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Bundles of fibers, wires, or filaments are ubiquitous structures in both natural and artificial materials. We
investigate the bundle degradation induced by an external damaging action through a theoretical model
describing an assembly of parallel fibers, progressively damaged by a random population of cracks. Fibers
in our model interact by means of a lateral linear coupling, thus retaining structural integrity even after
substantial damage. Monte Carlo simulations of the Young’s modulus degradation for increasing crack
density demonstrate a remarkable scaling shift between an exponential and a power-law regime. Analytical
solutions of the model confirm this behavior, and provide a thorough understanding of the underlying
physics.
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Fiber bundle assemblies are structural elements largely
present in both natural materials and technological appli-
cations. Nature has extensively exploited the mechanical
properties of filamentary biopolymers, such as cytoskeletal
proteins, F-actin, or microtubules, for many crucial proc-
esses in eukaryotic cells [1]. At the tissue length scale we
find bundle structures like collagen, spider silk, bone,
tendon, muscle, all exhibiting uncommon qualities, includ-
ing the rare combination of large strength and high tough-
ness [2–4]. These materials take advantage of specific
features, such as the hierarchical assemblage [5], the twisted
structure [6], and the degree of disorder thatmay increase the
overall strength [7]. Artificial materials aiming at high
mechanical performances have often taken inspiration from
biomaterials, such as carbon nanotube that have been used as
building blocks for novel assembled systems [8,9].
Given their interest as structural materials, mechanical

failure in bundles is a major subject of study [10,11]. The
“fiber-bundle model” (FBM), originally developed to study
the failure of spun cotton yarns [12], was extended to
consider parallel fibers with statistically distributed strength
[13]. There, when an external load produces the failure of a
fiber, its fraction of load is equally redistributed among all
the intact fibers (global load sharing). A complementary
statistical and time-dependent phenomenological theory
has been proposed in Refs. [14,15]. Another redistribution
strategy is the so-called local load sharing, stating that the
load of a broken fiber is carried only by the nearest intact
fibers [16]. Exactly solvable models based on this rule
have been largely investigated [17–19]. It is well known
that global and local rules lead to completely different
statistical behaviors [20–24]. The FBM approach has been
smartly modified in order to account for the matrix viscoe-
lasticity with a power-law creep compliance [25,26], the
plasticity [27,28], the nonlinear creeping matrix [29], the

brittle-to-ductile transition [30], and the complexity of
specific heterogeneous structures [31,32].
In this context, the mechanical degradation induced by

external agents, such as chemicals or radiations, is crucial
to understand the resistance of bundle materials to variable
environmental constraints. As prominent examples, span-
ning widely different fields, one could cite the degradation
induced by some antibiotics in tendon collagen [33], or the
lysis of muscle sarcomeres produced by some statins [34],
damage in the form of single-and double-strand breaks in
DNA irradiated by high-energy photons in cancer radio-
therapy [35,36], or degraded by a restriction enzyme [37].
At more macroscopic scales, examples include corrosion of
high-voltage power cable bundles [38], or suspended-
bridge steel cables [39], corrosion of steel bundles and
meshes in concrete structures [40], loss of cohesion in tree-
root bundles with variable soil wetness, triggering shallow
landslides [41,42].
In this Letter, we investigate a fiber-bundle assembly of

arbitrary geometry, with M parallel fibers characterized by
the linear longitudinal response and lateral coupling; the
fibers undergo localized damages, in the form of N random
breaks affecting the overall Young’s modulus. Notably,
broken fibers in our model do not lose entirely their
cohesion with the bundle, thanks to the lateral coupling
k, an essential ingredient to model realistic structures.
Although the progressive damage originated by the load
redistribution is a relevant effect largely studied within the
FBM [10,11], we have not included this feature in order to
isolate the statistical behavior induced by the random
fractures within the interacting fibers. Under this respect,
the problem belongs to the field of homogenization theories
[43–47]. In particular, our approach allows us to demon-
strate the existence of a marked shift in the scaling law of
the effective Young’s modulus of the fiber bundle: the
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elastic modulus decays with an exponential scaling,
expð−N=MÞ at small N, and goes into a power-law scaling
1=N2 at increasing values of N. The threshold N� between
the exponential and the power-law regime is a decreasing
function of the lateral coupling k. This “slowing-down”
shift has therefore important practical implications, in that
the yielding of a fiber-bundle material could be postponed
to longer times upon increasing the amount of lateral
coupling in the bundle.
Let us consider a bundle of M intact parallel fibers of

length l, arbitrarily arranged on their cross section, for
instance a flat [Fig. 1(a)], or a circular bundle [Fig. 1(b)].
The system can be described by the balance equations

∂TiðxÞ
∂x ¼ −GiðxÞ;

∂UiðxÞ
∂x ¼ 1

Ei
TiðxÞ; ð1Þ

for i ¼ 1;…;M and 0 ≤ x ≤ l, where

GiðxÞ ¼
XM
j¼1

kijðUj − UiÞ: ð2Þ

Here, TiðxÞ is the scalar stress, UiðxÞ the longitudinal
displacement, Ei the Young modulus of the ith fiber,
and kij are the lateral coupling coefficients [Fig. 1(c)].
The structure of the matrix kij introduces the most
general coupling rule, being able to define the local,
the global, and all intermediate interaction schemes.

Defining ~ζ as the vector containing all the variables
(T1; U1; T2; U2;…; TM;UM), the system of equations can

be written in the more compact form d~ζ=dx ¼ A~ζ, where
A is a 2M × 2M constant matrix. Therefore, the behavior
of an intact bundle segment can be studied by means of
the matrix exponential expðAxÞ.
Let us now introduce a population of N breaks at the

arbitrary positions xi, i ¼ 1;…; N. We assume that the
fracture located at xi is assigned to the jith fiber of
the bundle (ji ∈ f1; 2;…;Mg, ∀i ¼ 1;…; N). We also
define for convenience x0 ¼ 0 (left end of the bundle)
and xNþ1 ¼ l (right end of the bundle). It is important to
remark that when a fiber is broken in one or more points it
continues to contribute to the overall stiffness of the bundle
through the lateral interactions with the other fibers. Under
such assumptions, we can identifyN þ 1 intact segments of
the entire bundle, for any x ∈ ðxi; xiþ1Þ, ∀i ¼ 0;…; N.
Hence, for each of the above intervals we can write
~ζðx−iþ1Þ ¼ exp ½Aðxiþ1 − xiÞ�~ζðxþi Þ. The fiber breaks are
described by the following boundary conditions for x ¼ xi
(i ¼ 1;…; N): Ukðx−i Þ ¼ Ukðxþi Þ∀k ≠ ji and Tkðx−i Þ ¼
Tkðxþi Þ∀k ≠ ji, representing, respectively, the continuity
of displacement, and stress, in the intact fibers. Moreover,
Tjiðx−i Þ ¼ 0 and Tjiðxþi Þ ¼ 0, meaning that there is no
transmission of force across the broken fiber. We maintain
fixed the left end of the bundle [Ukðx0Þ ¼ 0] and we
prescribe a given displacement to its right end
[UkðxNþ1Þ ¼ δ where δ is a parameter]. If we rearrange

the quantities ~ζðx0Þ, ~ζðx−1 Þ, ~ζðxþ1 Þ, ~ζðx−2 Þ,…,~ζðxþN−1Þ,
~ζðx−NÞ, ~ζðxþNÞ, ~ζðxNþ1Þ in a vector ~η we obtain a system

B~η ¼ ~bwith 4MðN þ 1Þ unknowns (it can be shown thatB
is always nonsingular). For a given distribution of fiber
breaks, the effective Young modulus of the overall bundle
can be obtained as Eeff ¼ ð1=δÞPM

k¼1 TkðlÞ, which repre-
sents the effective modulus of a single fiber equivalent to
the whole degraded bundle.
The most general problem dealing with M fibers and N

randomly distributed breaks can only be solved numeri-
cally through Monte Carlo (MC) simulations. We generate
a large number of break distributions for each given M, N
and bundle geometry, from which we calculate the average
Young modulus hEeffi of the bundle. In the MC simulations
we took Ei ¼ E for all fibers and kij ¼ k for each couple of
neighboring fibers (local coupling). The relative strength of
the longitudinal versus lateral interaction was set by the
value of the reduced variable ξ2 ¼ kl2=E, ranging from
0.045 to 8, to span almost three decades. For both the flat
and the circular bundle we set 7 ≤ M ≤ 19 (see Fig. 1).
The degradation behavior of hEeffi as a function ofN can

be summarized by the MC results displayed in Fig. 2 in
which two specific degradation regimes can be clearly
identified: for low values of N, the straight lines in the
semilog plot of Fig. 2 correspond to an exponential scaling;
for larger values of N, the straight lines in the log-log plot
(inset) correspond to a power-law scaling (Fig. 2 shows

(a) (b)

(c)

FIG. 1 (color online). Cross-sectional view of the bundle
structures. In both the flat (a) and in the circular bundle (b),
we considered M fibers with 7 ≤ M ≤ 19 (note that M ¼
7; 13; 19 in the circular bundle correspond to exactly one, two,
or three shells of neighbors). In (c) the arrangement ofM parallel
fibers of length l with N breaks at x1;…; xN is shown; Ei is the
longitudinal (Young) elastic modulus of the ith fiber, and kij is the
lateral coupling modulus of the pair ij.
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results only for the flat bundle and ξ2 ¼ 0.045, the results
for other cases being entirely similar).
The shift between these two scaling regimes is, indeed, a

very interesting feature, since it marks the passage from a
very fast (exponential) decrease of hEeffiðNÞ to a much
slower degradation, in what may be called a slowing-down
shift for the loss of structural integrity. In Fig. 3 we report
the results of MC simulations for the flat bundle with
M ¼ 19, for a discrete range of values of ξ2 ¼ 0.045 to 8. It
can be seen that the shift at N� is very sharp for the smallest
values of k, and becomes smoother for higher values of the
lateral coupling constant (increasing ξ2). However, N�
decreases logarithmically upon increasing ξ2, showing that
an increase in the amount of lateral interaction between the
fibers (even fragmented) anticipates the slowing-down shift
to earlier stages of the degradation. We remark that we
observed this shift behavior also with nonlocal couplings
among the fibers. It is interesting to note that similar
regimes were observed in multicracked bulk solid materials
[45–47], for which it was separately found that randomly
oriented cracks lead to an exponential degradation, while

parallel cracks lead to a power-law decay of the effective
properties.
The physics behind these two limiting regimes can be

elucidated by looking at two extreme conditions for which
a fully analytical solution to the model can be provided.
First, we consider just two interacting fibers, in which N=2
breaks are regularly and alternately distributed in each fiber
of length l. In this simple, idealized case the model can be
explicitly solved, obtaining

EeffðNÞ
2E

¼ 1

1þ 2fNð
ffiffiffi
2

p
ξÞ ; ð3Þ

where

fNðzÞ ¼
1

z
tanh

�
z

N þ 1

�
þ N − 1

z
coth

�
z

N þ 1

�

þ N − 1

z
csch

�
z

N þ 1

�
: ð4Þ

We observe that, for N approaching infinity, EeffðNÞ goes
to zero with the power law Eeff ∼ kl2=N2. Moreover, it is
important to recognize that, at large N, the decrease of Eeff
does not depend on the Young modulus E of the fibers, but
is dominated by the lateral interactions among the adjacent
fragments of the broken fibers. This underscores the major
role of the lateral interaction k in determining the scaling
shift at N�.
As a second, analytically solvable case, we consider the

system composed of M noninteracting fibers (k ¼ 0), with
N randomly distributed breaks among all the fibers with
probability 1=M. Since lateral interactions are now absent,
when a fiber is broken at one or more sites its contribution
to the effective stiffness hEeffi is zero. We calculate the
probability to have n1 breaks on the first fiber, n2 breaks on
the second one, and so forth. Since there are N!=ðn1! ·… ·
nM!Þ sequences of N breaks yielding the particular dis-
tribution fn1;…; nMg (with

P
M
i¼1 ni ¼ N), we find such a

probability to be Pr fn1;…; nMg ¼ N!=ðn1! ·… · nM!MNÞ.
We can therefore determine the probability PsðNÞ to have s
intact fibers after producingN random breaks in the bundle.
If this is the case, in each distribution fn1;…; nMg there are
s zeros andM − s strictly positive numbers. Since there are�M
s

�
combinations of such s zeros within the distribution

fn1;…; nMg, we eventually obtain

PsðNÞ ¼
�
M

s

� Xni>0
P

M−s
i¼1

ni¼N

N!

n1! � � � nM−s!

1

MN : ð5Þ

This expression for the probability can be summed, to
obtain the following result in closed form:

FIG. 2 (color online). Monte Carlo results for hEeffi=E versus
N in semilogarithmic (main plot) and bilogarithmic (inset) scales.
We considered kl2=E ¼ 0.045 and 13 values of M, from 7 to 19.

FIG. 3 (color online). Monte Carlo results (noisy blue lines) and
theoretical interpolation (continuous red lines) for hEeffi=ðMEÞ
versus N for different values of kl2=E (0.045, 0.08, 0.14, 0.25,
0.45, 0.8, 1.4, 2.5, 4.5, and 8) and M ¼ 19 (flat bundle).

PRL 113, 255501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

19 DECEMBER 2014

255501-3



PsðNÞ ¼ M!

s!MN SM−s
N ; ð6Þ

where Sm
n is the Stirling number of the second kind. This

last equation can be used to prove that the probabilities
PsðNÞ generate a complete probability space, i.e.,P

M
s¼0 PsðNÞ ¼ 1. From the same equation, we obtain an

explicit expression for the effective Young’s modulus of the
fiber bundle in the absence of lateral interactions

hEeffi
ME

¼ 1

M

XM
s¼0

sPsðNÞ ¼
�
M − 1

M

�
N
≅ e−N=M; ð7Þ

the last approximation being valid for large values of M.
This second analytical result shows that the mechanical
degradation in a bundle of noninteracting fibers follows an
exponential law in the single variable N=M.
The above two limiting results allow us to formulate

appropriate scaling functions with free parameters, by
which the whole results of MC simulations for any bundle
geometry, size M, and interaction strength ξ2, can be
represented. In fact, the exponential regime at small values
of N is described by

log
hEexp

eff i
ME

¼ −φðξÞ N
Mα ; ð8Þ

with φðξÞ a function, to be determined by fitting the MC
results, which describes the early-stage degradation of the
bundle stiffness hEeffi as a function of the relative inter-
action strength ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kl2=E

p
. The shape of the function

φðξÞ extracted from the MC simulations is shown in Fig. 4,
for the flat and circular bundle geometries. The value
φð0Þ ¼ 1 is coherent with Eq. (7), when k ¼ 0. The
function is universal for a large enough M (in practice,
already forM ≳ 10), and goes into the asymptotic behavior
φðξÞ ∼ c=ξ at large ξ, the value of c depending on the

geometry (c ¼ 1.45 for the flat, and c ¼ 0.85 for the
circular bundle, respectively).
On the other hand, the power-law regime at larger N can

be described by

hEpow
eff i
ME

¼ a
Mβ

� ffiffiffiffiffi
kl2
E

q �ν

Nb : ð9Þ

The best fit of the free parameters α, a, b, β and ν in
Eqs. (8)–(9) from the numerical MC simulations are
reported in Table I. Coherently with Eq. (7), α ¼ 1, thus
extending to any value of k the analytical result for k ¼ 0, at
small N. In the same way, the fitted value b ¼ 2 confirms
for any value of M the 1=N2 scaling, analytically obtained
for M ¼ 2. Furthermore, the value ν ¼ 2 obtained by the
best fit allows us to explain the loss of significance of E,
and the parallel increase of importance of k in determining
the asymptotic effective stiffness hEeffi: indeed, for ν ¼ 2
the E appearing in the rhs and lhs of Eq. (9) cancel out each
other. Therefore, the physical explanation of the shift
towards a slower (power-law) degradation regime would
be that increasingly small fiber fragments are only weakly
deformed, and the effective Young modulus is eventually
determined by their interactions.
Finally, Eqs. (8) and (9) can be unified in a single

function hEeffi=ME ¼ E þ 1=ðr=N þ 1=PÞ, where E ¼
hEexp

eff i=ME from Eq. (8), and P ¼ hEpow
eff i=ME from

Eq. (9). The switching between the two regimes is con-
trolled by the coefficient r, which assumes the values
1.0 × 103 for the flat bundle and 3.0 × 103 for the circular
one. This function is the origin of the continuous lines in
Fig. 3, nicely representing the MC simulations over the
entire range of parameters.
In the present Letter, we discussed a purely elastic system.

Nevertheless, we have also studied a time-invariant visco-
elastic coupling, described by a complex valued k under a
permanent sinusoidal regime. Again, we observed the
scaling shift between the exponential and power-law
responses at N�, which is now a decreasing function of
the viscosity (further details will be published elsewhere).
Other refined models for the viscoelastic behavior should be
adopted to analyze more realistic structures, e.g., the power-
law creep compliance [25,26], the plasticity [27,28], and the
nonlinear creeping [29].

FIG. 4 (color online). Numerical determination of the function
φðξÞ defined in Eq. (8). The black curve (flat bundle) and the red
curve (circular bundle) are asymptotically converging to φðξÞ ¼
c=ξ with c ¼ 1.45 (flat bundle) and c ¼ 0.85 (circular bundle).

TABLE I. Parameters and scaling exponents characterizing the
fast (exponential) and slow (power-law) degradation regimes.

Parallel bundle Circular bundle

α 0.97� 0.06 1.05� 0.12
a 0.40� 0.06 0.40� 0.07
b 2.09� 0.11 2.08� 0.21
β 2.29� 0.19 2.61� 0.35
ν 1.97� 0.25 1.91� 0.37
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In conclusion, we predicted the existence of an unprec-
edented exponential to power-law slowing-down shift in the
degradation of amulticracked bundle. The lateral interaction
among the fibers is the key ingredient in triggering this shift
as a function of the crack density N. Notably, the critical
value N� can be lowered by increasing the interaction
strength, a relevant feature for practical purposes. For
example, in radiation [36] or chemical [37] damage of
DNA bundles for cancer radiotherapy, the knowledge of the
degradation dynamics is useful to properly design therapy
protocols. In related experiments, an exponential degrada-
tion has been measured, which exactly corresponds to the
first regime found in our investigation [36,37]. Moreover, a
strong dependence on the viscosity of the solution has been
observed concerning the degradation velocity of the
mechanical response. Although no quantitative results are
presently available, there are indications that larger values of
the viscosity in strongly degraded DNA bundles lead to a
complex nonexponential dynamics,which could correspond
to a scaling shift induced by denser buffer media. Similarly,
at entirely different time and length scales, it has been
observed that soil strength decreases exponentially with
increasing soil wetness [42] (i.e., reducing the effective
interaction), showing signs of breakdownunder very dry soil
conditions.
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