�λ · �B. (60)

These equations must be combined with Eq. (50). Indeed, we
remark that Eqs. (59) and (60) completely describe the motion
of �n, the unit normal to the loop, if the dynamics of ψ is
known. However, for the description of the magnetic moment
dynamics, we can consider the value of ψ̇ large (with respect
to ϑ̇ and ϕ̇) and constant since the modulus of the magnetic
moment and the damping coefficient should be considered as
constant parameters. This is accomplished if

ψ̇ = ω, (61)

where ω is a constant (the same considered in the previous
section). This choice is actually legitimate since the damping
force does not play any role in Eq. (50). With this hypothesis,
the motion of �n is governed by the couple of equations

−Jλ − 2ω

(
1 + ϕ̇ cos ϑ

ω

)
ϑ̇

= − k

m
ϕ̇ sin ϑ + 2γω

(
1 + ϕ̇ cos ϑ

ω

)
�μ · �B, (62)

Jμ + 2ω

(
1 + ϕ̇ cos ϑ

ω

)
ϕ̇ sin ϑ

= − k

m
ϑ̇ + 2γω

(
1 + ϕ̇ cos ϑ

ω

)
�λ · �B, (63)

where ω is a constant representing the angular frequency of
the charge rotation (nutation frequency). The set of Eqs. (62)
and (63) represents our second proposed model for the mag-
netization dynamics. Its form is more elegant and symmetric
than the one given in Eqs. (32) and (33). Moreover, it allows
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to draw a comparison with the dynamic equation recently
proposed by Wegrowe and co-workers.

Actually, a further simplification can be introduced by as-
suming that

ϕ̇ cos ϑ � ω or ϕ̇ � ω. (64)

The last two equations become

−Jλ − 2ωϑ̇ = − k

m
ϕ̇ sin ϑ + 2γω �μ · �B, (65)

Jμ + 2ωϕ̇ sin ϑ = − k

m
ϑ̇ + 2γω�λ · �B. (66)

Finally, redefining the dimensionless damping constant

α = k

2mω
, (67)

and introducing the time constant τ by

τ = 1

2ω
, (68)

we easily obtain

−τJλ − ϑ̇ = −αϕ̇ sin ϑ + γ �μ · �B, (69)

τJμ + ϕ̇ sin ϑ = −αϑ̇ + γ �λ · �B, (70)

or, equivalently, the equation for �n in the form

d�n
dt

= γ �n ∧ �B − α�n ∧ d�n
dt

− τ �n ∧ d2�n
dt2

, (71)

which is equivalent to Eqs. (65) and (66) and represents the
equation of motion for the magnetic dipole proposed in recent
literature by Wegrowe and co-workers [46–51]. Of course, in
the noninertial limit defined by ω → ∞ or τ → 0, we obtain
again the simplified form

d�n
dt

= γ �n ∧ �B − α�n ∧ d�n
dt

, (72)

which is the Gilbert equation for the dynamics of the mag-
netization direction. As a conclusion, we can state that the
equation of Wegrowe and co-workers can be obtained as an
approximation (with ϕ̇ � ω) of the exact equations of motion
governing the dynamics of a circular current loop, in turn
given by that of a symmetric top with one point fixed with
well-identified moments of inertia.

IV. FREQUENCY RESPONSE

We investigate now the characteristic frequency response
corresponding to the proposed models, since it is the feature
typically investigated with standard experimental approaches.
It means that we apply a uniform and constant bias field �B0

to the magnetic dipole, with an additive time-varying small
perturbation δ �B, and we observe the resulting dipole motion.
To simplify the notation, we define the vector �x = (ϕ, ϑ ),
describing the magnetization orientation. In response to the
applied field, we can observe a preferential fixed direction
identified by �x0 = (ϕ0, ϑ0), perturbed by a small time-varying
quantity δ�x. In previous sections, we discussed three different
versions of the equations describing the noninertial dynamics

of magnetization: (i) Eqs. (32) and (33), obtained by consid-
ering a uniformly rotating distribution of charge; (ii) Eqs. (62)
and (63), obtained through a symmetric top with one point
fixed; and (iii) Eqs. (69) and (70), which represent a simpli-
fication of the second form for high values of ω (coinciding
with the equation proposed by Wegrowe and co-workers).
These three sets of equations can be cast into the following
general form:

f1(�x, �̇x, �̈x, �B) = 0, (73)

f2(�x, �̇x, �̈x, �B) = 0, (74)

where f1 and f2 are suitable functions representing any of the
three models above. We describe here an ad hoc procedure
of linearization for this arbitrary system of differential equa-
tions. To begin, we can substitute the assumed hypotheses
�x = �x0 + δ�x and �B = �B0 + δ �B in Eqs. (73) and (74), eventu-
ally obtaining

f1(�x0 + δ�x, δ �̇x, δ �̈x, �B0 + δ �B) = 0, (75)

f2(�x0 + δ�x, δ �̇x, δ �̈x, �B0 + δ �B) = 0. (76)

Since the applied perturbation δ �B and the resulting perturba-
tion δ�x are supposed to be small with respect to �B0 and �x0,
respectively, we can develop previous equations to the first
order as follows:

f1(�x0, 0, 0, �B0) + ∂ f1

∂�x · δ�x + ∂ f1

∂ �̇x
· δ �̇x

+ ∂ f1

∂ �̈x
· δ �̈x + ∂ f1

∂ �B · δ �B = 0, (77)

f2(�x0, 0, 0, �B0) + ∂ f2

∂�x · δ�x + ∂ f2

∂ �̇x
· δ �̇x

+ ∂ f2

∂ �̈x
· δ �̈x + ∂ f2

∂ �B · δ �B = 0, (78)

where the partial derivatives are calculated for �x = �x0,
�̇x = 0, �̈x = 0, and �B = �B0. Now, we clearly have that
f1(�x0, 0, 0, �B0) = 0 and f2(�x0, 0, 0, �B0) = 0, since �x0 is the
magnetization direction induced by �B0 when the perturbations
are not applied. To make this procedure more effective, we
suppose that the perturbation of the applied magnetic induc-
tion is given by the sinusoidal oscillation

δ �B = Re{�bei�Bt }, (79)

where �B is the angular frequency and �b is the corresponding
complex amplitude (phasor). Here Re{z} stands for the real
part of the complex number z. Of course, also the angle
perturbation follows a similar time evolution

δ�x = Re{�aei�Bt }, (80)

with the same angular frequency and where �a is its
complex amplitude (phasor). It means that we are in a
sinusoidal steady-state regime. While the applied phasor
�b = (bx, by, bz ) ∈ C3 is known, the resulting phasor �a =
(aϕ, aϑ ) ∈ C2 is unknown and it can be determined as follows.
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By using Eqs. (79) and (80) in Eqs. (77) and (78), we easily
obtain (

∂ f1

∂�x + i�B
∂ f1

∂ �̇x
− �2

B

∂ f1

∂ �̈x

)
· �a + ∂ f1

∂ �B · �b = 0, (81)

(
∂ f2

∂�x + i�B
∂ f2

∂ �̇x
− �2

B

∂ f2

∂ �̈x

)
· �a + ∂ f2

∂ �B · �b = 0, (82)

which is a system of two linear equations in the two unknown
components of the vector �a. This vector �a can be simply
obtained by calculating all the partial derivatives needed in
Eqs. (81) and (82), starting from the mathematical expressions
of f1 and f2, and by solving the linear system. To simplify
the calculation, we fix �B0 = (B, 0, 0); i.e., we suppose the
bias field is applied to the x direction of the reference frame.
Of course, this assumption does not limit the generality of
the following achievements. The interesting point is that we
get exactly the same result for the three models proposed
and discussed previously. It means that Eqs. (32) and (33),
Eqs. (62) and (63), and Eqs. (69) and (70) yield the same
vector �a given by

aϕ = 2ωγ
(
2i�Bωbz − 2byγ Bω − 2iby�Bαω + by�

2
B

)
D ,

(83)

aϑ = 2ωγ
(
2i�Bωby + 2bzγ Bω + 2ibz�Bαω − bz�

2
B

)
D ,

(84)

where

D = 4�2
Bω2 − 4γ 2B2ω2 − 8iγ Bω2�Bα + 4γ Bω�2

B

+ 4�2
Bα2ω2 + 4i�3

Bαω − �4
B, (85)

which is a fourth degree polynomial in the applied angular
frequency �B.

The quantities aϑ and aϑ are used as follows to obtain the
fluctuations of the direction �n. To begin, we can write �n =
�n0 + δ�n, where �n0 is identified by �x0 = (ϕ0, ϑ0). Concerning
the perturbation we can assume that

δ�n = Re{�νei�Bt }, (86)

where �ν is the complex amplitude associated to δ�n. Then, a
simple use of Eq. (3) leads to the first-order relations

νx = − sin ϕ0 sin ϑ0aϕ + cos ϕ0 cos ϑ0aϑ , (87)

νy = cos ϕ0 sin ϑ0aϕ + sin ϕ0 cos ϑ0aϑ , (88)

νz = − sin ϑ0aϑ . (89)

Therefore, we obtain from Eqs. (83) and (84) the follow-
ing simplified expressions based on the assumption �B0 =
(B, 0, 0):

νx = 0, (90)

νy = aϕ, (91)

νz = −aϑ . (92)
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FIG. 3. Frequency response of the system with a varying value
of the applied magnetic induction B. We adopted the parameters γ =
1.76 × 1011 s−1 T−1; B = 0.1, 0.2, 0.3, 0.4, and 0.5 T; α = 0.1; and
ω = 1 × 1012 s−1. The arrow indicates the increasing values of B.

We study the behavior of νz when only by 	= 0 and when only
bz 	= 0 and we eventually get

νz

by

∣∣∣∣
bx=bz=0

= −4iγω2�B

D , (93)

νz

bz

∣∣∣∣
bx=by=0

= −2ωγ
(
2γ Bω + 2i�Bαω − �2

B

)
D , (94)

where D is the polynomial defined in Eq. (85). These results
represent the frequency response of the system and they are
shown in Figs. 3–5. In all plots we can see a first reso-
nance that can be identified with the classical ferromagnetic
resonance and a second resonance that can be ascribed to
the inertial effects taken into consideration in our models.
Indeed, in Fig. 3, we can observe that only the first res-
onance frequency is shifted with an increasing polarizing
field B, which is the classical behavior of the ferromagnetic

10 11 12 13log10 ΩB
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FIG. 4. Frequency response of the system with a varying value
of the intrinsic frequency ω. We adopted the parameters γ = 1.76 ×
1011 s−1 T−1, B = 0.25 T, α = 0.1, and ω = 1.6 × 1011, 2.5 × 1011,
4 × 1011, 6.3 × 1011, and 1 × 1012 s−1. The arrow indicates the in-
creasing values of ω.
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FIG. 5. Frequency response of the system with a varying value of
the damping factor α. We adopted the parameters γ = 1.76 × 1011

s−1 T−1; B = 0.25 T; α = 0.01, 0.06, 0.11, 0.16, and 0.21; and ω =
1 × 1012 s−1. The arrow indicates the increasing values of α.

resonance. Moreover, from Fig. 4, we deduce that only the
second resonance is shifted with an increasing value of ω,
which is the characteristic frequency describing the inertial
effects. Finally, in Fig. 5, we can observe the effect of the
damping factor on the resonance behavior and we conclude
that a smaller damping induces a sharper resonance mecha-
nism while a larger damping produces a smoother resonance
response. This is true for both the ferromagnetic and the in-
ertial resonances. The existence of the second resonance peak
due to the inertial effect has been experimentally confirmed
in Ref. [56], where it has been observed in ferromagnetic thin
films at a frequency of approximately 0.6 THz.

The fact that the three studied models exhibit exactly
the same frequency response means that the mathematical
differences among them do not generate different physical
behaviors. This is true, at least, for the results concerning
the resonance behavior of the frequency response. A fur-
ther analysis should be conducted in order to compare the
complete time evolution of the magnetization for the three
models with experimental data. We leave this point to further
investigations.

V. CONCLUSIONS

In this work we readdressed the problem of mimicking
the dynamics of a magnetic dipole subjected to a damping
force and an external magnetic field from purely classical
concepts. While the classical approaches are based on the
Landau-Lifshitz equation and on its Gilbert refinement, recent
experimental and theoretical investigations have shown the
need to extend these theories to include inertial effects. To
this aim, we propose here to consider a magnetic dipole as a
circular current loop and we obtain its quantitative description
through the Lagrangian mechanics.

It is important to place this dipole structure in the context of
previous approaches. The idea of using the mechanical anal-
ogy between a magnetic dipole and a spinning top has been
efficiently developed by Gilbert in order to derive the equation
that bears his name [6,7]. The corresponding dipole can be

called a Gilbert magnetic dipole in order to be distinguished
from the Ampère magnetic dipole. This latter is defined by
a loop in which the electric current is confined (see, e.g.,
Ref. [51]). This dichotomy has been proposed by Griffiths
[65], who proved that the two dipoles are equivalent in the
subrelativistic regime of the electromagnetism. The dipole
structure proposed here is a sort of intermediate version of
the two systems above. Indeed, we exploited the current loop
of the Ampère dipole combined with the possibility to rotate
its plane through external actions, as in the Gilbert case. In
this sense, the electromagnetic and the mechanical behavior
are coupled to eventually obtain the dynamic equation with
the inertial effects. While the Ampère magnetic dipole is
classically used to determine the magnetic field produced by
a dipole (by defining the dipole moment M = IS), here we
use the current loop to evaluate the forces applied from an
external magnetic field to the dipole itself. Since our dipole is
free to rotate, these forces produce the reorientation, whose
dynamics can be studied by the classical mechanical laws.
We can also remark that the idea of merging the Gilbert and
Ampère visions can open new perspectives concerning the
full electromagnetic and mechanical analysis of the problem
(based on the Maxwell and Lagrange equations). As a matter
of fact, the Lagrangian function for the system can be adopted
in the context of the electrodynamics in order to study the
most general time-dependent situation.

Here, we followed two different lines. In the first one,
we supposed a constant angular frequency for the electric
charges rotating in the loop and we dealt with a rheonomic
system with two degrees of freedom. In the second one,
we supposed an arbitrary angular frequency for the charges
by obtaining a holonomic and time-independent system with
three degrees of freedom. In both cases we first introduced
a discrete distribution of charges and we performed the limit
towards a continuous structure in a second step. The effect of
the magnetic field is directly introduced through the Lorentz
force without using the magnetic scalar potential. Moreover,
the dissipative process is defined by a specific damping force
without the need to introduce a Rayleigh dissipation function,
but rather asking for this phenomenological damping force
not to brake the orbital motion of the charges inside the loop
(so that the current intensity inside the loop is maintained
constant). This point allows a better understanding of the
dissipative mechanism with a clearer definition of the force
that opposes the orientation of the magnetic dipole in an
externally applied magnetic field. Importantly, the proposed
models naturally lead to extra terms with respect to the classi-
cal LLG equation, characterizing two important phenomena:
(i) the inertial effect that can be observed for high values of the
frequency of the applied magnetic field and (ii) the effect of
the Lorentz force generated by the reorientation of the dipole
plane, which is usually neglected in previous models. While
the first proposed model, with constant angular frequency
of the charges, contains these two terms, its mathematical
form is not symmetric and it is therefore difficult to draw
a comparison with the results of the recent literature. For
this reason, we introduced a refined treatment, with an arbi-
trary angular frequency, and we obtained a more elegant and
symmetric form for the dynamical equations. Moreover, its
approximation, obtained for a reasonably slow reorientation
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motion with respect to the rotation of charges, is found to be
coinciding with the equation recently proposed by Wegrowe
and co-workers. Our analysis represents therefore an inde-
pendent derivation of this equation. The importance of the
inertial effect can be appreciated by taking into account the
frequency response of the dipole system. We provided evi-
dence that both the first and second model proposed, and also
the Wegrowe equation, lead to exactly the same mathematical
form of the frequency response. On the one hand, this proves
that the differences between the mathematical details of the
three models have no observable consequences on the physi-
cal response of the system. On the other hand, the frequency
response is characterized by two resonance phenomena: while
the first represents the classical ferromagnetic resonance, the
second is induced by inertial effects. It is important to note
that this second resonance (between 1011 and 1012 Hz) has
been observed experimentally only recently [56]. If we con-
sider a sufficiently low applied magnetic field frequency, the

proposed models can be approximated by neglecting inertial
effects and provide Gilbert’s equation as a result. Therefore,
we can also state that a purely mechanical approach to the
problem of the dynamics of a magnetic dipole gives a strong
indication that the damping process is better represented by
the Gilbert assumption than the Landau-Lifshitz counterpart.
Finally, we clarified that the motion of a symmetric top with
a fixed point, and with three positive moments of inertia, is
coherent with the LLG dynamics of a magnetic dipole.

APPENDIX: GENERALIZED FORCES

We show here the complete expressions of the generalized
forces defined in Eqs. (20)–(23), which can be summed as in
Eqs. (24) and (25). The results shown here concern the case of
a discrete distribution of charge within the loop. Concerning
the Lorentz force, a long but straightforward calculation leads
to the expressions

Qϑ,L = q0ωR2
N∑

i=1

[−Bz sin ϑ cos2(ωt + pi ) + By cos ϑ sin ϕ cos2(ωt + pi ) + By cos ϕ sin(ωt + pi ) cos(ωt + pi )

+ Bx cos ϑ cos ϕ cos2(ωt + pi ) − Bx sin ϕ sin(ωt + pi ) cos(ωt + pi )] + q0ϕ̇R2
N∑

i=1

[−Bz sin ϑ cos ϑ cos2(ωt + pi )

+ By cos2 ϑ sin ϕ cos2(ωt + pi ) + By cos ϕ cos ϑ sin(ωt + pi ) cos(ωt + pi ) + Bx cos2 ϑ cos ϕ cos2(ωt + pi )

− Bx sin ϕ cos ϑ sin(ωt + pi ) cos(ωt + pi )], (A1)

Qϕ,L = q0ωR2
N∑

i=1

[−Bz sin2 ϑ sin(ωt + pi ) cos(ωt + pi ) + By sin ϑ cos ϕ sin2(ωt + pi ) + By cos ϑ sin ϑ sin ϕ sin(ωt + pi )

× cos(ωt + pi ) − Bx sin ϑ sin ϕ sin2(ωt + pi ) + Bx cos ϑ sin ϑ cos ϕ sin(ωt + pi ) cos(ωt + pi )],

+ q0ϑ̇R2
N∑

i=1

[Bz sin ϑ cos ϑ cos2(ωt + pi ) − By cos2 ϑ sin ϕ cos2(ωt + pi ) − By cos ϑ cos ϕ sin(ωt + pi ) cos(ωt + pi )

− Bx cos2 ϑ cos ϕ cos2(ωt + pi ) + Bx cos ϑ sin ϕ sin(ωt + pi ) cos(ωt + pi )], (A2)

where, as in the main text, we separated the terms proportional to ω from the others. On the other hand, the damping force
yields

Qϑ,D = −k0R2
N∑

i=1

[ϑ̇ cos2(ωt + pi ) + ϕ̇ sin ϑ sin(ωt + pi ) cos(ωt + pi )], (A3)

Qϕ,D = −k0R2
N∑

i=1

[ϑ̇ sin ϑ sin(ωt + pi ) cos(ωt + pi ) + ϕ̇ sin2 ϑ sin2(ωt + pi )]. (A4)

We remember that here, pi = 2π
N (i − 1) with i = 1, . . . , N .
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