
PHYSICAL REVIEW RESEARCH 2, 033227 (2020)

Role of temperature in the decohesion of an elastic chain tethered to a substrate
by onsite breakable links
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We analyze the role of temperature in the rate-independent cohesion and decohesion behavior of an elastic
film, mimicked by a one-dimensional mass-spring chain, grounded to an undeformable substrate via a one-
dimensional sequence of breakable links. In the framework of equilibrium statistical mechanics, in both isometric
(Helmholtz ensemble) and isotensional (Gibbs ensemble) conditions, we prove that the decohesion process
can be described as a transition at a load threshold, sensibly depending on temperature. Under the classical
assumption of having a single domain wall between attached and detached links (zipper model), we are able
to obtain analytical expressions for the temperature dependent decohesion force, qualitatively reproducing
important experimental effects in biological adhesion. Interestingly, although the two ensembles exhibit a similar
critical behavior, they are not equivalent in the thermodynamic limit since they display dissimilar force-extension
curves and, in particular, significantly different decohesion thresholds.
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I. INTRODUCTION

Mechanical systems with microinstabilities attracted a
great deal of interest in recent years. In particular, the relation-
ship between microstructural instabilities and the macroscopic
(homogenized) response represents a fundamental issue in
describing the behavior of complex materials and structures.
For instance, the relation between the energetic favorable tran-
sition strategy and the corresponding behavior of macroscopic
observables represents a crucial aspect in the modeling of such
multistable systems. As a matter of fact, microinstabilities
are at the origin of several important phenomena observed
in many biological materials and artificial structures. Exam-
ples of the former case are the conformational transitions in
polymeric and biopolymeric chains [1–14], the attachment
and detachment of fibrils in cell adhesion [15–20], the un-
zipping of macromolecular hairpins [21–26], the sarcomeres
behavior in skeletal muscles [27–33], and the denaturation
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or degradation of nucleic acids, polypeptidic chains, or other
macromolecules of biological origin [34–43]. Moreover, with
regard to artificial systems, we recall the peeling of a film
from a substrate [44–50], the waves propagation in bistable
lattices [51–55], the energy harvesting through multistable
chains [56–58], the plasticity and the hysteresis in phase
transitions, and martensitic transformations of solids [59–69].

The common feature in all these examples is that the
observed macroscopic material behavior results from the evo-
lution of the system in a complex multiwells energy landscape
associated to different configurations of the system at the
microscale. Indeed, in all previous example the micro (molec-
ular) systems are composed by units characterized by two (or
more) distinct physical states with different static and dynamic
features. As a result, under external (mechanical, thermal or
electromechanical) loading, the system can experience a tran-
sition between different configurations with resulting variable
macroscopic properties.

Schematically, we can identify two main classes of mi-
croinstabilities in multistable materials. On one side, we may
observe a bistable (or multistable) behavior between one
ground state and one (or more) metastable state. These states
represent different, yet mechanically resistant conformations.
This case can be represented in a one-dimensional setting
by introducing an effective two-wells potential energy U , as
schematized in Fig. 1(a). We observe that the choice of a
simple one-dimensional system is aimed at a purely analytical
investigation of the phenomenon. Thus, our one-dimensional
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FIG. 1. Two different classes of microinstabilities: bistability
between a folded (ground) state and an unfolded (metastable) state
in panel (a), and link transition between attached and detached state
in panel (b).

two-wells energy can be thought to be deduced based on a
coarse-graining approach, applied to the real multivariables
structure of a unit. In other words, x represents an effective
order parameter adopted to describe the transition between the
different wells, whereas all other variables can be considered
to be minimized out. Of course, this is a simplification useful
to provide an easier physical interpretation of the underlying
complex full scale phenomenon. For instance, in this class can
be inscribed conformational (folded → unfolded) transitions
in polymers or protein macromolecules (e.g., β-sheets domain
unfolding, α-helix to β-sheet transitions) or martensitic phase
changes between different configurations in metallic alloys.
The other class corresponds to transitions between unbroken
and broken states of breakable units of the system. This
process can be reversible, partly reversible or irreversible
according to the specific physical phenomenon. Examples of
this scheme include unzipping of hairpins, denaturation of
macromolecules, fibrillar biological adhesion, cell adhesion,
and peeling of films. The (coarse-grained) one-dimensional
energy considered in this second case is shown in Fig. 1(b).
Here, the unbroken configuration corresponds to a potential
well and the broken configuration corresponds to constant
energy and zero force. In Ref. [70], the author suggests that
this second case can be deduced as a limit of the first one when
the natural configuration of the second state is degenerate.
Of course the assumption of a noncoercive energy density

changes the mathematical structure of the model. In particular,
as we show in the following (see the discussion in Sec. III),
we solve the possible integrability problems of the partition
function by excluding, thanks to the considered boundary
conditions, the fully detached configuration.

The statistical mechanics of such systems can be studied
by means of the spin variables approach. The first models
based on this technique have been developed for describing
the response of skeletal muscles [27,28]. More recently, this
approach has been generalized to study different allosteric
systems [30–33] and macromolecular chains [71–76]. The
main idea consists in introducing a series of discrete (spin)
variables to identify the state of the system units. For example,
the bistable potential energy of Fig. 1(a) (continuous line) can
be approximated by a biparabolic function (dashed lines) with
the switching among the wells described by the spin vari-
able. This strongly facilitates the calculation of the partition
function and the corresponding thermodynamic quantities,
delivering possible analytical results with a clear physical
interpretation. It is important to remark that, as discussed in
detail in Refs. [71,74], the evaluation of the partition function
based on the spin approach assumes that for both configura-
tions all possible deformations (values of x in Fig. 1) can be
attained by the system. This corresponds to the assumption
of a multivalued energy function (see superposition of dashed
lines in Fig. 1). As shown numerically in Refs. [71,74], with
typical experimental temperatures, the effect of this approxi-
mation can be considered (statistically) negligible since these
artificial configurations (superposition of dashed curves) have
an energy sensibly higher than real configurations (continuous
lines).

While the use of spin variables has been largely adopted to
model units with transitions between ground and metastable
states [see Fig. 1(a)], the case of units undergoing transition
between unbroken and broken states [Fig. 1(b)] has been
investigated, to the best of our knowledge, only in the cases
of parallel links [77–79]. In the case considered here, the film
deposited on a given substrate is represented as a lattice of
masses connected in series by harmonic springs and linked
to a substrate by breakable links. This assumption may re-
produce different types of adhesion forces as in the case of
biological and cellular adhesion [47,80]. Furthermore, such
type of systems has been recently applied to study thermal
effects in the mechanical denaturation of DNA [81].

It is important to observe that in the recalled examples of
biological adhesion and decohesion phenomena the binding
enthalpies range from about one kBT (for hydrogen bonds,
e.g. controlling the stability of base pairs in DNA) to tens of
kBT (for covalent bonds, e.g., linking neighboring bases in
a DNA strand or protein structures) [82,83]. As a result, the
role of temperature cannot be neglected so that the framework
of statistical mechanics here proposed represents a proper
theoretical setting [84].

Another important effect considered in this paper is the
possibility of two types of loading. Indeed, the peeling of
the film can be induced by prescribing a given extension
[Helmholtz ensemble, hard device, Fig. 2(c)], or by applying
an external force to the last unit of the chain [Gibbs ensemble,
soft device, Fig. 2(d)]. More specifically, as described in
Refs. [74,75], these two boundary conditions can be deduced
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FIG. 2. Energies and force-displacement relation of the harmonic (horizontal) shear springs in panel (a), and breakable (vertical) links in
panel (b). Different loading conditions: assigned force (Gibbs ensemble, soft device) in panel (c), and assigned end displacement (Helmholtz
ensemble, hard device) in panel (d).

as limiting conditions of real loading experiments, when the
stiffness of the device is large (hard device) or is negligible
(soft device), respectively. From a theoretical point of view,
one important problem regards the analysis of the equivalence
of the two ensembles in the thermodynamic limit (i.e., for very
large systems) [85–91].

Here, based on the proposed spin variables approach, we
are able to deduce a fully analytical solution of the two
boundary problems for an arbitrary number N of elements of
the chain and also in the thermodynamic limit (N → ∞). The
main result of this paper is the deduction of analytic expres-
sions of the temperature dependent debonding force in both
cases of isotensional and isoextensional loading. Interestingly
we obtain a new effect as compared with the other case of
bistable unbreakable elements [with units as in Fig. 1(a)].
Indeed in the case of nondegenerate wells [Fig. 1(a)] the
transition between the two homogeneous (folded↔unfolded)
states takes place at a temperature independent force [71–75]
(see also Ref. [92] for the case when the two wells have
different elastic constants). More specifically, the conforma-
tional transition corresponds to a force-displacement diagram
with a temperature dependent slope, but a temperature inde-
pendent average force (corresponding to the Maxwell force
of the two wells energy). This result can be schematically
interpreted in the framework of the Bell relation f = �E/�x
[see Fig. 1(a) for the definition of �E and �x], discov-
ered in the context of cell adhesion [15,16,89], where this
value of the average force represents the threshold necessary
to make the unfolding rate equal to the (reverse) folding
one. This threshold force can be explained as follows. We

consider two potential energies U1(x) = 1
2 k(x − �1)2 − f x

and U2(x) = �E + 1
2 k(x − �2)2 − f x, corresponding to the

wells of the units. The equilibrium positions can be obtained
by ∂Ui/∂x = 0 and we get xi = �i + f /k (i = 1, 2). Hence,
the unfolded configuration is more favorable of the folded one
when U2(x2) < U1(x1), which corresponds to f < �E/�x
where �x = �2 − �1. Differently, in the case of breakable
links of interest in this paper [with energy function as in
Fig. 1(b)], we obtain an unusual temperature dependent force
threshold. More specifically, in this case not only the slope
of the force-displacement diagram grows with temperature,
but importantly the average decohesion force decreases as
the temperature increases. Remarkably, this decohesion force
becomes zero for a given critical temperature. This result
describes the expected effect that thermal fluctuations may
anticipate the decohesion, allowing the escape from the en-
ergy well and, therefore, the exploration of the whole con-
figurations in Fig. 1(b). Here, we analytically describe this
effect and the whole process is explained by means of a phase
transition occurring at a given critical temperature. In partic-
ular, we obtain that the system is able to undergo a complete
decohesion even without any external mechanical action. As
we show, the decohesion force threshold may be significantly
different in the Helmholtz and Gibbs ensembles also in the
thermodynamical limit. We also remark that a similar effect
of a temperature dependent denaturation force is observed in
DNA both experimentally and theoretically [81,93].

Summarizing, we underline that, from the statistical me-
chanics point of view, the system here investigated is partic-
ularly interesting for three reasons: (i) it can be analytically
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solved within both statistical ensembles; (ii) it shows a phase
transition at a critical temperature that can be calculated in
closed form; (iii) it exhibits the ensembles nonequivalence in
the thermodynamic limit, which is an unusual and intriguing
behavior.

The paper is organized as it follows. In Sec. II, we intro-
duce the system. In Secs. III and IV, we study the Helmholtz
and Gibbs ensembles, respectively. In Sec. V, we study the
thermodynamic limit for both ensembles. The conclusions
(Sec. VI) and a mathematical Appendix close the paper.

II. PROBLEM STATEMENT

We schematize the decohesion of a layer from a sub-
strate by considering a one-dimensional chain of elements
embedded in an onsite potential reproducing the behavior
of detachable links. This type of models and its continuous
version describing reversible decohesion has been previously
introduced to describe a wide range of phenomena such as
peeling of tapes, adhesion of geckos and denaturation of DNA
or other chemical structures [47,48,94]. However, in those
cases thermal effects are typically neglected. On the contrary,
as we already stated in the introduction, these effects may
play a central role in the decohesion behavior of biological
materials. It is important to remark that our paradigmatic
system has the advantage of analytical simplicity leading to a
clear physical interpretation. However, it can be generalized
in various ways even though this would need a numerical
treatment. For example, the assumption of biparabolic energy
can be extended by adding a persistence length to the elastic
chain (changing from flexible to semi-flexible), a more real-
istic two-dimensional lattice tethered to the substrate can be
considered, a deformable substrate can be introduced, and so
forth. Of course, each new ingredient can modify the system
response and, in particular, can complicate the deduction of
its critical behavior.

The horizontal springs of the one-dimensional lattice (elas-
tic constant k) are purely harmonic with potential energy
ϕ = 1

2 k(yi+1 − yi )2 [Fig. 2(a)], while the vertical ones (elastic
constant h) can be broken or unbroken depending on their
extension yi [Fig. 2(b)]. When |yi| > yM they are broken and
when |yi| < yM they are unbroken. Therefore, an unbroken
spring leads to a contribution to the potential energy equal
to ψ = 1

2 hy2
i (when |yi| < yM) and a broken one a contri-

bution equal to ψ = 1
2 hy2

M (when |yi| > yM). As anticipated,
two different loading conditions are considered. In the first
case [Fig. 2(c)], the process is controlled by the prescribed
position yN+1 = yd of the last element of the chain (isometric
condition within the Helmholtz ensemble). In the second case
[Fig. 2(d)], the process is controlled by the applied force f
(isotensional condition within the Gibbs ensemble).

The most important point, on which is grounded our
approach, is that each vertical element is characterized by
two different states (broken and unbroken configurations).
Therefore, we associate each unit with a spin variable and the
energy potential of each vertical spring can be written as

ψ = 1
4 (1 + si )hy2

i + 1
4 (1 − si )hy2

M , (1)

where si = +1 corresponds to the unbroken state and si =
−1 corresponds to the broken state, i = 1, ..., N . With this

assumptions we have a phase space composed on the N
continuous variables yi and the N discrete variables si. The
switching of the variable si and their statistics at thermody-
namic equilibrium are directly controlled by the statistical
ensemble (Helmholtz and Gibbs in our case) imposed to the
system.

The statistical mechanics analysis of this system cannot
be analytical and it is computational expensive. Nevertheless,
since we are studying the cohesion-decohesion process under
an external mechanical action applied to one end point of
the system, we can simplify the model [see Fig. 2(d)] by
assuming to have N − ξ broken elements on the right of the
chain and ξ unbroken elements on the left of the chain. In
other words we suppose to have a single moving interface
or domain wall between the attached region and detached
region. This is a plausible hypothesis, especially if we work
at not too large temperature values and not too low values of
the force. Indeed, in the zero-temperature case, this config-
uration is the only energy minimizer of the system [47,48].
Moreover, this hypothesis coincides with the so-called zipper
model, largely used to describe the helix-coil transitions in
proteins, the gel-sol transition of thermo-reversible gels, and
the melting or denaturation of DNA [95–98]. The analysis of
other regimes, for high values of the temperature is the subject
of a forthcoming paper and it is out of the aim of this one [99].

Under these hypotheses, the set of the two-state spin vari-
ables si is substituted by the single variable ξ belonging to
the phase space of the system, and taking its values in the set
{0, 1, 2, ..., N}. In this regard, the variable ξ can be considered
as a multivalued spin variable.

The aim of this work is to fully analyze the cohesion-
decohesion process in both the Helmholtz and Gibbs ensem-
bles, thus providing a complete picture of the effect of the
temperature and loading type on this prototypical physical
system.

III. HARD DEVICE: HELMHOLTZ ENSEMBLE

Consider first the case of a prescribed extension yN+1 = yd

of the last element of the chain, as represented in Fig. 2(c)
(isometric condition). As previously anticipated, the variables
belonging to the phase space of this system are the extensions
yi of the vertical springs (i = 1, ..., N), and the number ξ of
unbroken links. The total potential energy is


 =
N∑

i=0

1

2
k(yi+1 − yi )

2 +
ξ∑

i=1

1

2
hy2

i +
N∑

i=1+ξ

1

2
hy2

M , (2)

where y0 = 0 and yN+1 = yd in the case of imposed dis-
placement on the final element. It is worth noticing that the
last term in 
 is not an irrelevant additive constant since
it depends implicitly on ξ , which is a variable of the phase
space of the system. The assumption of y0 = 0 reproduces
typical boundary conditions in experiments. In addition, as
can be deduced by the following analysis, such an assumption
also solves the possible integrability problems concerning the
partition function calculation, that can come from the non
coercivity of the potential energy of the breakable links. We
also observe that in an analogy with the classical Griffith
approach to fracture mechanics [100], here we model the
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decohesion behavior of the layer by considering the energetic
competition between the elastic energy of the chain and the
unbinding energetic contribution (fracture energy).

The energy function 
 can be rearranged by means of the
following matrix definition:

A(ξ ) =
[
A11 A12

A21 A22

]
∈ MN,N (R), (3)

which is based on the following four submatrices:

A11 =

⎡
⎢⎢⎣

2 + η −1 0 · · ·
−1 2 + η −1 · · ·
0 −1 2 + η · · ·
...

...
...

. . .

⎤
⎥⎥⎦ ∈ Mξ,ξ (R), (4)

A22 =

⎡
⎢⎢⎣

2 −1 0 · · ·
−1 2 −1 · · ·
0 −1 2 · · ·
...

...
...

. . .

⎤
⎥⎥⎦ ∈ MN−ξ,N−ξ (R), (5)

A12 =

⎡
⎢⎢⎣

0 · · · 0 0
0 · · · 0 0

0
...

...
...

−1 0 0 0

⎤
⎥⎥⎦ ∈ MN,N−ξ (R), (6)

A21 =

⎡
⎢⎢⎣

0 0 0 −1
...

...
... 0

0 0 · · · 0
0 0 · · · 0

⎤
⎥⎥⎦ ∈ MN−ξ,N (R), (7)

where

η = h

k
(8)

is the main nondimensional parameter of the paper, represent-
ing the ratio between the elastic constants of vertical and hor-
izontal elastic elements. Moreover, we introduce the vectors
v = (0, 0, 0, ..., 0, 1) ∈ RN and y = (y1, y2, y3, ..., yN ) ∈ RN .
The energy function can then be rewritten as follows:


(y, ξ ; yd ) = 1
2 kA(ξ )y · y − kydv · y

+ 1
2 ky2

d + 1
2 kη(N − ξ )y2

M, (9)

where y and ξ are the main variables belonging to the phase
space of the system.

This expression of 
 is useful in the following Gaussian
integration for the partition function since it is constituted by
the sum of a quadratic form and a linear form in y, with an
additional term independent of y. The partition function of the
system analyzed within the Helmholtz ensemble can therefore
be written as

ZH (β, yd ) =
N∑

ξ=0

∫
RN

e−β
(y,ξ ;yd )dy, (10)

where β = (kBT )−1, kB is the Boltzmann constant and T
the absolute temperature. When Eq. (9) is substituted into

Eq. (10), we get

ZH (β, yd ) = e−β k
2 y2

d

N∑
ξ=0

e−β
kη

2 (N−ξ )y2
M

×
∫
RN

e−β k
2 A(ξ )y·yeβkyd v·ydy, (11)

where we can use the property of the Gaussian integrals∫
RN

e− 1
2 My·y+b·ydy =

√
(2π )N

det Me
1
2 M−1b·b, (12)

holding for any symmetric and positive definite matrix M.
Indeed, by considering M = βkA(ξ ) and b = βkyd v in
Eq. (12), we easily obtain

ZH (β, yd ) =
(

2π

βk

)N/2 N∑
ξ=0

e−β
ky2

M
2 η(N−ξ )

× 1√
det A(ξ )

e−β
ky2

d
2 {1−A−1(ξ )v·v}

=
(

2π

βk

)N/2

e−Nβ
ky2

M
2 η

N∑
ξ=0

ξ (β, yd ), (13)

where

ξ (β, yd ) = eβ
ky2

M
2 η ξ

√
det A(ξ )

e−β
ky2

d
2 {1−A−1

NN (ξ )} (14)

and we have used the definition of v.
The knowledge of the partition function allows us to de-

termine the expectation value of the force conjugated to the
assigned displacement yd [85]

〈 f 〉H = − 1

β

∂ ln ZH

∂yd
= − 1

β

1

ZH

∂ZH

∂yd
, (15)

which can be rewritten as

〈 f 〉H =
∑N

ξ=0

{
1 − A−1

NN (ξ )
}
ξ (β, yd )∑N

ξ=0 ξ (β, yd )
k yd

=
(

1 −
∑N

ξ=0 A−1
NN (ξ ) ξ (β, yd )∑N

ξ=0 ξ (β, yd )

)
k yd . (16)

Another important quantity to describe the decohesion
dependence from the temperature is the average value 〈ξ 〉H of
unbroken vertical springs. It can be directly evaluated through
the expression

〈ξ 〉H = 1

ZH

N∑
ξ=0

∫
RN

ξe−β
(y,ξ ;yd )dy =
∑N

ξ=0 ξ ξ (β, yd )∑N
ξ=0 ξ (β, yd )

.

(17)

Moreover we can determine the expectation value of the
whole position vector y (assigning the deformed configuration
of the chain at given displacement):

〈y〉H = 1

ZH

N∑
ξ=0

∫
RN

ye−β
(y,ξ ;yd )dy. (18)
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FIG. 3. Average force 〈 f 〉H in top panels (a) and (b), and average number of unbroken elements 〈ξ〉H in bottom panels (c) and (d), versus
yd for a decohesion process (yd increasing) under isometric conditions (Helmholtz ensemble). We adopted the parameters N = 6 and yM = 4
for panels (a) and (c), and N = 30 and yM = 2 for panels (b) and (d). Other parameters are common: k = 5, h = 20, and six values of
β−1 = kBT = 4, 7.2, 10.4, 13.6, 16.8, and 20 (in arbitrary units).

Then, we can use the definition of 
, thus obtaining the more
explicit expression

〈y〉H = e−β k
2 y2

d
1

ZH

N∑
ξ=0

e−β
kη

2 (N−ξ )y2
M

×
∫
RN

e−β k
2 A(ξ )y·yeβkyd v·yyd y. (19)

Since, by differentiating Eq. (12) with respect to b we get∫
RN

e− 1
2 Ay·y+b·yydy =

√
(2π )N

det A e
1
2 M−1b·bA−1b, (20)

straightforward calculations give

〈y〉H =
∑N

ξ=0{A−1(ξ )v} ξ (β, yd )∑N
ξ=0 ξ (β, yd )

yd . (21)

In Eqs. (32)–(35) we report the fully analytical expressions
of the expectation values of the force, debondend fraction
and displacement vector obtained by using the explicit for-
mulas in Eqs. (A17)–(A19) of the quantities det A(ξ ), 1 −
A−1

NN (ξ ), {A−1(ξ )v}i reported in the Appendix.

In Fig. 3 we illustrate the obtained behavior for a system
under isometric loading for a “short” chain with only N = 6
elements and for a “longer” chain with N = 30 elements.
The case with N = 6 [see Figs. 3(a) and 3(c)] shows the
importance of discreteness, exhibiting distinct rupture occur-
rences in the decreasing steps of the quantity 〈ξ 〉H , and in
the peaks of the force-displacement (〈 f 〉H , yd ) curves along
the whole decohesion process. The resulting evolution of the
displacements is also reported in Fig. 4(b). As expected, for
large values of the temperature T the debonding process is less
“localized,” with the system exploring more configurations.
As a result, the curves are smoother and it is more difficult to
recognize the single ruptures.

Similar results are obtained also if we change the adhe-
sion energy [see Fig. 4(a)]. Indeed, as h is increased the
detachment process is more localized and the peak decreases
with the system passing from a peeling type decohesion to a
pulloff-type decohesion, as observed in the case of athermal
decohesion [47,48].

Remark. In passing, we recall that we assume, both in
the hard and soft device, y0 = 0, thus fixing the left end
point. Of course this choice can be varied according with
the specific experimental phenomenon to be reproduced. As
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FIG. 4. (a) Variable decohesion behavior at different values of adhesion energy (h = 1 → 30, η = 0.2 → 6). Here we assumed k = 5,
N = 30, kBT = 3, and yM = 1.2. (b) Average displacements evolution under isometric loading for the same chain considered in Figs. 3(a) and
3(c).

a result, in these and later force-displacement curves, after
the force plateaux, when the system is fully detached, we
have a new elastic branch. In the opposite assumption of
free left end point, such an effect is not observed and the
force decreases to zero when the full detachment is attained.
However, as discussed above, if the system is in a noncon-
nected configuration (e.g., completely detached), the partition
function corresponds to a nonconvergent integral, generating
some technical difficulty. Of course, it is possible to find some
ways to introduce the rupture but we preferred to follow a
simpler procedure for the sake of simplicity and clarity.

The case with a larger number of elements (N = 30) is
represented in Figs. 3(b) and 3(d). Observe that the system
is initially characterized by load oscillations corresponding to
the first debonding effects, but the diagram rapidly converges
to a constant force plateau as the debonding front propagates
far from the loading end point. The increasing of temperature
cancels out also this initial discreteness effect.

The main interesting feature, previously anticipated, is the
observation of the temperature-dependent unfolding plateau,
with a detachment force threshold sensibly decreasing as the
temperature grows. This behavior, which marks the strong
difference of the bistable elements of the type reported in
Fig. 1(a), with respect with the breakable links considered
here, is thoroughly studied in Sec. V A where we consider the
thermodynamic limit N → ∞.

We remark that the gradual increase of the debonded
fraction 〈ξ 〉H obtained in the hard device is in agreement with
the behavior observed in the unfolding of proteins or other
macromolecules under isometric conditions [71,74,89]. In-
deed, the force spectroscopy of protein chains under isometric
conditions is characterized by a sawtoothlike force-extension
response showing that the domains unfold progressively in
reaction to the prescribed increasing extension [4] (similarly
to the response seen in Fig. 3, at least for small values
of N). A completely different behavior is observed in the

Gibbs (isotensional) ensemble [1], studied in the following
section, where a much more cooperative behavior is estab-
lished and the vertical elements break quite simultaneously, at
a given critical force.

To conclude, we also observe that the behavior of the force-
extension curves, characterized by a force plateau, is in good
qualitative agreement with several results obtained in peeling
experiments and simulations concerning adhesive films and
bioclinical structures [101–105].

IV. SOFT DEVICE: GIBBS ENSEMBLE

Consider now the case when the film is loaded by a fixed
force f [Fig. 2(d), isotensional condition]. In this case we
introduce the Gibbs ensemble. The total energy of the system
can now be written as 
 − f yN+1, where 
 is the energy
function introduced within the Helmholtz ensemble in Eq. (9).
Thus, the Gibbs partition function can be written as

ZG( f ) =
∫
RN+1

N∑
ξ=0

e−β
(y,ξ ;yN+1 )eβ f yN+1 dydyN+1

=
∫ +∞

−∞
ZH (yN+1)eβ f yN+1 dyN+1. (22)

Of course this corresponds to the Laplace transform of
the Helmholtz partition function [85]. By using Eqs. (13)
and (14), we get

ZG( f ) =
(

2π

βk

)N/2

e−Nβ
ky2

M
2 η

×
N∑

ξ=0

∫ +∞

−∞
ξ (β, yN+1)eβ f yN+1 dyN+1, (23)

where the integral is Gaussian due to the structure of ξ

and, therefore, can be easily evaluated. A straightforward
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calculation leads to

ZG( f ) =
(

2π

βk

) N+1
2

N∑
ξ=0

1√
det A(ξ )

{
1 − A−1

NN (ξ )
}

×e− βky2
M

2 η(N−ξ )eβ
f 2

2k {1−A−1
NN (ξ )}−1

=
(

2π

βk

) N+1
2

e−N
βky2

M
2 η

N∑
ξ=0

�ξ (β, f ), (24)

where

�ξ (β, f ) = eβ
ky2

M
2 ηξ eβ

f 2

2k {1−A−1
NN (ξ )}−1√

det A(ξ )
{
1 − A−1

NN (ξ )
} . (25)

The expected value of the extension 〈yd〉G = 〈yN+1〉G of the
last element at given applied force f can then be evaluated
as [85]

〈yd〉G = 1

β

∂ ln ZG

∂ f
= 1

β

1

ZG

∂ZG

∂ f
, (26)

which gives

〈yd〉G =
∑N

ξ=0

{
1 − A−1

NN (ξ )
}−1

�ξ (β, f )∑N
ξ=0 �ξ (β, f )

f

k
. (27)

Similarly, we can also determine the average number of
unbroken links

〈ξ 〉G = 1

ZG

∫
RN+1

N∑
ξ=0

ξe−β
(y,ξ ;yN+1 )eβ f yN+1 dydyN+1

=
∑N

ξ=0 ξ �ξ (β, f )∑N
ξ=0 �ξ (β, f )

. (28)

Eventually, we can evaluate the average value of the dis-
placement of each elements of the chain. This quantity is
defined by the expression

〈y〉G = 1

ZG

N∑
ξ=0

∫
RN+1

ye−β
(y,ξ ;yN+1 )eβ f yN+1 dydyN+1. (29)

The comparison of Eq. (29) with Eqs. (18) and (14) yields

〈y〉G =
(

2π

βk

)N/2 e−Nβ
ky2

M
2 η

ZG

N∑
ξ=0

∫ +∞

−∞
yN+1ξ (β, yN+1)

× eβ f yN+1A−1(ξ )vdyN+1, (30)

where the final integral is Gaussian due to the structure of
ξ (β, yN+1). The calculation can be performed to give the
final result in the form

〈y〉G =
∑N

ξ=0

{
1 − A−1

NN (ξ )
}−1A−1(ξ )v �ξ (β, f )∑N

ξ=0 �ξ (β, f )
. (31)

By using again Eqs. (A17)–(A19), obtained in the Appendix,
we obtain the analytic expressions given in Eqs. (58)–(61).

The obtained results for the isotensional loading are il-
lustrated in Fig. 5 for the same chains considered in Fig. 3,
where the case of isometric loading is described. Important
differences between the Helmholtz and the Gibbs responses
can be recognized. In particular, the analysis of the evo-
lution of 〈ξ 〉G within the Gibbs ensemble shows that the
detachment process corresponds to a cooperative breaking of
the vertical elements. This result can be compared with the
sequential unfolding behavior, observed with an extension-
controlled decohesion, obtained with the hard device. This
dissimilarity between the Helmholtz and the Gibbs ensembles
has been already observed in the unfolding of proteins where
the isotensional condition produces a cooperative response
whereas the isometric condition generates a noncooperative
response [71,74,89].

Another important difference concerns the shape of the
force-extension curves measured within the two statistical
ensembles. While the isometric case leads to a series of peaks
corresponding to the rupture occurrences, the isotensional
case is characterized by a monotone force-extension curve.
Also this feature can be explained by the quite simultane-
ous rupture of all the elements observed within the Gibbs
ensemble. Again, the simultaneous or cooperative ruptures
can be identified in the isotensional behavior of 〈y〉G, plotted
in Fig. 6(b), while the sequential or noncooperative ruptures
were observed in the isometric behavior of 〈y〉H , plotted in
Fig. 4(b). Also in this case we may observe the significant
effect of temperature on the decohesion threshold (particularly
evident for large values of N). This behavior is thoroughly
studied in Sec. V B by considering the thermodynamic limit
for N → ∞.

In Fig. 6(a) we report also in the case of assigned force
the effect of variable adhesion energy. Again, by increasing
the adhesion energy the system decohesion changes from a
peeling type to a pulloff-type decohesion [47,48].

V. THERMODYNAMIC LIMIT

In this section, we study the behavior of the system, under
both isometric and isotensional conditions, for a large chain
length (ideally, N → ∞), and we obtain explicit analytic
results to describe the system behavior in the thermodynamic
limit.

A. The thermodynamic limit in the Helmholtz ensemble

To analyze the behavior in the thermodynamic limit within
the Helmholtz ensemble, we first report the final expressions
for the expected values of the force, for the average number
of attached elements, and for displacement vector, as given in
Eqs. (16), (17), and (21). After nondimensionalization and the
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FIG. 5. Average position 〈yd 〉G in top panels (a) and (b), and average number of unbroken elements 〈ξ〉G in bottom panels (c) and (d),
versus f for a decohesion process ( f increasing) under isotensional conditions (Gibbs ensemble). We adopted the parameters N = 6 and
yM = 4 for panels (a) and (c), and N = 30 and yM = 2 for panels (b) and (d). Other parameters are common: k = 5, h = 20, and six values of
β−1 = kBT = 4, 7.2, 10.4, 13.6, 16.8, and 20 (in arbitrary units).
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FIG. 6. (a) Variable decohesion behavior in the Gibbs ensemble at different value of adhesion energy (h = 1 → 30, η = 0.2 → 6). Here
we assumed k = 5, N = 30, kBT = 3, and yM = 1.2. (b) Average displacements evolution in the isotensional loading for the same chain
considered in Figs. 5(a) and 5(c).
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use of Eqs. (A17)–(A19), we obtain

〈F〉H = βyM〈 f 〉H = 2
β̃

η

Y
D

N∑
ξ=0

eβ̃ξ γ (ξ + 1) − γ (ξ )

[(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )]3/2
e− β̃

η

γ (ξ+1)−γ (ξ )
(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ ) Y2

, (32)

〈ξ 〉H = 1

D

N∑
ξ=0

ξeβ̃ξ 1

[(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )]1/2
e− β̃

η

γ (ξ+1)−γ (ξ )
(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ ) Y2

, (33)

〈Yi〉H = 〈yi〉H

yM
= Y

D

i−1∑
ξ=0

eβ̃ξ (i − ξ )γ (ξ + 1) − (i − ξ − 1)γ (ξ )

[(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )]3/2
e− β̃

η

γ (ξ+1)−γ (ξ )
(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ ) Y2

+ Y
D

N∑
ξ=i

eβ̃ξ γ (i)

[(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )]3/2
e− β̃

η

γ (ξ+1)−γ (ξ )
(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ ) Y2

, i = 1, ..., N (34)

D =
N∑

ξ=0

eβ̃ξ 1

[(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )]1/2
e− β̃

η

γ (ξ+1)−γ (ξ )
(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ ) Y2

, (35)

where we introduced the dimensionless parameters

β̃ = hy2
M

2kBT
, Y = yd

yM
, (36)

and where

γ (z) = 1√
η2 + 4η

(
2 + η +

√
η2 + 4η

2

)z

− 1√
η2 + 4η

(
2 + η −

√
η2 + 4η

2

)z

, (37)

(see Appendix for details).
To begin, we consider Eq. (32), with D given in Eq. (35). In the limit of large N , we introduce the continuum variable x = ξ/N

and substitute the summations with integrals

N∑
ξ=0

φ(ξ ) 	
∫ N

0
φ(ξ )dξ + φ(0) + φ(N )

2
= N

∫ 1

0
φ(Nx)dx + φ(0) + φ(N )

2
, (38)

where we have considered a generic function φ.
Remark. Observe that this expression corresponds to the trapezoidal rule for approximating a definite integral or, equivalently,

to the Euler-Maclaurin formula with only one remainder term [106]. We point out that this more refined approximation
is essential, as proved in the following, to show the important different behavior in the hard and soft device, also in the
thermodynamic limit.

After this substitution, we observe that in the new version of Eq. (32) we have several terms of the form γ (Nx) and γ (Nx + 1).
Under the hypothesis of large values of N , it is easy to see that the function γ in Eq. (37), can be approximated by γ (z) 	

1√
η2+4η

bz, with

b = 2 + η +
√

η2 + 4η

2
> 1. (39)

Therefore, after introducing

� = β̃ − 1

2
ln b, ρ = b

b − 1
, (40)

we eventually obtain

〈F〉H = 2
β̃

η

N
∫ 1

0
e�Nx

[N (1−x)+ρ]3/2 e− β̃

N (1−x)+ρ
Y2

η dx + e
− β̃

N+ρ
Y2
η

2(N+ρ)3/2 + e�N e− β̃
ρ

Y2
η

2ρ3/2

N
∫ 1

0
e�Nx

[N (1−x)+ρ]1/2 e− β̃

N (1−x)+ρ
Y2
η dx + e

− β̃
N+ρ

Y2
η

2(N+ρ)1/2 + e�N e− β̃
ρ

Y2
η

2ρ1/2

Y . (41)

To simplify this result, we can apply the change of variable s = N (1 − x) + ρ, that allows us to prove that a universal
force-extension curve exists in the thermodynamic limit (N → ∞) and its shape is given by the formula

〈F〉H = 2
β̃

η

∫ +∞
ρ

1
s3/2 e−�se− β̃

s
Y2

η ds + 1
2ρ−3/2e−�ρe− β̃

ρ
Y2

η∫ +∞
ρ

1
s1/2 e−�se− β̃

s
Y2
η ds + 1

2ρ−1/2e−�ρe− β̃

ρ
Y2
η

Y, (42)
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where it is not difficult to verify that both integrals are well defined provided that

� > 0, (43)

a condition thoroughly discussed below. Now, a direct calculation of the two integrals gives

〈F〉H = 2

√
β̃

η
�

√
π

{
[1 − g−(Y )]e−2

√
β̃

η
�Y − [1 − g+(Y )]e2

√
β̃

η
�Y} +

√
β̃

η
ρ−3/2e−�ρe− β̃

ρ
Y2

η Y
√

π
{
[1 − g−(Y )]e−2

√
β̃

η
�Y + [1 − g+(Y )]e2

√
β̃

η
�Y} + √

�ρ−1/2e−�ρe− β̃

ρ
Y2
η

, (44)

where the functions g± are defined by means of the error function, as

g±(Y ) = erf

⎛
⎝√

�ρ ±
√

β̃

ρ η
Y

⎞
⎠. (45)

Recalling that 〈F〉H = βyM〈 f 〉H , the force is given by

〈 f 〉H = yM

√
kh

√
1 − T

Tc

√
π [(1 − h−(yd ))e−�(yd ) − (1 − h+(yd ))e�(yd )] + 1

ρ

√
�1(yd )e−�1(yd )e−�2

√
π [(1 − h−(yd ))e−�(yd ) + (1 − h+(yd ))e�(yd )] + 1

ρ

√
�2e−�1(yd )e−�2

, (46)

where

�(yd ) = yd yM

√
kh

kBT

√
1 − T

Tc
, �1(yd ) = ky2

d

2kBT

1

ρ
, �2 = hy2

M

2kBT
ρ, (47)

h±(yd ) = erf

⎛
⎝

√
ky2

M

2kBT

[
√

ηρ

√
1 − T

Tc
±

√
1

ρ

yd

yM

]⎞
⎠, (48)

and, for later convenience, we introduced the critical temper-
ature

Tc = hy2
M

kB ln b
= hy2

M

kB ln
2+η+

√
η2+4η

2

. (49)

Importantly, in Eq. (44) or Eq. (46), we obtained the closed
form expression for the force-extension behavior during the
detachment process in the thermodynamic limit under iso-
metric condition. It is possible to see that the main fraction
in Eqs. (44) and (46) converges to 1 when Y → +∞ and
yd → +∞, respectively.

Thus, we can obtain the asymptotic value

〈F〉as = lim
Y→∞

〈F〉H = 2

√
β̃

η

(
β̃ − 1

2
ln b

)
. (50)

Equivalently, we have

〈 f 〉as = lim
yd →∞ 〈 f 〉H =

√
khyM

√
1 − T

Tc
. (51)

This formula describes the asymptotic value of the force
plateau in terms of the temperature and the material param-
eters of the system. Based on this equation, we may observe
that the previously required condition, stated in Eq. (43) and
assuring the convergence of the above integrals, corresponds
to the requirement of subcritical temperatures T < Tc.

The obtained results are illustrated in Fig. 7(a), where
the force displacement relation is plotted for different val-
ues of the temperature. In particular, we compare the force-
displacement response of a discrete system with N = 100
elements given by Eq. (16) (colored dashed curves) with the

result of Eq. (46) obtained in the thermodynamic limit (black
continuous curves). Moreover, in Fig. 7(a), we also reported
the asymptotic value of the decohesion force provided by
Eq. (51) (horizontal straight lines). We can observe that the
obtained result in the thermodynamic limit is able to represent
the first force peak, which is the peculiar property of the
system loaded under isometric condition. For low values of
the temperature, the solution given in Eq. (46) is only an
approximation of the system response for N → ∞. However,
this representation can be arbitrarily improved by adding more
Euler-Mclaurin remainder terms in Eq. (38) that could be
substituted with

N∑
ξ=0

φ(ξ ) 	
∫ N

0
φ(ξ )dξ + φ(0) + φ(N )

2

+
p∑

k=1

B2k

(2k)!
[φ(2k−1)(N ) − φ(2k−1)(0)], (52)

where B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, and
so on, are the Bernoulli numbers, and p is an integer represent-
ing the number of additional remainder terms [106]. Although
we tested the better approximations obtained through Eq. (52)
for increasing values of p, the final results are much more
cumbersome than Eqs. (44) and (46), and therefore in this
work, for simplicity, we only use Eq. (38). In any case, the
asymptotic result given in Eq. (51) is in perfect agreement
with the numerical result obtained with a discrete system an-
alyzed through Eq. (16). This behavior explains the variation
of the plateau force with the temperature in terms of a phase
transition occurring at the critical temperature Tc. This point
is further discussed in the following development.
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FIG. 7. (a) Comparison between the force-extension curves given in Eq. (16) (colored dashed curves) with the thermodynamic limit
obtained in Eq. (46) (black continuous curves) and the asymptotic force value given in Eq. (51) (horizontal dashed straight lines). We
adopted the parameters N = 100, k = 5, h = 20, yM = 1.2, and β−1 = kBT = 4.0, 5.57, 7.14, 8.71, 10.2, 11.8, 13.4, and 15 (in arbitrary
units). (b) Critical behavior of the asymptotic force within the Helmholtz ensemble. We plotted 〈 f 〉as versus kBT = β−1 [see Eq. (51)] for
different values of the ratio η = h/k between the elastic constants of the vertical and horizontal elements. Here, k = 1, yM = 1 (in arbitrary
units), and we plotted ten curves with 1/10 � η � 10.

In Fig. 7(b), we plot the obtained temperature dependent
value of the asymptotic unfolding force for different values
of the nondimensional parameter η. We note that the force
approaches zero at the critical temperature Tc, and that Tc is
an increasing function of the ratio η. It is important anyway
to remark that our single domain wall assumption becomes
questionable as we approach the critical temperature and
slightly lower values of Tc should be expected with an exact
multiwalls solution. This aspect is out of the aim of this paper
and is the subject of future work [99]. It is also worth to

point out that the value of the critical force for T = 0 is
〈 f 〉as = √

khyM , perfectly coherent with the result obtained in
the case of pure mechanical peeling [47].

To better elucidate the decohesion behavior, the mean-
ing of the critical temperature and of the associated
phase transition we further analyze the behavior of the
variable 〈ξ 〉H given in Eq. (33), measuring the average
number of unbroken vertical springs. As before, by assuming
a large value of N and using Eq. (38), we can substitute the
sums with the corresponding integrals and we find

〈ξ 〉H =
N

∫ 1
0

Nxe�Nx

[N (1−x)+ρ]1/2 e− β̃

ρ
Y2

η
1

N (1−x)+ρ dx + 1
2ρ−1/2Ne�N e− β̃

ρ
Y2

η

N
∫ 1

0
e�Nx

[N (1−x)+ρ]1/2 e− β̃

η
Y2 1

N (1−x)+ρ dx + e
− β̃

η Y2 1
N+ρ

2(N+ρ)1/2 + 1
2ρ−1/2e�N e− β̃

ρ
Y2
η

. (53)

We can now apply the change of variable s = N (1 − x) + ρ and get

〈ξ 〉H =
∫ N+ρ

ρ
(N − s + ρ)s−1/2e�(N−s+ρ)e− 1

s
β̃

η
Y2

ds + 1
2ρ−1/2Ne�N e− β̃

ρ
Y2

η

∫ N+ρ

ρ
s−1/2e�(N−s+ρ)e− 1

s
β̃

η
Y2

ds + e
− β̃

η Y2 1
N+ρ

2(N+ρ)1/2 + 1
2ρ−1/2e�N e− β̃

ρ
Y2
η

. (54)

Then, we can determine the expectation number 〈ζ 〉H = N − 〈ξ 〉H of broken links in the thermodynamic limit (N → ∞),
eventually obtaining

〈ζ 〉H =
∫ +∞
ρ

s1/2e−�se− 1
s αY2

ds − ρ
∫ +∞
ρ

s−1/2e−�se− 1
s αY2

ds∫ +∞
ρ

s−1/2e−�se− 1
s αY2

ds + 1
2

(
b−1

b

)1/2
e−�ρe−α b−1

b Y2

= 1

�

√
π

{
e−2

√
β̃�

η
Y(

�ρ + 1
2 +

√
β̃�

η
Y

)
[1 − g−(Y )] + e2

√
β̃�

η
Y(

�ρ + 1
2 −

√
β̃�

η
Y

)
[1 − g+(Y )]

} + 2
√

�ρe−�ρe− β̃

ρ
Y2

η

√
π

{
e−2

√
β̃�

η
Y [1 − g−(Y )] + e2

√
β̃�

η
Y [1 − g+(Y )]

} + √
�ρ−1/2e−�ρe− β̃

ρ
Y2
η

.

(55)

This result proves that for a long chain the number of broken
elements must depends only on the extension Y and on the
temperature T .

To get a further physical interpretation of the unbroken to
broken transition corresponding to the critical temperature
Tc, we consider the limit when Y → ∞, describing the full
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FIG. 8. Asymptotic behavior of the number of broken elements
〈ζ 〉H within the Helmholtz ensemble and with yd → ∞. The num-
ber of broken elements 〈ζ 〉H (colored continuous lines), calculated
through Eq. (17) or Eq. (33), and 〈ζ 〉H |yd →∞ (colored dashed straight
lines), obtained from Eq. (57), are represented versus the (defor-
mation type) quantity yd/〈ζ 〉H . They show the same asymptotic
behavior. We adopted the parameters N = 100, k = 5, h = 20, yM =
1.2, and β−1 = kBT = 6.0, 7.8, 9.6, 11.4, 13.2, and 15 (in arbitrary
units).

detachment state in the thermodynamic limit. From Eq. (55)
we can eventually obtain, for large values of Y , the asymptotic
relation

〈ζ 〉H |Y→∞ ∼ Y
(

β̃

η�

) 1
2

. (56)

It means that we have a linear relation between 〈ζ 〉H and Y
for Y → ∞. This expression can be written with the physical

parameters of the system as

〈ζ 〉H |yd →∞
yd

∼ 1

yM

√
k

h

1√
1 − T

Tc

. (57)

This behavior is confirmed in Fig. 8, where we plotted 〈ζ 〉H
calculated through Eq. (17) or Eq. (33) for a discrete system
with N = 100, and the quantity 〈ζ 〉H |yd →∞/yd , obtained from
Eq. (57).

We observe that the attainment of the vertical asymp-
totes indicate that as we increase yd the total displace-
ment and the number of broken links grows to infinity
with a fixed limit ratio (measuring the deformation of the
detached portion) depending on the temperature. We there-
fore conclude that for T → Tc we have a phase transition
corresponding to the rupture of all the vertical elements
of the chain, i.e., to the complete detachment of the chain
from the substrate. For this reason, the critical temperature
can also be referred to as the denaturation temperature of
the system (terminology frequently used in the biological
context [34–36]). Once again we remark that the obtained
value of the critical temperature can be slightly overesti-
mated due to the neglect of solutions with more domain
walls [99].

B. Thermodynamic limit in the Gibbs ensemble

Consider now the thermodynamic limit in the case of
isotensional loading. As in the previous case, we first re-
port the expressions for the expected values of the average
extension, average number of attached elements, and dis-
placement vector, given in Eqs. (27), (28), and (31). After
nondimensionalization and the use of Eqs. (A17)–(A19), we
obtain

〈Y〉G = 〈yd〉
yM

= ηF
2β̃E

N∑
ξ=0

eβ̃ξ (N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )

[γ (ξ + 1) − γ (ξ )]3/2
e

η

4β̃

(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ )
γ (ξ+1)−γ (ξ ) F2

, (58)

〈ξ 〉G = 1

E

N∑
ξ=0

ξeβ̃ξ 1

[γ (ξ + 1) − γ (ξ )]1/2
e

η

4β̃

(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ )
γ (ξ+1)−γ (ξ ) F2

, (59)

〈Yi〉G = 〈yi〉G

yM
= ηF

2β̃E

i−1∑
ξ=0

eβ̃ξ (i − ξ )γ (ξ + 1) − (i − ξ − 1)γ (ξ )

[γ (ξ + 1) − γ (ξ )]3/2
e

η

4β̃

(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ )
γ (ξ+1)−γ (ξ ) F2

+ ηF
2β̃E

N∑
ξ=i

eβ̃ξ γ (i)

[γ (ξ + 1) − γ (ξ )]3/2
e

η

4β̃

(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ )
γ (ξ+1)−γ (ξ ) F2

, i = 1, ..., N, (60)

E =
N∑

ξ=0

eβ̃ξ 1

[γ (ξ + 1) − γ (ξ )]1/2
e

η

4β̃

(N−ξ+1)γ (ξ+1)−(N−ξ )γ (ξ )
γ (ξ+1)−γ (ξ ) F2

, (61)

where β̃ is defined in Eq. (36), the adimensional force is given by F = β f yM , and the function γ is defined in Eq. (37).
Consider the force-extension relation in Eq. (58). In the limit of large N , we substitute the summations with the corresponding

integrals, as described in Eq. (38). As before, we can approximate the function γ defined in Eq. (37) as γ (z) 	 1√
η2+4η

bz.
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First, we get

〈Y〉G = N
∫ 1

0 e�Nx[N (1 − x) + ρ]e
η

4β̃
F2[N (1−x)+ρ]dx + 1

2 (N + ρ)e
η

4β̃
F2(N+ρ) + 1

2ρe�N e
η

4β̃
F2ρ

N
∫ 1

0 e�Nxe
η

4β̃
F2[N (1−x)+ρ]dx + 1

2 e
η

4β̃
F2(N+ρ) + 1

2 e�N e
η

4β̃
F2ρ

ηF
2β̃

. (62)

By considering the change of variable s = N (1 − x) + ρ, we obtain

〈Y〉G =
∫ N+ρ

ρ
s e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 (N + ρ)e
η

4β̃
F2(N+ρ) + 1

2ρe�N e
η

4β̃
F2ρ

∫ N+ρ

ρ
e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 e
η

4β̃
F2(N+ρ) + 1

2 e�N e
η

4β̃
F2ρ

ηF
2β̃

. (63)

In the thermodynamic limit (N → ∞), we have

〈Y〉G =
∫ +∞
ρ

s e−(β̃− 1
2 ln b− η

4β̃
F2 )sds + 1

2ρe−(β̃− 1
2 ln b− η

4β̃
F2 )ρ

∫ +∞
ρ

e−(β̃− 1
2 ln b− η

4β̃
F2 )sds + 1

2 e−(β̃− 1
2 ln b− η

4β̃
F2 )ρ

ηF
2β̃

. (64)

Both integrals in Eq. (64) converge if

β̃ − 1

2
ln b − η

4β̃
F2 > 0. (65)

This condition will be thoroughly discussed in the following. By integrating, we eventually obtain the force displacement relation
in the thermodynamic limit

〈Y〉G =
(

ρ + 1

β̃ − 1
2 ln b − η

4β̃
F2

× 2

2 + β̃ − 1
2 ln b − η

4β̃
F2

)
ηF
2β̃

. (66)

It is easy to verify that 〈Y〉G is an increasing function of F and it diverges when the force attains the same asymptotic value
given in Eq. (50), obtained in the case of assigned displacement (Helmholtz ensemble). The force-extension relation given in
Eq. (66) can be written in terms of the temperature and the other physical parameters of the system, as follows:

〈yd〉G =
⎡
⎣ 1

1 − e− hy2
M

kBTc

+ 1
hy2

Mβ

2

(
1 − T

Tc
− f 2

khy2
M

) × 2

2 + hy2
Mβ

2

(
1 − T

Tc
− f 2

khy2
M

)
⎤
⎦ f

k
. (67)

As before, 〈yd〉G is an increasing function of f and it diverges when the force attains the same asymptotic value given in Eq. (51),
obtained for the Helmholtz ensemble with

F � Fas = 2

√
β̃

η

(
β̃ − 1

2
ln b

)
, (68)

thus interpreting the condition in Eq. (65) or, equivalently,

f � fas =
√

khyM

√
1 − T

Tc
. (69)

The other important parameter of the system is the number of unbroken vertical elements, which can be calculated through
Eq. (59). This expression can be elaborated in the limit N → ∞, obtaining the asymptotic form

〈ξ 〉G = N
∫ 1

0 Nxe�Nxe
η

4β̃
F2[N (1−x)+ρ]dx + 1

2 Ne�N e
η

4β̃
F2ρ

N
∫ 1

0 e�Nxe
η

4β̃
F2[N (1−x)+ρ]dx + 1

2 e
η

4β̃
F2(N+ρ) + 1

2 e�N e
η

4β̃
F2ρ

. (70)

As before, we can use the change of variable s = N (1 − x) + ρ, which delivers

〈ξ 〉G =
∫ N+ρ

ρ
(N + ρ − s)e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 Ne�N e
η

4β̃
F2ρ

∫ N+ρ

ρ
e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 e
η

4β̃
F2(N+ρ) + 1

2 e�N e
η

4β̃
F2ρ

. (71)

From now on, we consider the average number of broken vertical elements 〈ζ 〉G = N − 〈ξ 〉G given by

〈ζ 〉G =
∫ N+ρ

ρ
(s − ρ) e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 Ne
η

4β̃
F2(N+ρ)

∫ N+ρ

ρ
e�(N+ρ−s)e

η

4β̃
F2sds + 1

2 e
η

4β̃
F2(N+ρ) + 1

2 e�N e
η

4β̃
F2ρ

. (72)
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FIG. 9. Behavior of the detachment process within the Gibbs ensemble in terms of force-extension relation, panel (a), and average number
of broken elements, panel (b). We compare the results in the thermodynamic limit given in Eqs. (67) and (73) (colored dashed curves) with
their discrete counterparts given in Eqs. (58) and (59) (black curves), applied to a system with N = 100. The horizontal, in panel (a), and
vertical, in panel (b), dashed straight lines represent the values of the force that induces complete decohesion of the system. We adopted the
parameters k = 5, h = 20, yM = 1.2, and β−1 = kBT = 4.0, 5.57, 7.14, 8.71, 10.2, 11.8, 13.4, and 15 (in arbitrary units).

This result proves that the limit of ζ for N → ∞ exists and
can be written as follows:

〈ζ 〉G =
∫ +∞
ρ

(s − ρ)e−(β̃− 1
2 ln b− η

4β̃
F2 )sds∫ +∞

ρ
e−(β̃− 1

2 ln b− η

4β̃
F2 )sds + 1

2 e−(β̃− 1
2 ln b− η

4β̃
F2 )ρ

= 1

β̃ − 1
2 ln b − η

4β̃
F2

× 2

2 + β̃ − 1
2 ln b − η

4β̃
F2

= 1
hy2

Mβ

2

(
1 − T

Tc
− f 2

khy2
M

) × 2

2 + hy2
Mβ

2

(
1 − T

Tc
− f 2

khy2
M

) ,

(73)

where the critical temperature Tc is given in Eq. (49). Co-
herently with previous results we observe that the number of
detached elements monotonically grows with F and diverges
for the same force threshold in Eq. (50) or Eq. (51), corre-
sponding to a transition to the fully detached configuration.
This point confirms the presence of the phase transition for
the isotensional condition as well.

In Fig. 9 we compare the results obtained in the ther-
modynamic limit, Eqs. (67) and (73), with their discrete
counterparts given in Eqs. (58) and (59), applied to a system
with N = 100. Again, this figure shows the practical utility
of the fully explicit expressions in the thermodynamic limit
since the two behaviors are significantly superimposed also in
the case of isotensional loading.

C. Comparison of the Helmholtz and Gibbs ensembles

In this section we focus on the important differences of
the decohesion behavior that we obtained under the different
loading conditions. The comparison between the hard and
soft device loading can be drawn by observing the force-
extension relation in the corresponding Helmholtz and Gibbs
ensembles reported in Fig. 10. In particular, in Fig. 10(a), we
plotted Eqs. (16) and (27), representing the force-extension

response for a discrete system, where we used a large value
of N and different values of the temperature T . Moreover,
in Fig. 10(b), we plotted Eqs. (46) and (67), representing the
force-extension behavior in the thermodynamic limit. Observe
the the force-extension behavior is markedly different in the
two ensembles. In the case of hard device the system starts
to unfold at a threshold force larger than 〈 f 〉as and (at low
temperatures) oscillates around this value approaching the
asymptotic limit only after the initial discrete debonding
process. Differently, in the case of isotensional loading, the
force monotonically increases attaining the limit value given
in Eq. (51) only when the total displacement diverges and the
whole detachment is observed. This behavior can be seen in
both panels of Fig. 10, proving that the analytic expressions
found in the case of thermodynamic limit are well adapted to
represent the system behavior for large values of N also in the
case when only the first correction term of the Euler-McLaurin
formula is considered.

The difference between the Helmholtz and Gibbs ensemble
can be clearly appreciated also in Fig. 11. In Fig. 11(a), we
show a zoom on the first peak of the force extension relation
within the Helmholtz ensemble for several temperatures in
the range between zero and the critical temperature. These
curves are compared with the asymptotic value 〈 f 〉as given
in Eq. (51). In addition, the values of these Helmholtz force
peaks, given by max {〈 f 〉H }, have been plotted in Fig. 11(b)
versus the system temperature (red curve). For the Gibbs case,
the largest force corresponds to the asymptotic one and we can
therefore write: sup { f } = 〈 f 〉as. This quantity is represented
by the blue curve in Fig. 11(b). To conclude, we underline
that the decohesion force threshold for the Helmholtz case is
sensibly larger than the same quantity for the Gibbs ensemble,
especially for low values of the temperature.

The nonequivalence of the ensembles in the decohesion
process can be further appreciated by comparing the initial
slope of the force extension curves, represented by Eqs. (46)
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FIG. 10. Comparison between the Helmholtz force-extension curves (〈 f 〉H versus yd , solid lines) and the Gibbs force-extension curves ( f
versus 〈yd 〉G, dashed lines) proving the nonequivalence of the two statistical ensembles in the thermodynamic limit. (a) Comparison between
the results for a discrete system with N = 100 based on Eqs. (16) and (27). (b) Comparison between the results in the thermodynamic limit
based on Eqs. (46) and (67). In both panels, the horizontal dashed straight lines correspond to 〈 f 〉as given in Eq. (51). We adopted the parameters
k = 5, h = 20, yM = 1.2, and β−1 = kBT = 4.0, 5.57, 7.14, 8.71, 10.2, 11.8, 13.4, and 15 (in arbitrary units).

and (66) in the thermodynamical limit. Indeed, we can cal-
culate the effective stiffness observed by the device at the
beginning of the peeling process, i.e., for small values of
force and extension. It means that we have to determine the
derivatives of the curves given in Eqs. (46) and (66) for small
force or extension. Their calculations give

∂〈F〉H

∂Y

∣∣∣∣
Y=0

= 4
β̃

η
�

2
(
1 + 1

4ρ

)
e−�ρ − �

�e−�ρ + �
, (74)(

∂〈Y〉G

∂F

∣∣∣∣
F=0

)−1

= 2
β̃

η
�

1

�ρ + 2
2+�

, (75)

for the Helmholtz ensemble and the Gibbs ensemble, respec-
tively. Here, for the sake of simplicity, we defined the quantity

� = 2
√

π�ρ[1 − erf(�ρ)]. (76)

In terms of physical parameters the effective stiffnesses are

kH
eff = ∂〈 f 〉H

∂yd

∣∣∣∣
yd =0

= kBT

y2
M

∂〈F〉H

∂Y

∣∣∣∣
Y=0

, (77)

kG
eff =

(
∂〈yd〉G

∂ f

∣∣∣∣
f =0

)−1

= kBT

y2
M

(
∂〈Y〉G

∂F

∣∣∣∣
F=0

)−1

. (78)

The plot of the effective stiffness defined in Eqs. (77) and (78)
versus the temperature can be found in Fig. 12(a), from which
we can deduce again the nonequivalence of the ensembles.
The behavior of the stiffness is similar for the two ensembles
for low values of the temperature. In this case, we have the
common limiting value

kH
eff(T = 0) = kG

eff(T = 0) = k

ρ
, (79)

0 1 2 3 4 5yd

0

5

10

15

20

f
H

f as T

(a)

0 5 10 15 20kBT
0

5

10

15

20

Helmholtz
max f H}

Gibbs
sup {f} = f as

kBTc

(b)

FIG. 11. Comparison between the Helmholtz and the Gibbs response. (a) Zoom of the first peak in the force extension curves for the
Helmholtz ensemble, based on Eq. (16) (colored curves), and asymptotic value 〈 f 〉as given in Eq. (51) (black horizontal lines). (b) Critical
behavior of both ensembles, represented by the quantity max {〈 f 〉H } for the isometric condition (red curve) and by sup { f } = 〈 f 〉as for the
isotensional one (blue curve). We adopted the parameters N = 100, k = 5, h = 20, yM = 1.2, and β−1 = kBT assumes 48 values from zero to
kBTc (in arbitrary units).
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FIG. 12. Effective stiffness within the Helmholtz and Gibbs ensembles, in panel (a), and their ratio, in panel (b). We adopted the parameters
k = 5, h = 20, yM = 1.2 (in arbitrary units).

with ρ defined in Eq. (40), in agreement with the results
obtained in Ref. [47]. On the contrary, the ratio between
the two stiffnesses diverges as the temperature converges to
its critical value [see Fig. 12(b)]. The behavior of the two
stiffness coefficients plotted in Fig. 12 is responsible for the
markedly different initial slope of the force extension curves
shown in Fig. 10.

VI. DISCUSSION AND CONCLUSION

In this paper, we elaborated a model to describe the
cohesion/decohesion process related to a film deposited on a
substrate, by focusing on the effects of thermal fluctuations.
The paradigmatic system adopted is composed of a one-
dimensional elastic chain grounded to a substrate through a
series of breakable links. We analyzed this process under an
additional mechanical action, represented by either an exter-
nal force or a prescribed extension applied to the end-terminal
of the chain. These two conditions correspond to the Gibbs
and the Helmholtz ensembles in the framework of equilibrium
statistical mechanics, respectively. Based on a spin variables
approach [71,72] and using some known properties of tridi-
agonal matrices [107,108], we are able to obtain an analytical
description of the decohesion behavior of the system with a
resulting clear physical interpretation of the results. We firstly
developed the theory for the Helmholtz ensemble and then
we obtained the results for the Gibbs one with the Laplace
transform describing the relationship between the partition
functions of the two ensembles [85]. Eventually, for both
statistical ensembles, we obtained explicit force-extension
relations, the average number of broken units, and the average
extension of all the elements of the chain as function of the
temperature and of the external mechanical action (a force
for the Gibbs ensemble and an extension for the Helmholtz
one). These achievements, summed up in Eqs. (32)–(35)
(Helmholtz) and Eqs. (58)–(61) (Gibbs), and obtained for an
arbitrary number N of elements of the chain, are useful to fully
understand the behavior of the system, to compare with exist-
ing results concerning the folding/unfolding of macromolec-
ular bistable chains, and finally to perform the analysis of
the thermodynamic limit. Indeed, when N → ∞, the sums in

Eqs. (32)–(35) (Helmholtz) and Eqs. (58)–(61) (Gibbs) can
be substituted by suitable integrals. As we showed, to obtain
a more detailed description of the results and in particular to
describe the existence of a force peak anticipating the decohe-
sion force in the hard device we adopted the Euler-McLaurin
approximation formula. This approach will be in our opinion
useful in many other limit analysis in statistical mechanics
and indeed we have shown its importance in describing the
fundamental differences of the behavior in the thermodynamic
limit for the hard and soft device. In particular, such an
analysis allows us to prove that in the thermodynamic limit the
decohesion of the film from the substrate takes place at a given
critical force, which is temperature dependent. This is an im-
portant difference between the cohesion/decohesion process
and the folding/unfolding of bistable chains, where the transi-
tion force is temperature independent. More explicitly, in the
case of bistable chains, only the slope of the transition path
changes with the temperature, while keeping fixed the average
value of the transition plateau. In the cohesion/decohesion
process the origin of the temperature dependent peeling force
is explained through the observation of a phase transition
taking place at a given critical temperature able to fully
detach the film from the substrate. In the subcritical regime,
the thermal fluctuations promote the detachment of the film
and, therefore, a lower peeling force is needed for higher
temperatures. The decreasing trend of the peeling force with
the temperature is the same for both statistical ensembles.
However, these ensembles are nonequivalent in the thermody-
namic limit since they show a different force-extension curve.
In particular, the force extension curve for the Helmholtz
case is characterized by a force peaks followed by some
oscillations before reaching the asymptotic force value. On
the contrary, the force extension curve for the Gibbs case is
always monotonically increasing from zero to the asymptotic
force value. This observation leads to two different critical
behaviors, as shown in Fig. 11(b).

The existence of finite-temperature phase transitions in
low-dimensional many-body models is a subject of large inter-
est in theoretical physics [109,110]. It is useful to remark that
the existence of a genuine phase transition in our system (at
thermodynamic limit and for both isometric and isotensional
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conditions) is coherent with the observation (both theoretical
and numerical) of different kinds of phase transitions in the
Peyrard model for the DNA thermal denaturation [111]. In
both cases, the system is one-dimensional along the longitu-
dinal direction with a one-dimensional series of interactions in
the transverse direction. Another interesting example of phase
transition in low-dimensional systems concerns the tension-
induced binding of two parallel semi-flexible polymers [112].
In this case, the mean-field theory predicts a phase transition
describing the discontinuous increasing bonding of the chains
with an increasing applied force. However, the authors explain
that the transition turns into a crossover if the mean-field
theory is substituted with the exact solution. In contrast, the
observation of a genuine phase transition in our model is due
to important differences as compared with Ref. [112]: the
force is transversal in our case whereas the binding tension
is longitudinal in Ref. [112]; moreover, we adopted a flexible
chain whereas a two semi-flexible chains are introduced in
Ref. [112]; finally, our model is discrete, while the model
of Ref. [112] has continuous worm like chains with dis-
crete links. As we show in this paper, these differences can
lead to different critical behaviors and different universal
classes.

Although the equivalence of the Gibbs and Helmholtz sta-
tistical ensemble has been proved for a large class of systems
(namely, single flexible polymer chains without confinement
effects and with a continuous pairing interaction potential
between neighboring monomers [86–91]), interestingly, it
cannot be assumed for other structures. Indeed, other classes
of problems, e.g., concerning the escape of a polymer con-
fined between two surfaces and the desorption of a polymer
initially tethered onto a surface, exhibit an unusual nonequiv-
alence between the defined statistical ensembles [113–118].
In particular, in Refs. [113,114] an end-tethered polymer
chain compressed between two pistons is considered and
shows nonequivalence of the ensembles and a phase transi-
tion corresponding to the escape from the gap between the
pistons. Reference [115] deals with the desorption of a single
chain from a substrate without excluded volume interactions:
also in this case the equivalence of the ensembles and the
emergence of a phase transition are thoroughly discussed.
In Ref. [116] a Gaussian chain is tethered on a rigid planar
surface at one end and the ensemble nonequivalence comes
from a pure confinement effect and does not involve any
potential interaction, unlike in our case. Different rectangular,
spherical and cylindrical geometries of confinement have
been considered in Ref. [117]. Finally, in Ref. [118], the
desorption of a self-avoiding polymer chain from a surface has
been studied yielding the nonequivalence of the ensembles,
the existence of a first-order phase transition without phase
coexistence and a quantitative relation between adsorption
exponent and adsorption energy. These results have been the-
oretically proved by means of the grand canonical ensemble
method and confirmed by Monte Carlo simulations. Such
investigations are coherent with our achievements and prove
the possibility to have the nonequivalence between different
(canonical) ensembles in statistical mechanics. In systems
with strong interactions and low dimensionality, we always
observe strong fluctuations, which are persisting also in the

thermodynamic limit, thus inducing a different behavior for
different statistical ensembles [116,117,119]. In our system
the strong interactions, which are nonlocal and long-range, are
generated by the ladder network geometry composed of linear
and breakable springs. As discussed in Refs. [116,117,119],
the resulting fluctuations of the macroscopic observables
cause a nonuniform convergence to the thermodynamic limit
eventually producing the ensembles nonequivalence.

Another important result concerns the temperature depen-
dent effective stiffness of the system, as reported in Fig. 12. In
particular, the model describes the decreasing of the stiffness
with the temperature. Moreover, also in this case we observe
a loading type dependent stiffness with the ratio between
Helmholtz and Gibbs stiffness diverging as the temperature
approaches its critical value. We remark that the considered
dual types of loading processes represent limiting values of
real applied conditions as the stiffness of the loading device
changes [74,75]. Thus, we observe that the real response in
terms of stiffness and decohesion force cannot be considered
as an intrinsic property of the system, since it depends on the
loading condition. For example, we can think to the case of
the variable stiffness of the atomic force microscopy device
or to the interacting molecule (RNA versus DNA) and so on.
These real cases are placed in-between the ideal Helmholtz
and Gibbs ensembles.

It is important to remark that while the presented model
is interesting because it leads to a fully analytic approach
able to explain the emergence of the phase transition and the
nonequivalence of the ensembles, it could be generalized to
take into consideration more complex effects. For instance,
the spin variable methodology, here employed to calculate
the partition functions, is limited to the study of the equilib-
rium thermodynamics. It could be interesting to generalize it
to the dynamic regime, where the whole energy landscape
and in particular the energy barriers may play a crucial
role [120–122]. Moreover, our approach could be applied
to different system configurations including fiber bundles
with breakable strands characterized by variable detaching
thresholds, buckling of films deposited over substrates, cracks
propagation in brittle or plastic solids and rupture phenomena
in polymer networks.
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APPENDIX: PROPERTIES OF Aξ

N (η)

We prove here some properties concerning the matrix
Aξ

N (η), defined in Eq. (3). To begin, we consider the following
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arbitrary tridiagonal matrix T :

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2
. . .

. . . 0
...

. . .
. . . aN−1 bN−1

0 · · · 0 cN−1 aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ MN,N (R), (A1)

where the diagonal is composed by the elements (a1, ..., aN ),
the superdiagonal by (b1, ..., bN−1), and the subdiagonal by
(c1, ..., cN−1). It has been proved [107,108] that the elements
of the inverse matrix T −1 can be represented as

[T −1]i j =

⎧⎪⎨
⎪⎩

1
ϑN

(−1)i+ jbi × · · · × b j−1ϑi−1ϕ j+1, i < j,
1

ϑN
ϑi−1ϕi+1, i = j,

1
ϑN

(−1)i+ jc j × · · · × ci−1ϑ j−1ϕi+1, i > j,

(A2)

where the sequences ϑi and ϕi are given by the recursive
relations

ϑi = aiϑi−1 − bi−1ci−1ϑi−2, i = 2, ..., N,

ϑ0 = 1, ϑ1 = a1,
(A3)

and

ϕi = aiϕi+1 − biciϕi+2, i = N, ..., 1,

ϕN+2 = 0, ϕN+1 = 1, ϕN = aN .
(A4)

While Eq. (A3) is an increasing recursive relation going from
i = 1 to i = N , Eq. (A4) is a decreasing recursive relation
going from i = N to i = 1. We also remember that det T =
ϑN [107,108].

In the case of the matrix Aξ
N (η) in Eq. (3), we have that

bi = ci = −1∀i. Under this hypothesis, the general result can
be simplified as follows:

[T −1]i j =

⎧⎪⎨
⎪⎩

1
ϑN

ϑi−1ϕ j+1, i < j,
1

ϑN
ϑi−1ϕi+1, i = j,

1
ϑN

ϑ j−1ϕi+1, i > j,

(A5)

where the sequences ϑi and ϕi are given by the simplified
recursive relations

ϑi = aiϑi−1 − ϑi−2, i = 2, ..., N,

ϑ0 = 1, ϑ1 = a1,
(A6)

and

ϕi = aiϕi+1 − ϕi+2, i = N, ..., 1,

ϕN+2 = 0, ϕN+1 = 1, ϕN = aN .
(A7)

These properties of the tridiagonal matrices are used here to
determine the determinant and the inverse of our main tridiag-
onal matrix. Such properties have been exploited to perform
analytically these algebraic operations, which can be rather
expensive from the numerical point of view. It is important
to remark that the tridiagonal structure of our matrices comes
from the geometry of the lattice structure used in our inves-
tigation (with horizontal and vertical springs). In addition,
the physical hypothesis of considering a single domain wall
induces a block structure of the tridiagonal matrix, as de-
scribed in Eq. (3) and following equations. More specifically,
the introduction of the single domain wall assumption reduces

previous properties to difference equations with piecewise
constant coefficients, which can be easily solved as discussed
in this Appendix.

Since we need to determine det Aξ
N (η), [Aξ

N (η)]
−1�v · �v =

[Aξ
N (η)]

−1

NN , and [Aξ
N (η)]

−1�v, it is sufficient to calculate only
the sequence ϑi associated to the matrix Aξ

N (η). Indeed, we
have that

det Aξ
N (η) = ϑN , (A8)

�vT
[
Aξ

N (η)
]−1�v = [

Aξ
N (η)

]−1
NN

= ϑN−1ϕN+1/ϑN = ϑN−1/ϑN , (A9){[
Aξ

N (η)
]−1�v

}
i = ϑi−1ϕN+1/ϑN = ϑi−1/ϑN . (A10)

Therefore, we consider Eq. (A6) with a1 = · · · = aξ = 2 +
η and aξ+1 = · · · = aN = 2. Then, for i � ξ we have the
difference equation ϑi = (2 + η)ϑi−1 − ϑi−2, whose general
solution can be written as

ϑi = p

(
2 + η + √

�

2

)i

+ q

(
2 + η − √

�

2

)i

, (A11)

with � = η2 + 4η and where the coefficients p and q must be
fixed through the condition ϑ0 = 1 and ϑ1 = a1. A straight-
forward calculation leads to the explicit solution for i � ξ ,

ϑi = 1√
�

(
2 + η + √

�

2

)i+1

− 1√
�

(
2 + η − √

�

2

)i+1

.

(A12)

For i > ξ , we have the simpler difference equation ϑi =
2ϑi−1 − ϑi−2, with the general solution ϑi = r + si. In this
case, the coefficients r and s must be obtained by imposing
ϑξ−1 and ϑξ by means of Eq. (A11). Hence, the result for
i > ξ can be eventually found as

ϑi = (i − ξ + 1)ϑξ − (i − ξ )ϑξ−1, (A13)

where ϑξ−1 and ϑξ are given by Eq. (A11). The obtained re-
sults can be summarized through the final expression holding
for 1 � i � N

ϑi =
{
γ (i + 1), i � ξ,

(i − ξ + 1)γ (ξ + 1) − (i − ξ )γ (ξ ), i > ξ,

(A14)

where the function γ (z) is defined as follows:

γ (z) = 1√
�

(
2 + η + √

�

2

)z

− 1√
�

(
2 + η − √

�

2

)z

.

(A15)

A more compact form of the solution can be also written as

ϑi = [γ (i + 1) − (i − ξ + 1)γ (ξ + 1)

+ (i − ξ )γ (ξ )]1(ξ − i)

+ [(i − ξ + 1)γ (ξ + 1) − (i − ξ )γ (ξ )], (A16)
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in terms of the Heaviside step function 1(x), defined as 1(x) = 1 if x � 0, and 1(x) = 0 if x < 0. To conclude, Eqs. (A8)–(A10)
assume the final form

det Aξ
N (η) = (N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ ), (A17)

1 − [
Aξ

N (η)
]−1

NN = γ (ξ + 1) − γ (ξ )

(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )
, (A18)

{[
Aξ

N (η)
]−1�v

}
i = ϑi−1

(N − ξ + 1)γ (ξ + 1) − (N − ξ )γ (ξ )
, (A19)

where ϑi is given in Eq. (A16) and the function γ (z) in Eq. (A15).
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