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Abstract From biophysics to materials science, mechanical micro-instabilities 
play a central role in a multitude of materials and structures (where we observe 
phenomena such as adhesion, fracture, friction, phase transformations, and so 
on). Although these systems are very different in length-scale, time-scale, and 
morphology, they are all composed of a number of units (subsystems) that exhibit 
two or more equilibrium states and can switch from one to another depending on 
operating conditions. Schematically, we can identify two main classes of micro-
instabilities in these multistable systems. On the one hand, we may observe a 
bistable behavior between one ground state and one metastable state, being these 
two states different, yet mechanically resistant conformations. For instance, in this 
class can be inscribed conformational (folded to unfolded) transitions in polymers or 
macromolecules (mostly proteins) and martensitic phase transformations in metallic 
alloys and nanowires (pseudo-elasticity). On the other hand, the second class corre-
sponds to transitions between unbroken and broken states of breakable units of the 
system. This process can be reversible, partly reversible, or irreversible according 
to the specific physical phenomenon investigated. Examples of this scheme include 
unzipping of DNA or RNA hairpins, denaturation of macromolecules, biological 
adhesion, peeling of films in nanotechnology, and fracture phenomena in mechanics 
of materials. In this review, we offer a description of phenomena related to these 
mechanical micro-instabilities, ranging from biophysics to materials science. After 
presenting an overview of typical examples in both contexts, physical-mathematical 
approaches suitable for modeling and predicting the behavior of these systems will 
be introduced. In order to consider both thermal and mechanical effects, they are 
based on the combination of statistical mechanics and micromechanics. 

Keywords Statistical mechanics · Micromechanics · Adhesion · Friction · 
Force spectroscopy · Fracture mechanics · Spin variables · Phase transitions · 
Critical temperature · DNA · RNA · Proteins · Polymers · Macromolecules · 
Nanowires · Pseudo-elasticity 

1 Introduction 

Micro-instabilities play a very important role in several artificial and biological 
mechanical systems. The possibility of having transitions between different states 
of the system, induced by mechanical actions or thermal fluctuations, generates 
considerable complexity in system responses, characterized by thermomechanical 
coupling and strongly nonlinear behavior. On the one hand, concerning artificial 
systems, we can mention the peeling of a film from a substrate (Cortet et al. 
2007; Xia et al. 2012; Dalbe et al. 2015; Maddalena et al. 2009; Puglisi et al. 
2013; Das et al. 2013; Qian et al. 2017), the waves propagation in bistable lattices 
(Rafsanjani et al. 2015; Nadkarni et al. 2016; Frazier et al. 2017; Katz et al.  2018, 
2019), the energy harvesting through multistable chains (Hwang et al. 2018; Harne 
et al. 2014a,b), the plasticity and hysteresis in phase transitions and martensitic
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transformations of solids (Ericksen 1975; Müller et al. 1977; Fedelich et al. 1992; 
Truskinovsky et al. 2004; Puglisi et al. 2005; Puglisi 2006; Efendiev et al. 2010; 
Mielke et al. 2012; Benichou et al. 2013; Caruel et al. 2015, 2017), the cracks and 
dislocations nucleation and propagation in materials and alloys (Blumberg Selinger 
et al. 1991; Borja da Rocha et al. 2019, 2020; Brenner 1962; George et al. 2019; 
Miracle et al. 2017; Cantor et al. 2004; Otto et al. 2013; Gali et al.  2013), and 
the friction at the nanoscale (Gao et al. 2004; Urbakh et al. 2004; Vanossi et al. 
2013; Vakis et al. 2018; Ternes et al. 2008; Szlufarska et al. 2008; Mo et al.  
2009; Krylov et al. 2014; Manini et al. 2017; Popov 2010). On the other hand, 
micro-mechanical biological phenomena include the conformational transitions in 
polymeric and biopolymeric chains (Storm et al. 2003; Hoffmann et al. 2012; Dudko 
2016; Hughes et al. 2016; Prados et al. 2013; Bonilla et al. 2015; De Tommasi et al. 
2013; Manca et al. 2013a; Bleha et al. 2022, 2018), the attached and detached states 
of fibrils in cell adhesion (Bell 1978; Bell et al.  1984; Gumbiner 1996; Erdmann 
et al. 2007; Gao et al. 2011; Schwarz et al. 2013), the unzipping of macromolecular 
hairpins (Liphardt et al. 2001; Dudko et al. 2007; Mathé et al. 2004; Woodside et al. 
2008; Manosas et al. 2017), the sarcomeres behavior in skeletal muscles (Huxley 
et al. 1971; Hill 1973; Epstein et al. 1998; Caruel et al. 2013, 2016, 2018, 2019), the 
denaturation or degradation of nucleic acids, polypeptide chains, or other polymers 
(Peyrard et al. 1989; Theodorakopoulos et al. 2004; Grinza et al. 2004; Peyrard 
2004; Ivanov et al. 2004; Palmeri et al. 2008; Pupo et al. 2013; Perret et al. 2016, 
2017; Buche et al. 2021), and the macromolecular or soft matter friction (Bormuth 
et al. 2009; Sahli et al. 2018; Sens 2020; Liamas et al.  2020). Moreover, it is also 
interesting to remark that friction is also at the basis of understanding the evolution 
of geophysical systems (Scholz 1998; Marone 1998; Daub et al. 2010; Amitrano 
et al. 1999) and plastic phenomena in solid materials, being able to control the 
nucleation of dislocations and fractures and to regulate the shear transformations 
and the ductile-to-brittle failure transition (Gerde et al. 2001; Kresse et al. 2004; 
Gimbert et al.  2013; Biscari et al. 2016; Karimi et al.  2019; Gorbushin et al. 2020). 

In all these physical situations, we eventually find a multi-basin energy land-
scape, and the state of the system can be in stable or metastable configurations, 
identified by the wells of the energy function. As a matter of fact, these systems 
are constituted by a large number of units characterized by well-defined physical 
states. The transitions between these states or, equivalently, the explorations of 
the energy landscape govern the macroscopic behavior of the whole system and, 
in particular, its static and dynamic features. There are two important different 
classes of microinstabilities. In the first case, the intrinsic micro-instabilities may 
describe bistable (or multistable) units with transitions between one ground state and 
one (or more) metastable state(s) (e.g., for the conformational folded-to-unfolded 
transitions in macromolecules or martensitic phase changes in metallic alloys or also 
friction). These states represent different, yet mechanically resistant conformations. 
This case can be represented in a one-dimensional setting by introducing an effective 
double-well potential energy U , as shown in Fig. 3.1 (first panel). We observe that 
the choice of a simple one-dimensional system is aimed at a simple presentation 
of the idea. In other words, x represents an effective order parameter adopted to
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Fig. 3.1 In the first row one can find two different energy landscapes representing two classes of 
micro-instabilities: bistability between a folded (ground) state and an unfolded (metastable) state in 
the left panel, and transition between attached (unbroken) and detached (broken) states in the right 
panel. In the second and third rows, one finds some examples of microinstabilities in biophysics 
and materials science, corresponding to conformational transitions (bistability or multistability) in 
the first column, or rupture phenomena (deadhesion and decohesion) in the second one 

describe the transition between the different wells, whereas all other variables can 
be considered to be minimized out. In the second case, the micro-instabilities can 
explain transitions between unbroken and broken states of the breakable units of the 
system (e.g., in the unzipping of hairpins, denaturation of macromolecules, fibrillar 
biological adhesion, peeling of films, and cracks propagation). This process can 
be reversible, partly reversible, or irreversible according to the specific physical
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phenomenon. The one-dimensional energy considered in this second case is shown 
in Fig. 3.1 (second panel). Here, the unbroken configuration corresponds to a 
potential well, and the broken configuration corresponds to constant energy and 
zero force. 

In the second and third rows of Fig. 3.1, one can find the most of previously 
mentioned examples following the classification between folding/unfolding or 
breaking/unbreaking energies (see the first row). The different situations have been 
subdivided between biophysics (second row) and materials science (third row), for 
the sake of clarity. It is interesting to note that there is a parallel between all the 
problems in biophysics and materials science. This similarity is at the basis of the 
development of mathematical models that are applicable indistinctly to both areas 
of research, as discussed in the following. In fact, the main goal is to develop 
models between physics and mechanics that are able to study state transitions 
(micro-instabilities) in all these biological and artificial systems in order to better 
understand the effects of temperature and external mechanical actions on their 
behavior. 

Being the characteristic length �x . separating two stable positions of the order 
of few nanometers and the energies involved in chemical bonds of the order of 
tens of KBT ., the effect of temperature on these systems is non-negligible. As 
a matter of fact, the transitions between the states in all previous systems are 
strongly influenced by the thermal fluctuations, which can modify the probability 
of being in a given state or the transition rate between the neighboring energy wells. 
Therefore, the correct framework in which we can develop the theoretical modeling 
of these phenomena is the classical statistical mechanics. In particular, the systems 
exhibiting switching mechanisms between different energy basins and the systems 
characterized by breaking phenomena can be studied by means of the spin variables 
approach. This approach is based on the introduction of a series of discrete variables 
(similar to the spins used to deal with magnetic systems), which are able to identify 
the state associated with a given system unit (see the variable s in Fig. 3.1, first row). 
For example, the bistable potential energy of Fig. 3.1 (first panel) (continuous line) 
can be approximated by a biparabolic function (dashed lines) with the switching 
among the wells described by the spin variable. It means that, depending on the 
value of these discrete variables, the energy function may change its shape and, 
in particular, the position and the depth of its wells. The same approach can be 
observed in the broken/unbroken potential energy of Fig. 3.1 (second panel). 

The first theoretical approaches based on this method have been developed to 
model the biomechanical response of skeletal muscles (Huxley et al. 1971; Hill 
1973). Since these pioneering investigations, this technique has been generalized 
to study different multistable systems including the folding of macromolecules 
(Giordano 2017; Benedito et al. 2018a,b, 2019; Florio et al. 2019; Bellino et al. 
2019; Benedito et al. 2020a,b; Jorge Do Marco et al. 2022), the adhesion/deadhesion 
processes (Florio et al. 2020; Cannizzo et al. 2021), the phase transformations 
in solids (Bellino et al. 2020; Cannizzo et al. 2022), the stick-slip on rigid and 
soft substrates (Giordano 2022, 2023), and the fracture mechanics (Cannizzo et al. 
2023). The introduction of the spin variables frequently simplifies the calculation of
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the partition function and, consequently, the analysis of the corresponding averaged 
thermodynamic quantities. This theoretical device is able to give mathematical 
results in closed form, very useful to advance the understanding of the underlying 
mechanics and physics. It is important to remark that, as discussed in detail in 
Refs. (Giordano 2017), the evaluation of the partition function based on the spin 
approach assumes that for both configurations all possible deformations (values 
of x in Fig. 3.1, first row) can be attained by the system. This corresponds to the 
assumption of a multivalued energy function (see superposition of dashed lines in 
Fig. 3.1, first row). As shown numerically in Refs. (Giordano 2017), with typical 
experimental temperatures, the effect of this approximation can be considered 
(statistically) negligible since these artificial configurations (superposition of dashed 
curves) have an energy sensibly higher than real configurations (continuous lines). 
This technique has been largely exploited to investigate bistable systems from 
biophysics and materials science, as mentioned above. 

The stretching of macromolecular chain or, more in general, the mechanical 
perturbation of small systems with micro-instabilities can be typically performed 
following two different experimental protocols (Giordano 2017; Benedito et al. 
2018a; Florio et al. 2020). In particular, experiments performed at constant applied 
forces (realized through extremely soft devices) correspond to the Gibbs statistical 
ensemble, and experiments performed at prescribed displacements (conducted with 
extremely hard devices) are a realization of the Helmholtz statistical ensemble. In 
general, these two boundary conditions lead to different force-extension responses 
since in each of the two cases we explore a different phase space. Actually, 
depending on the equivalent stiffness of the device, the stretching experiment 
corresponds to a situation placed in between the Gibbs and Helmholtz ensembles 
of the statistical mechanics (Florio et al. 2019; Bellino et al. 2019). 

The introduction of different boundary conditions leads to the notion of thermo-
dynamic limit. In particular, it is possible to prove under precise hypotheses that 
the two different experimental strategies give the same results in terms of force-
extension curve when the number of system units or domains (monomers for a 
polymeric structure) is large enough (thermodynamic limit) (Weiner 2002; Winkler 
2010; Manca et al. 2012, 2013a, 2014a; Giordano 2018; Manca et al. 2013b; Buche 
et al. 2020). Therefore, it is important to remark that the differences between 
the force-extension curves measured under Gibbs or Helmholtz conditions can be 
noticed only for a moderately small number of units or domains of the system under 
consideration (small systems thermodynamics). Indeed, for a large number of units 
or domains, i.e., in the thermodynamic limits, the different Gibbs and Helmholtz 
statistical ensembles are equivalent, and they are described by the same constitutive 
force-extension response (Weiner 2002; Winkler 2010; Manca et al. 2012, 2013a, 
2014a; Giordano 2018; Manca et al. 2013b; Buche et al. 2020). However, it is 
important to mention the fact that in some cases the ensemble equivalence is not 
verified, and also in the thermodynamic limit we can have different macroscopic 
response of the system (Skvortsov et al. 2007; Dimitrov et al. 2009; Skvortsov et al. 
2012; Dutta et al. 2018, 2019; Noh et al. 2021).
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To conclude this introduction, we present here the structure of this review. 
In Sect. 2, we introduce the statistical mechanics and the thermodynamics of a 
system with conformational transitions, described by the spin variable method. 
In particular we prove the coherence between this technique and the main results 
of the macroscopic thermodynamics. In Sect. 3, we describe the results obtained 
with the force spectroscopy methods on macromolecules, and we discuss their 
interpretation through models based on the spin variable technique. In Sect. 4, we  
introduce the phase transformations in solid materials, and we show a method able 
to take into consideration the energy of the domain walls between different phases. 
This is applied to describe the tensile behavior of nanowires. Then, in Sect. 5 we 
develop the statistical mechanics of the adhesion/deadhesion processes and present 
an application to the interpretation of the DNA and RNA hairpins unzipping. Finally, 
in Sect. 6, we generalize the theory for adhesion/deadhesion processes by taking into 
account the possible softening mechanism before the complete detachment. This 
approach can be used to model the particular behavior of the fracture process of 
metal, metal oxides, or alloy micro- or nanowires. 

2 Thermodynamics of Small Systems with Micro-instabilities 

We present here a general methodology to study the thermodynamics of a system 
composed of two-state units and subjected to different boundary conditions. As 
discussed in the introduction, the main idea consists in associating with each unit 
a discrete variable (or spin variable), able to define the state of the unit itself. 
Such a variable represents a sort of “bit,” assuming the values 0 and 1 for the 
folded and the unfolded states, respectively. The spin variables are considered as 
dynamic variables, thus belonging to the extended phase space of the system. The 
introduction of the spin variables allows to strongly facilitate the calculation of 
the partition functions, preserving at the same time a good accuracy of results 
(Giordano 2017). With this approach, an arbitrary potential function composed 
of two minima can be substituted by two quadratic potentials, and the switching 
between them is governed by the corresponding spin variable (see Fig. 3.1, first 
panel). Similarly, the method can also be applied to the case of rupture phenomena 
(see Fig. 3.1, second panel). This methodology works for both Gibbs and Helmholtz 
ensembles, allowing to draw direct comparisons between isotensional and isometric 
conditions (see Fig. 3.2). We remark that the spin variables approach can be 
only adopted for systems at thermodynamic equilibrium. As a matter of fact, 
the quadratic potentials and the associated spin variables are not sufficient to 
describe the dynamics, since the characteristic relaxation times strongly depend 
on the energy barriers between the potential wells. This is a well-known result, 
encoded within the Kramers rate formula, originally formulated to study chemical 
reactions (Kramers 1940), and recently generalized for arbitrary systems with non-
convex energy landscapes (Benichou et al. 2015, 2016). Here, we use the spin 
variable approach in both Helmholtz and Gibbs ensembles, and we show how it
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Fig. 3.2 Representation of a system under isotensional condition corresponding to the Gibbs 
ensemble (a) and a system under isometric condition corresponding to the Helmholtz ensemble 
(b) 

allows obtaining well-known general results of the thermodynamics. We therefore 
introduce a general methodology to describe the problem of the conformational 
transitions in complex systems composed of N units. The more general form of 
the corresponding Hamiltonian can be written a s 

.H =
N∑

i=1

pi · pi

2M
+ U (r1, . . . , rN, S1, . . . , SN) −

N∑

i=1

μiSi, (3.1) 

where Si ∈ {0, 1}. are the spin variables ∀i = 1, . . . , N . introduced in the potential 
energy U . A domain is said folded (i.e., it is in the first energy well) when Si = 0.and 
unfolded (i.e., it is in the second energy well) when Si = 1.. It is important to remark 
that in this review sometimes we use the values {0, 1}. for the spin and sometimes 
the values {−1,+1}.. Conceptually there is no difference, but values {−1,+1}. are 
more convenient for implementing Ising’s model. 

The first term represents the kinetic energy ( pi .are the linear momenta of the units 
and M is their mass), and the second term represents the potential energy depending 
on the units positions ri . and on the spins Si .. Finally, the third term mimics the effect 
of the external chemical environment on the state of the domains: If μi > 0., the  
unfolded state is favored, and conversely, if μi < 0., the folded state is favored. The 
chemical potentials μi . may describe the effect of some chemical process, able to 
induce or to hinder the units unfolding.
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The folding/unfolding of the units, here described by the spin variables, is 
controlled by the mechanical boundary conditions applied to the chain and by the 
chemical potentials of the external environment. We consider here a chain with the 
first extremity tethered at the origin of the reference frame. In general, an arbitrary 
chain described by Eq. (3.1) can be studied within the Helmholtz ensemble or within 
the Gibbs ensemble of the statistical mechanics (see Fig. 3.2). In the first situation, 
we fix the second extremity at a given point of the space, while, in the second 
situation, we apply an external force to the last unit. In the following, we briefly 
describe the statistical mechanics of both ensembles, eventually verifying that the 
proposed approach yields results, which are coherent with standard thermodynamics 
(Gibbs 1902; Weiner 2002). 

Within the Helmholtz ensemble (see Fig. 3.2a), we have a specific Hamiltonian 
given by 

.HH = H(q,p,S; r,μ), (3.2) 

where we introduced q = (r1, . . . , rN−1). (we fixed rN = r.), p = (p1, . . . ,pN−1). 

(we fixed pN = 0.), S = (S1, . . . , SN)., and μ = (μ1, . . . , μN).. In this scheme, r. 
and μ.are externally controlled variables, and q,p., and S.are the dynamical variables 
of the phase space. Therefore, the density probability of the canonical ensemble is 
given by (Gibbs 1902; Weiner 2002) 

.ρH (q,p,S) = 1

ZH (r,μ, T )
exp

[
−HH (q,p,S; r,μ)

kBT

]
, (3.3) 

where the Helmholtz partition function reads 

.ZH (r,μ, T ) =
∑

S∈{0,1}N

∫

Q

∫

Q
exp

[
−HH (q,p,S; r,μ)

kBT

]
dqdp, (3.4) 

where Q = R
3(N−1)

.. By means of this probability density, one can determine 
the average value of any macroscopic variable. This is the reason why calculating 
the partition function is of vital importance in statistical mechanics. In particular, 
the average value of the force f = ∂HH

∂r . needed to fix rN = r. and the average 
value of each spin variable Si . can be easily obtained through the introduction 
of the Helmholtz free energy F = −kBT log ZH .. Indeed, straightforward calcu-
lations yield 〈f〉 = ∂F

∂r . and 〈S〉 = − ∂F
∂μ

., which represent two macroscopic or 
thermodynamic relations. Moreover, the first and second principles for quasi-static 
transformations can be derived as follows from previous statements. First of all, 
we define a quasi-static transformation through the time evolution of r(t)., μ(t)., and 
T (t)., which are considered as externally controlled “slow-varying” variables. Under 
these hypotheses, we can assume that the canonical distribution in Eq. (3.3) remains 
valid also in this “weak” out-of-equilibrium regime. Therefore, we can evaluate
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the rate of change of the internal energy U., defined as the average value of the 
Helmholtz Hamiltonian 

. 
dU
dt

=
∑

S

∫

Q

∫

Q

d

dt
(HH ρH ) dqdp

=
∑

S

∫

Q

∫

Q

(
∂HH

∂μ
· dμ

dt
+ ∂HH

∂r
· dr

dt

)
ρH dqdp +

∑

S

∫

Q

∫

Q
HH

dρH

dt
dqdp

= −〈S〉 · dμ

dt
+ 〈f〉 · dr

dt
+
∑

S

∫

Q

∫

Q
HH

dρH

dt
dqdp, (3.5) 

where all the sums on S. are performed over {0, 1}N .. The first two terms represent 
the chemical and the mechanical work per unit of time, respectively, done on 
the system, while the third one describes the rate of heat entering the system. 
The latter can be further elaborated by defining η = F−HH

kBT
. and ρH = eη

.. 
Since

∑
S
∫
Q
∫
Q eηdqdp = 1., the derivative with respect to the time gives ∑

S
∫
Q
∫
Q eηη̇dqdp = 0., and since F. is independent of S,q., and p., we can also 

write that
∑

S
∫
Q
∫
Q Feηη̇dqdp = 0.. The last term in Eq. (3.5) can therefore be 

rewritten as 

. 
∑

S

∫

Q

∫

Q
HH

dρH

dt
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∑

S

∫

Q

∫

Q
HH eηη̇dqdp (3.6)

=
∑

S

∫

Q

∫

Q
(HH − F ) eηη̇dqdp.

Now, since HH − F = −kBT η ., we also have  

.
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S

∫

Q

∫

Q
HH

dρH

dt
dqdp = −kBT

∑

S

∫

Q

∫

Q
eηηη̇dqdp. (3.7) 

This expression can be easily interpreted by considering the average value of the 
variable η . given by 〈η〉 = ∑

S
∫
Q
∫
Q eηηdqdp. and its time derivatives 

.
d 〈η〉

dt
=
∑

S

∫

Q

∫

Q
eηη̇dqdp +

∑

S

∫

Q

∫

Q
eηηη̇dqdp. (3.8) 

Since the first integral is zero for previous calculations, we eventually obtain 

.

∑

S

∫

Q

∫

Q
HH

dρH

dt
dqdp = −kBT

d 〈η〉
dt

= T
dS
dt

, (3.9)
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where we introduced the entropy of the system as 

.S = −kB 〈log ρH 〉 = −kB

∑

S

∫

Q

∫

Q
ρH log ρH dqdp. (3.10) 

The first and the second principles of the thermodynamics for quasi-static transfor-
mations can be finally summed up through the balance equation 

.
dU
dt

= −〈S〉 · dμ

dt
+ 〈f〉 · dr

dt
+ T

dS
dt

. (3.11) 

Hence, we proved that the macroscopic thermodynamics is perfectly coherent with 
the approach based on the spin variables, introduced to analyze systems with 
conformational transitions. In addition, the average value of the relation HH −F =
−kBT η . yields F = U − TS., which corresponds to the macroscopic definition of 
Helmholtz free energy. By differentiating with respect to the time, we also have 

.
dF
dt

= −〈S〉 · dμ

dt
+ 〈f〉 · dr

dt
− SdT

dt
, (3.12) 

from which we can deduce the two already introduced equations 〈f〉 = ∂F
∂r . and 

〈S〉 = − ∂F
∂μ

. and the important relation S = − ∂F
∂T

., giving the entropy in terms of the 
Helmholtz free energy. 

Concerning the Gibbs ensemble (see Fig. 3.2b), we can introduce the following 
extended Hamiltonian: 

.HG = H(q,p,S;μ) − f · rN, (3.13) 

where the second term represents the energy associated with the external force 
applied to the last unit of the chain. Here, we introduced q = (r1, . . . , rN)., 
p = (p1, . . . ,pN)., S = (S1, . . . , SN)., and μ = (μ1, . . . , μN).. In this scheme, f. and 
μ. are externally controlled variables, and q,p., and S. are the dynamical variables 
of the phase space. Therefore, the density probability of the canonical ensemble is 
given by (Gibbs 1902; Weiner 2002) 

.ρG(q,p,S) = 1

ZG(f,μ, T )
exp

[
−HG(q,p,S; f,μ)

kBT

]
, (3.14) 

where the Gibbs partition function reads 

.ZG(f,μ, T ) =
∑

S∈{0,1}N

∫

P

∫

P
exp

[
−HG(q,p,S; f,μ)

kBT

]
dqdp, (3.15)
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where P = R3N
.. As before, the most important expected values can be evaluated 

through the introduction of the Gibbs free energy G = −kBT log ZG .. Simple  
calculations yield indeed 〈r〉 = − ∂G

∂f . (where r = rN .) and 〈S〉 = − ∂G
∂μ

., which 
represent two classical thermodynamic relations. Also in this isotensional case, we 
can introduce a quasi-static transformation through the time evolution of f(t)., μ(t)., 
and T (t)., which are, as before, externally controlled “slow-varying” variables. We 
can assume that the canonical distribution in Eq. (3.14) remains valid, and we can 
evaluate the rate of change of the average value of the Gibbs Hamiltonian, which is 
the so-called enthalpy H. 
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+
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dt
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While the first two terms represent the power (chemical and mechanical) supplied to 
the system, the third term is the rate of heat transferred to the system. A calculation 
similar to the one developed for the Helmholtz ensemble allows us to rewrite this 
last term as follows: 

.
dH
dt

= −〈S〉 · dμ

dt
− 〈r〉 · df

dt
+ T

dS
dt

, (3.17) 

where the entropy for the Gibbs ensemble is given by 

.S = −kB 〈log ρG〉 = −kB

∑

S

∫

P

∫

P
ρG log ρGdqdp. (3.18) 

We can straightforwardly prove the thermodynamic relation G = H− TS., and we 
obtain the rate of change of the Gibbs free energy as 

.
dG
dt

= −〈S〉 · dμ

dt
− 〈r〉 · df

dt
− SdT

dt
. (3.19) 

The last energy balance immediately delivers the relations 〈r〉 = − ∂G
∂f . and 〈S〉 =

− ∂G
∂μ

., previously demonstrated, and the result S = − ∂G
∂T

., corresponding to the 
macroscopic definition of entropy. 

The two approaches outlined represent complete procedures able to deliver 
thermomechanical response of a small system undergoing conformational tran-
sitions under isometric or isotensional boundary conditions. We proved that the 
introduction of additional spin variables to describe the change of state of the 
units leaves unaltered the general results of the thermodynamics, thus being
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well-grounded and promising for applications. It is important to remark that the 
thermoelastic response may be different for the two introduced ensembles if we 
consider chains composed of a small number N of units (Weiner 2002). On the 
other hand, when the thermodynamic limit is attained (ideally for N → ∞.), the two 
ensembles become equivalent, and they exhibit the same physical response (Winkler 
2010; Manca et al. 2012, 2013a, 2014a; Giordano 2018). This equivalence property 
is valid for non-branched single chains without confinements, i.e., freely fluctuating 
in the whole space. Therefore, in our analysis, the only constraints consist in the 
punctual boundary conditions defining the Helmholtz and the Gibbs ensembles. 
However, as discussed in the introduction, it is noteworthy to mention that some 
particular cases on nonequivalence between dual canonical ensembles have been 
recently discussed for confined polymer chains (Skvortsov et al. 2007; Dimitrov 
et al. 2009; Skvortsov et al. 2012; Dutta et al. 2018, 2019; Noh et al. 2021). In any 
case, having demonstrated the consistency of the spin method with thermodynamics 
allows us to use it freely in the study of systems with conformational transformations 
described, for example, by bistability, multistability, and deadhesion or fracture 
processes. In the remainder of this review, we show some applications of it. 

3 Single-Molecule Force-Spectroscopy Measurements 
and Their Interpretation 

It is well known that the biological functions of several macromolecules (for 
instance, nucleic acids, polysaccharides, and proteins) are strongly related to their 
three-dimensional conformations. It is therefore important to study the possible rear-
rangements induced by external actions (which can be entropic, purely mechanical, 
or chemical). For example, the tertiary structure of proteins completely controls 
the relation between structure and function. Under the action of some factors, 
the configuration of proteins can be modified, leading to some changes in the 
physical and chemical properties and, eventually, to the removal of their biological 
activity. For instance, the capacity of these macromolecules to keep their spatial 
configuration stable against mechanical factors must be tested to evaluate their 
ability to conserve their original biological behavior. Indeed, if a macromolecule 
is pulled with a large force, it can lose or change its biological function since the 
force reduces the structural stability and induces rearrangements. For an enzyme, 
this can represent the loss of its catalytic capacity, and for an antibody, this can 
produce the loss of its ability to bind to an antigen. Hence, the mechanical actions 
on biological macromolecules can lead to alterations in their functions, with crucial 
physiological consequences. 

Studying the relation between the three-dimensional conformation of a macro-
molecule and its function can be directly done by using force spectroscopy 
methods, which can be applied to unfold, through a mechanical stretching, the 
native folded structure of a macromolecule. The controlled unfolding leads to
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the estimate of the involved forces (it is indeed possible to measure the force-
extension relation), the energy landscape, and many other dynamic properties of the 
system under investigation. We remark that the energy landscape of most biological 
macromolecules shows a multistable shape, characterized by several metastable 
states corresponding to different conformations. Therefore, the paths followed 
by the system to switch among these substates are specified by characteristic 
times that depend on the energy barriers between the states and on the external 
actions applied to the system. The mechanical experiments on single molecule are 
extremely useful to study intra- and intermolecular forces and to obtain information 
about the thermodynamics and kinetics of several molecular processes. Different 
force spectroscopy techniques allow the investigation of these macromolecular 
features. Single-molecule experiments are indeed based on laser optical tweezers 
(LOTs), magnetic tweezers (MTs), atomic force microscopes (AFMs), and micro-
electromechanical systems (MEMS) (Strick et al. 2002; Ritort 2006; Cleri  2008; 
Neuman et al. 2008; Kumar et al. 2010; Mandal 2020). These approaches are 
important not only for probing the response of a single macromolecule but also 
for testing the validity of thermodynamics and statistical mechanics at the scale of 
atoms and molecules. 

3.1 Optical Tweezers 

Optical tweezers are devices able to exploit one or more focused laser beams 
to hold and move micro- or nanoparticles or beads. The first detection of forces 
on microparticles was performed by Arthur Ashkin in 1970, paving the way for 
the use of this new technology (Ashkin 1970a,b). Several years later, Ashkin and 
colleagues developed real single-beam gradient force traps, able to control the 
position of microscopic particles in the three-dimensional space (Ashkin et al. 
1986). In 2018, Ashkin was awarded the Nobel Prize in Physics for the introduction 
of these devices, which was eventually used to manipulate atoms, molecules, and 
biological structures. This technique is able to generate an actual energy well in 
the space, and the force applied to the particle is proportional to the displacement 
from the equilibrium position. Hence, the optical tweezers act like a linear spring 
(in a given range) (Zaltron et al. 2020). These devices are able to apply forces in the 
range 0.1–100 pN with an intrinsic stiffness of 0.01–1 pN/nm and to measure the 
particle position with sub-nanometer resolution. Because of the rather limited force 
range, they have been mainly used in experiments on DNA and RNA and also with 
proteins or other molecules. However, the high-intensity laser used for the optical 
trapping generates a local heating, causing degradation or denaturation of biological 
structures and an alteration of the viscosity of the solution. A comprehensive tutorial 
on laser optical tweezers can be found in the literature (Gieseler et al. 2021).
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3.2 Magnetic Tweezers 

The second force spectroscopy technique mentioned is based on magnetic tweezers, 
which use magnets or electromagnets to create a magnetic field gradient able to 
generate force acting on a paramagnetic bead. The force is applied in the direction of 
the field gradient. Typically, the investigated macromolecule is attached to the bead, 
and it is therefore stretched. The second end-terminal of the molecule is tethered 
to the base or substrate, where the experiment is performed. The magnets’ position 
and velocity are controlled in order to apply the desired molecular unfolding. The 
real-time detection of the bead position is realized with an optical system and a CCD 
camera. From the historical point of view, Francis Crick and Arthur Hughes firstly 
introduced a method based on magnetic particles to measure the physical properties 
of the cytoplasm in 1955 (Crick et al. 1950). This technique was later improved with 
the idea of studying the rheology of the cell (Valberg et al. 1985, 1987). Only in 
the 1990s this methodology was applied to single molecules, in particular to study 
the elasticity of DNA (Smith et al. 1992; Strick et al. 1996). In modern magnetic 
devices, the force applied can reach the value of 200 pN, and the magnetic trap 
stiffness is very low, around 10 −4

. pN/nm. The damage by heating and photodamage 
in biological structures is considerably reduced with magnetic tweezers based on 
permanent magnets. However, in some setups with electromagnets, high electric 
current may generate a large amount of heat, which requires the use of cooling 
systems. Importantly, magnetic tweezers, in addition to applying a longitudinal pull 
on the macromolecule, can be used to generate a chain twist. This is useful to study 
conformational transitions induced by twist mechanisms. In addition, magnetic 
tweezers have the advantage to be able to really exert a constant force, while in 
atomic force microscopes and optical tweezers the constant force mode can be 
achieved only by feedback-control systems, which are quite complex. 

3.3 Atomic Force Microscope 

The force spectroscopy based on the atomic force microscope is a well-established 
technique for studying strong covalent bonds and stiff intermolecular and 
intramolecular interactions. The original AFM is a device useful to investigate 
the morphological features of a material surface, capable of reaching the atomic 
resolution. This is typically done by monitoring the force between the surface under 
study and the tip of a silicon (or silicon nitride) cantilever. The position of the tip 
is measured by observing the deflection of the cantilever through a standard optical 
method. A piezoelectric system allows scanning the whole surface, eventually 
producing an image corresponding to the topographical structure of the surface. 
This classical atomic force microscope has been invented in 1985 by Gerd Binnig, 
Calvin Quate, and Christoph Gerber and commercialized for the first time in 1989 
(Binnig et al. 1986). The AFM technique has been further generalized in order
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to apply force on a single molecule and to measure force-extension curves of 
macromolecules. In this application, the chain is stretched between the tip of the 
cantilever and the substrate with forces ranging in the interval 20 pN–10 nN, with 
stiffness values of 10–10,000 pN/nm. The spatial resolution is around 0.2 nm. These 
data allow us to state that this method is useful for large macromolecules such as 
proteins. While the classical pulling speeds used in single molecule experiments 
vary in the range of a few nm/s to about 10 μ.m/s, the recently introduced high-
speed AFM (HS-AFM) allowed to reach pulling speeds of the order of 4000 
μ.m/s (Rico et al. 2013; Eghiaian et al. 2014; Valotteau et al. 2019; Rico et al. 
2019). This is a significant development since it permits to compare the results of 
experiments with those obtained by molecular dynamics simulations, which offer 
atomic-level descriptions of the forced unfolding within the out-of-equilibrium 
statistical mechanics (Gräter et al. 2005; Lee et al. 2009). 

3.4 MEMS Devices 

A last class of devices used to perform single-molecule experiments is represented 
by the micro-electromechanical systems or MEMS devices. The development of 
MEMS devices started in the 1960s by means of the same technologies used for 
microelectronics. In fact, they are often based on silicon substrates suitably adapted 
and enriched with various components (Rai-Choudhury 2000). In general they are 
based on the combination of microelectronic systems with partially mobile mechan-
ical systems. The moving components can be plates useful to change the capacitance 
of the structure or electrostatically controlled cantilevers. Typically, these systems 
are used to obtain sensors and captors of several physical quantities. MEMS for 
biological or biomedical applications are named Bio-MEMS and may integrate 
microfluidic chambers, biosensors, microarrays, microelectrodes, or microreactors 
(Folch 2013). Force spectroscopy techniques, based on optical or magnetic tweezers 
and AFM, are able to make precise measurements at the single-molecule level. 
However, their implementation and use is quite complex, and therefore they 
cannot be adopted for intensive and systematic biosensing. The application of 
MEMS devices in this context is promising. For instance, a micromachined DNA 
manipulation MEMS platform has been developed to stretch and rotate a single 
DNA molecule (Chiou et al. 2005). This device exploits the combination of micro-
machined magnetic tweezers and microfluidic channels. Another example concerns 
a new hybrid field microfluidic approach, employing both hydrodynamic forces 
and an electric field to regulate the DNA initial conformations (Ren et al. 2012). 
Moreover, micro-electromechanical systems have been developed for monitoring 
bio/chemical interactions of bio-macromolecules, by controlling their mechanical 
properties (Tarhan et al. 2016). To conclude, a specific MEMS device, referred to 
as silicon nanotweezers (SNTs), has been introduced to mechanically characterize 
a DNA bundle exposed to ionizing radiations, delivered by a therapeutic linear 
particle accelerator (LINAC) (Yamahata et al. 2008; Perret et al.  2016, 2017). The
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Fig. 3.3 Panel a: room temperature force-extension curves for a single dsDNA molecule in 
different salt concentrations. The solid lines correspond to theoretical curves calculated using the 
global coupling theory developed by Punkkinen et al. (2005). Experimental data are taken from 
Wenner et al. (2002). Panel b: the same data of panel a showing only the overstretching portion. 
Panels a and b are reproduced with permission from Punkkinen et al. (2005). Panel c: force-
extension curve (blue) from one dextran molecule obtained through AFM force spectroscopy and 
its fit in the low-force (before the transition) and high-force (after the transition) regime obtained 
by the extensible FJC model. Panel c is reproduced with permission from Walther et al. (2006) 

radiation induces a mechanical degradation i.e., a population of breaks in a DNA 
bundle, which can be quantified by measuring the elastic properties of the bundle 
itself (Manca et al. 2014b, 2015). Hence, one could provide a direct relationship 
between radiation dose and its damaging effects. The real-time observation of the 
DNA degradation under ionizing radiation is useful to develop better techniques for 
the treatment of tumors. 

3.5 Experimental Results on Force-Extension Curves 

After this quick review of the technologies used to develop single-molecule force 
spectroscopy methods, we briefly describe the typical force-extension responses 
observed in these experiments. While the structure of DNA was first elucidated in 
1953 by Watson and Crick (Watson et al. 1953), who obtained the Nobel Prize in 
Physiology or Medicine 1962, its mechanical behavior has been tested by magnetic 
tweezers force spectroscopy only in 1992 (Smith et al. 1992), eventually obtaining 
the force-extension relation. These results, for individual DNA molecules, were 
obtained at three different salt concentrations and with forces in the range from 
10 −14

. to 10 −11
. N (Smith et al. 1992). These experimental achievements have been 

completely understood from the theoretical point of view by means of the statistical 
mechanics thanks to the works of Marko and Siggia (Marko et al. 1995; Bustamante 
et al. 1994). They proved that the DNA mechanics is well reproduced by the 
worm-like chain (WLC) model rather than by the freely jointed chain (FJC) model. 
The ideal FJC model schematizes the macromolecule as a sequence of N non-
deformable segments of length b (referred to as Kuhn length). The contour length 
LC . is the total length of the macromolecule at the maximum physically possible
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extension, and then we have LC = Nb. for a chain with N units. The FJC model 
does not take physical interactions among segments into account. Hence, there is no 
preferred angle between two adjacent segments. The force-extension response for 
the FJC model is given b y 

.
x

Nb
= coth

(
f b

kBT

)
− kBT

f b
= L

(
f b

kBT

)
, (3.20) 

where x is the extension of the chain, N is the number of units, b is the segment 
length, f is the applied force, kB . is the Boltzmann constant, T is the temperature, 
and L. is the Langevin function, defined asL(z) = coth(z)− 1

z
.. This model is useful 

to describe simple polymer chains but is not adapted for the DNA. Differently, the 
WLC model perfectly mimics double-stranded DNA, in the first entropic region 
of the force-extension curve (Marko et al. 1995; Bustamante et al. 1994). In the 
ideal FJC model, no forces are necessary to fold or bend the chain. On the contrary, 
in the WLC model, energy depending on the angles between adjacent segments is 
introduced. More precisely, the energy is set to zero if all segments are aligned, and 
therefore a force can be applied to fold or bend the chain. This property is taken 
into consideration by means of a new parameter called persistence length p, which 
is defined by the ratio between the mechanical flexibility or bending stiffness and 
the energy of thermal fluctuations. Hence, it takes into account the balance between 
enthalpic and entropic contributions (Marko et al. 1995). From the physical point of 
view, the persistence length p can be defined as the length over which correlations 
in the direction of the tangent are lost. The behavior of a WLC chain is described by 

.f = kBT

p

[
1

4

(
1 − x

LC

)2

− 1

4
+ x

LC

]
, (3.21) 

where the quantities are defined above. The DNA used in the first force spectroscopy 
experiment corresponds to a contour length LC = 32.8μ.m and a persistence length 
p = 53.4.nm (Marko et al. 1995; Bustamante et al. 1994). 

Refined experiments have been realized on DNA with magnetic torque tweezers 
in order to measure the effective torsional stiffness as function of the applied force 
(Lipfert et al. 2010, 2011). Recently, an alternative, more refined, WLC model was 
proposed to correctly take account of both bending and torsional stiffness by adding 
a coupling term between twist and bend deformations (Nomidis et al. 2017, 2019). 

In further investigations, the DNA molecule has been pulled with larger forces, 
and an intriguing overstretching phenomenon has been observed (Smith et al. 
1996). In particular, a force plateau at around 65 pN has been measured in the 
force-extension curve (Smith et al. 1996). In Fig. 3.3a, b, we show recent results 
proving the dependence of the plateau on the salt concentration. Here, the theoretical 
results are taken from Punkkinen et al. (2005) whereas the experimental ones 
from Wenner et al. (2002). The overstretching behavior can be interpreted by 
means of a bistability of the DNA chain structure. However, the real molecular
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origin of this transition has been largely investigated, and a debate exists on the 
DNA conformation after the overstretching: Many researchers think that there is a 
simple mechanical denaturation leading to a transformation of the double-stranded 
DNA into two single-stranded DNA (Rouzina et al. 2001a,b). However, other 
researchers have proposed the existence of a new DNA conformation (called S-DNA 
or stretched DNA), which is an intermediate structure between the double-stranded 
DNA and its denatured structure (Cocco et al. 2004). Finally, other researchers 
thought that melting or S-DNA was depending on the composition in amino acids 
of the chain (Bosaeus et al. 2012). A discrete worm-like chain model has been 
implemented to describe the DNA stretching under force and to investigate dsDNA 
to ssDNA and dsDNA to S-DNA transitions (Manghi et al. 2012). 

The force-extension curve exhibiting a force plateau, corresponding to a con-
formational transition of the molecule, has been observed also for other macro-
molecules. An interesting example concerns a polysaccharide called dextran. A 
dextran filament has been tethered to a gold surface and probed with the atomic force 
microscope tip by means of a vertical stretching (Rief et al. 1997a). At low forces 
the deformation of dextran is dominated by entropic forces and can be described 
by the FJC model with a Kuhn length of around 6 Å. At more elevated forces 
the dextran filament exhibits a reversible conformational transition characterized 
by a force plateau (Rief et al. 1997a). This transition has been explained in terms 
of a two-state model implemented through Monte Carlo simulations (Rief et al. 
1998). In Fig. 3.3c we show the force-extension curve for dextran recently obtained 
with AFM force spectroscopy (Walther et al. 2006). These measurements have been 
realized with a refined AFM variance analysis able to detect conformational changes 
at the sub-Angstrom scale (Walther et al. 2006). Also artificial polymers can show 
conformational transitions characterized by a force plateau. The study of these 
structures is referred to as covalent polymer mechanochemistry. In this context, 
chemical transformation is activated by external mechanical forces applied to the 
polymer chain. An example of interesting molecular architecture is given by the 
cyclobutane mechanophore operating as a gate to regulate the mechanical activation 
of a second mechanophore, thus resulting in a mechanochemical cascade reaction 
(Wang et al. 2016). Single-molecule force spectroscopy shows a force-extension 
curve characterized by a force plateau in correspondence to the opening/closing 
transition of the gate (Wang et al. 2016). Also in this case, the underlying bistability 
is able to generate the conformational transition of the molecular structure. 

We have introduced a first class of mechanical responses characterized by a force 
plateau corresponding to the transition of the units of the chain between two configu-
rational states. This force plateau corresponds to a synchronized transition of all the 
units, which is induced by the external force applied to stretch the chain. A second 
class of responses has been observed in different single-molecule experiments, 
typically concerning multi-domain proteins. The folding and unfolding of these 
protein systems has been widely observed through the AFM force spectroscopy. 
Many proteins with important biological mechanical functions are composed of 
many units having the same chemical composition, i.e., the same amino acid 
sequence. Moreover, each unit can have one or more stable configuration, and the
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Fig. 3.4 Force spectroscopy measurements on proteins based on the AFM device. Panel (a): 
worm-like chain (WLC) model for a semiflexible chain used to interpret the unfolding on each 
protein domain. Here, Lc . is the contour length of the chain, and p is the persistent length. Panel 
(b): sawtooth force-extension curve describing the sequential unfolding of the protein domains. 
Panel (c): force-extension curve for the recombinant human tenascin-C. Panel (d): force-extension 
curve for the cytoskeletal protein spectrin showing a heterogeneous persistence length. Panel (e): 
force-extension curve for a recombinant fragment of titin consisting of titin Ig domains 27–34. The 
figure is reproduced with permission from Fisher et al. (1999) 

transition between these states can be induced by applied forces. The typical force-
extension response observed for these systems is represented by a sawtooth curve, 
where each force peak represents the unfolding of one unit. Therefore, in this case, 
the overall unfolding process is sequential and not synchronized as discussed above 
for other structures (nucleic acids and polysaccharides). The characteristic sawtooth 
pattern, with the number of peaks equal to the number of domains, has been first 
observed with titin (Rief et al. 1997b) and later with tenascin (Oberhauser et al. 
1998) and spectrin (Rief et al. 1999). The sequential character of the force-extension 
curve can be found in Fig. 3.4, where we show the WLC model for the unfolding of 
one unit, the overall chain unfolding under AFM stretching, and some examples of 
proteins (Fisher et al. 1999). 

In order to explain the emergence of two different classes of force-extension 
responses (with force plateau or sawtooth pattern), we present in the next section 
a simple model able to introduce the bistability within the classical freely jointed 
chain scheme. This model will be named the bistable freely jointed chain (BFJC) 
model. Furthermore, we introduce a generalization taking into account the elasticity 
of each unit of the chain. The obtained model is referred to as extensible bistable 
freely jointed chain (EBFJC) model.
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3.6 Bistable Freely Jointed Chain Model 

In this section, we describe a generalization of the classical FJC model able to take 
into account the two-state behavior or, equivalently, the bistability of the units of 
the chain (see Fig. 3.5). In this model the units are free to fluctuate in the three-
dimensional space, and the potential energy of each unit of the chain is characterized 
by a bistable behavior (see Fig. 3.6, left panel). The two potential wells can be 
written as 

.U(r, s) = v(s) + 1

2
k(s) [‖r ‖ − �(s)]2 , (3.22) 

where r. is the vector joining the end-terminals of the unit. Here, we adopted the 
method of the spin variables based on the introduction of a discrete variable s, which 
is able to distinguish between the two quadratic wells of the system (Giordano 
2017). Indeed, the quantity s ∈ {0, 1}. allows us to identify the potential well 
explored by the vector r.. The physical parameters v(s)., k(s)., and �(s). represent the 
basal energy, the elastic stiffness, and the equilibrium length of the two potential 
wells characterizing the system bistability. We remark that in the classical FJC 
model, the elastic stiffness tends to infinity, or equivalently, the length of each 
element is kept constant. Accordingly, the mechanical behavior is fully governed by 
entropic forces since the elastic or enthalpic contribution is not taken into account. 
Here, for mathematical convenience, it is better to proceed from Eq. (3.22), with 
finite elastic constants, and to analyze the limiting cases in the following phase. The 
case with finite extensibility will be treated in the following section. In order to 
explain the origin of the two classes of mechanical responses observed in single-
molecule force spectroscopy experiments, described in the previous section, we 
analyze the behavior of the system under the two Gibbs and Helmholtz ensembles 
(see Fig. 3.5). The study of both configurations with an arbitrary number N of units 
of the chain will be useful to better understand the force-extension curves observed 
experimentally . 

Fig. 3.5 Scheme of the statistical Gibbs (a) and Helmholtz (b) ensembles, corresponding to the 
isotensional and isometric conditions applied to a bistable freely jointed chain with N domains. 
While in the Gibbs ensemble (a) we apply the force f and we measure the average position 〈z〉., 
in the Helmholtz ensemble (b) we impose the position z and we measure the average force 〈f 〉.
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Fig. 3.6 Left panel: potential energy of a single element of the bistable freely jointed chain (BFJC) 
model (dashed blue curve). The potential wells are approximated through two parabolic profiles 
identified by s = 0. and 1. Right panel: average normalized extension (red line) and normalized 
spin variable (blue line) versus the dimensionless force for the bistable freely jointed chain under 
Gibbs conditions. We adopted the parameters �E = 30kBT .and χ = 3. (at T = 300.K). The curves 
are independent of N within the Gibbs ensemble (with normalized ex tension) 

3.6.1 The Gibbs Ensemble for the BFJC Model 

Now, we consider a chain of N units described by Eq. (3.22), with an external force 
applied to the last one (see Fig. 3.5a). In this condition, the total potential energy of 
the system can be written as 

.Utot (q, s; f) =
N∑

i=1

U(ri − ri−1, si) − f · rN, (3.23) 

where q = (r1, . . . , rN). is the vector containing all the coordinates r1, . . . , rN ., 
s = (s1, . . . , sN ). is the vector with all spin variables, and f. is the force applied 
to the last unit of the chain. The last term in the expression of the total energy 
represents the effect of the force f.. Of course, we consider the system embedded in 
a thermal bath at temperature T , and we examine its thermomechanical response 
at thermodynamic equilibrium. Therefore, the system is governed by the canonical 
distribution of the statistical mechanics. The partition function within the Gibbs 
ensemble can be determined by summing the discrete spin variables and integrating 
the continuous spatial ones, as follo ws: 

.ZG(f) =
∑

s1∈{0,1}
. . .

∑

sN∈{0,1}

∫

	3N

e
− Utot (q,s;f)

kBT dq. (3.24) 

To fix ideas, the physical properties of the two potential wells of the bistable energy 
can be defined by v(0) = 0, �(0) = �, k(0) = k .and v(1) = �E, �(1) = χ�, k(1) =
k ., where �E . is the energy jump between the folded and unfolded states and χ . is 
the ratio between the unfolded and folded equilibrium lengths. A straightforward 
integration, described by Giordano (2017), delivers
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. ZG = c

⎧
⎨

⎩

∫ ∞

0
e
− k

2kBT [ξ−�]2 sinh
(

f ξ
kBT

)

f ξ
kBT

ξ2dξ (3.25)

+ φ

∫ ∞

0
e
− k

2kBT [ξ−χ�]2 sinh
(

f ξ
kBT

)

f ξ
kBT

ξ2dξ

⎫
⎬

⎭

N

,

where c represents a non-influential multiplicative constant and φ = exp
(
− �E

kBT

)
. is 

a Boltzmann factor calculated through the energy jump �E .. The units of the chain 
do not interact, and therefore the partition function has been found in the form of 
a power with exponent N (which is a classical property of noninteracting systems). 
In order to exactly define the behavior of the BFJC model, we must evaluate the 
limit for k approaching infinity of the partition function obtained in Eq. (3.25). This 
allows us to consider units without extensibility. To determine this limiting behavior, 

we can use the classical Dirac delta function representation 
√

α
π
e−α(x−x0)

2 →
α→∞

δ(x − x0)., eventually yielding (Giordano 2017) 

.ZG = c

[
sinh y

y
+ χφ

sinh(χy)

y

]N

, (3.26) 

where we introduced the dimensionless force y = �f
kBT

.. If the system under 
consideration is not bistable (e.g., obtained with �E → ∞. or, equivalently, with 
φ → 0.), the second term in Eq. (3.26) vanishes, and we obtain 

.ZG = c

(
sinh y

y

)N

, (3.27) 

which is the classical partition function of the FJC model (Weiner 2002; Doi  1996; 
Glatting et al. 1993; Manca et al. 2012). The cases with finite values of the elastic 
constant will be considered in the next section. Within the Gibbs ensemble, the 
standard relation 〈r〉 = kBT

∂ log ZG

∂f
. permits to find the force-extension response 

for the bistable freely jointed chain as follows: 

. 〈r〉 = N�
L(y) + χ2φL(χy)

sinh(χy)
sinh y

1 + χφ
sinh(χy)

sinh y

, (3.28) 

where L(y) = coth y − 1
y
. is the Langevin function. The average value of the 

spin variables can be naturally defined as 〈s〉 = 1
N

〈∑N
i=1 si

〉
., and therefore it is 

not difficult to prove that 〈s〉 = −kBT
∂ log ZG

N∂�E
.. A second important result can be 

therefore written as
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Fig. 3.7 Left panel: average dimensionless force (red line) and average spin variable (blue line) 
versus normalized extension for the bistable freely jointed chain under Helmholtz conditions. We 
adopted the parameters �E = 30kBT ., χ = 3., and N = 20. (at T = 300. K). We also plotted for 
comparison the force-extension Gibbs response (dashed green line). Right panel: force-extension 
response under Helmholtz (H) conditions for N = 10, 15, 20. and under Gibbs (G) condition to 
show the equivalence of the ensembles in the thermodynamic limit. We adopted the parameters 
�E = 30kBT ., and  χ = 3. 

. 〈s〉 = χφ
sinh(χy)

sinh y

1 + χφ
sinh(χy)

sinh y

. (3.29) 

Equations (3.28) and (3.29) completely characterize the behavior of the BFJC model 
under isotensional condition. An application of Eqs. (3.28) and (3.29) is shown in  
Fig. 3.6, right panel, where the average normalized extension and the average value 
of the spin variables are represented versus the dimensionless force. The force-
extension curve shows a collective behavior due to the synchronized unfolding of all 
the chain units at the threshold value of the dimensionless force f ∗�

kBT
= �E

(χ−1)kBT
.. 

The spin variable curve confirms this behavior by exhibiting a clear transition from 0 
to 1 at the same threshold value of the force. It means that all spins switch at the same 
time proving the synchronized character generated by the isotensional condition. It 
is interesting to remark that the force-extension curve is similar to the one of DNA 
and dextran described in the previous section. 

3.6.2 The Helmholtz Ensemble for BFJC Model 

Now, we consider the chain of bistable elements with the two end-terminals tethered 
at points r0 = 0. and rN = r. (see Fig. 3.5b). It means that we are working under 
isometric condition and therefore within the Helmholtz ensemble of the statistical 
mechanics. In this case, the total potential energy of the system can be written as 

.UH
tot (q, s; rN) =

N∑

i=1

U(ri − ri−1, si), (3.30)
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where rN = r. is the fixed extremity of the chain, q = (r1, . . . , rN−1). is the vector 
containing all positions r1, . . . , rN−1 ., and s = (s1, . . . , sN ). is the vector of all spin 
variables. The potential energy U(r, s). of a single unit used in Eq. (3.30) is given in  
Eq. (3.22). The Helmholtz partition function for this system can be written as 

.ZH (rN) =
∑

s1∈{0,1}
. . .

∑

sN∈{0,1}

∫

	3(N−1)

e
− UH

tot (q,s;rN )

kBT dq. (3.31) 

The comparison of Eqs. (3.24) and (3.31) allows us to state that the relation between 
the two partition functions ZG . and ZH . is described through a three-dimensional 
bilateral Laplace transform, as follows: 

.ZG(f) =
∫

	3
ZH (r) exp

(
r · f
kBT

)
dr. (3.32) 

Moreover, since the problem is spherically symmetric, we easily get the following 
simpler relationship: 

.ZH (r) = c

∫ +∞

−∞
ZG(iη)

η

r
sin

(
ηr

kBT

)
dη, (3.33) 

where c is an unimportant constant and ZG(iη). represents the analytic continuation 
of the Gibbs partition function over the imaginary axis. By substituting Eq. (3.26), 
we get the important integral expression 

.ZH (r) = c

∫ +∞

−∞

[
sin y

y
+ χφ

sin(χy)

y

]N
y

r
sin
( ry

�

)
dy. (3.34) 

If the studied system is not bistable (with �E → ∞. or, equivalently, with φ → 0.), 
the partition function can be simplified to 

.ZH (r) = c

∫ +∞

−∞

(
sin y

y

)N
y

r
sin
( ry

�

)
dy, (3.35) 

a result that has been largely studied by Rayleigh (1919), Polya (1913), Treloar 
(1946), and Wang et al. (1952), to analyze the behavior of chains and chains
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networks. For the bistable case, by means of an integration based on the complex 
variables techniques, we get the following result (Giordano 2017): 

. ZH (r) = πc

2(N−1)(N − 2)!r
N∑

k=0

N−k∑

p=0

k∑

q=0

(
N

k

)(
N − k

p

)(
k

q

)
(3.36)

×(−1)p+q(χφ)k(−
)N−21(
),

written in terms of the Heaviside step function 1(x)., defined as 1(x) = 1. if x ≥ 0. 

and 1(x) = 0. if x < 0.. Here we defined 
 = k − N + 2p − χk + 2χq − r
�
.. In  

this isometric case, the partition function cannot be written in terms of a power with 
exponent N because of the effective interaction among the elements induced by the 
Helmholtz boundary condition. The knowledge of the partition function allows us 
to obtain the force-extension response through the e xpression 

. 〈f 〉 = −kBT
∂ log ZH

∂r
(3.37) 

and the average value of the spin variables, as follows: 

. 〈s〉 =
〈

1

N

N∑

i=1

si

〉
= − 1

N
kBT

∂ log ZH

∂�E
. (3.38) 

We show an example of application of Eqs. (3.37) and (3.38) in Fig. 3.7, left  
panel. The typical sawtooth-like curve is observed in the force-extension response, 
corresponding to a sequential nonsynchronized process. This is explained by the 
individual successive unfolding of the domains, one by one, as also confirmed by 
the average value of the spin variable, which exhibits a series of steps corresponding 
to each unfolding process. Moreover, in Fig. 3.7, right panel, the force-extension 
curve in the Helmholtz ensemble is shown for different values of N = 10, 15., 
and 20. It is important to remark that when the number N of elements increases, 
the Helmholtz response converges to the Gibbs one, by progressively reducing the 
pick-to-pick distance in the sawtooth pattern. The equivalence of the ensembles in 
the thermodynamic limit is therefore confirmed for the BFJC model, as recently 
demonstrated for a large class of non-confined polymer chains (Manca et al. 2014a; 
Winkler 2010). 

To conclude, we described an application of the spin variables method in both the 
Gibbs and the Helmholtz ensembles, allowing to consider a fluctuating chain in the 
three-dimensional space. The obtained results allow us to give a direct interpretation 
of the synchronized and sequential responses of the folding/unfolding processes 
observed in experimental measurements. We therefore elaborated a methodology 
able to provide a unified modeling for such apparently contrasting experimental 
situations. It is important to observe that these results have been obtained for finite 
values of N , thus belonging to the so-called small systems thermodynamics.
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Fig. 3.8 Scheme of the statistical Gibbs (a) and Helmholtz (b) ensembles, corresponding to the 
isotensional and isometric conditions applied to an extensible bistable freely jointed chain with 
N domains. While in the Gibbs ensemble (a) we apply the force f and we measure the av erage 
position 〈z〉., in the Helmholtz ensemble (b) we impose the position z and we measure the average 
force 〈f 〉. 

3.7 Extensible Bistable Freely Jointed Chain Model 

An important generalization of the bistable freely jointed chain concerns the 
extensibility of the bonds between the chain units. The classical FJC model, and 
its bistable version BFJC previously discussed, considers rigid segments of fixed 
length. In this section, we develop the theory for the EBFJC model determining the 
analytic solution for the partition functions of chains made of bistable units, taking 
account of extensibility, within both the Gibbs and the Helmholtz ensembles (see 
Fig. 3.8) (Benedito et al. 2018a). The finite elastic constant of the bonds between the 
units plays a major role in defining the force-extension response in both isotensional 
and isometric ensembles. In particular, within the Helmholtz ensemble, the peak-
to-peak force of the sawtooth-like curve strongly depends on the intrinsic elastic 
constant of the units. This point is important for interpreting the results of the force 
spectroscopy measurements on proteins. From the mathematical point of view, the 
most difficult issue concerns the calculation of the Helmholtz partition function. 
Eventually, its closed-form expression has been found in terms of the Hermite 
polynomials, suitably generalized to negative indices. 

3.7.1 The Gibbs Ensemble for the EBFJC Model 

We take into consideration a two-state freely jointed chain composed of N domains 
under isotensional condition (see F ig. 3.8a). Here, instead of considering the units 
with an infinite elastic stiffness, like in Sect. 3.6, we try to consider a finite elasticity 
for the bistable units. The potential energy function of each unit is represented in 
Fig. 3.6, left panel, where the two wells correspond to the folded and unfolded 
configurations. As before, the spin variable approach consists in considering two 
quadratic curves, approximating the wells of this system and introducing a spin 
variable for each unit, useful to identify the potential well explored during the 
system evolution. A refined approximation of Eq. (3.25), developed by Benedito 
et al. (2018a), leads to the partition function
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Fig. 3.9 Left panel: force-extension response and average spin for a system with extensibility 
(k = 1.5.N/m) and a system without extensibility (k → ∞.). The calculation for the system with 
extensibility is based on the exact result in Eq. (3.25) (red curves) and on the approximation in 
Eq. (3.39) (blue curves). On the other hand, the system without extensibility has been studied 
through Eq. (3.26). Right panel: force-extension response and average spin for a system with 
variable extensibility k = 0.4, 0.8, 1.2, 1.6, 2.0.and 2.4.N/m. The calculation of the force-extension 
response and the average spin is based on the exact result in Eq. (3.25) (red curves) and on the  
approximation in Eq. (3.39) (blue curves). In both panels, we adopted the parameters N = 5., 
� = 0.5 × 10−9 .m, T = 300.K, χ = 3., �E = 20kBT = 8.28 × 10−20 .J 

.ZG(f ) =
[

sinh y

y
+ φχ

sinh(χy)

y

]N

exp

(
Nαy2

2

)
, (3.39) 

where y = �f
kBT

. is the dimensionless force, and α = k
2kBT

. represents the 
ratio between enthalpic contributions and thermal effects. The exponential term 
depending on α . is responsible for the elasticity of the chain. The same result without 
bistability (i.e., with φ = 0.) has been discussed in recent literature (Radiom et al. 
2017; Balabaev et al. 2009; Buche et al. 2022). Moreover, the case with bistability 
but without extensibility of the units is considered in Sect. 3.6. The knowledge of 
the partition function allows the calculation of the force-extension relation in the 
form 

. 〈r〉 = N�

[
L(y) + χ2φL(χy)

sinh(χy)
sinh y

1 + χφ
sinh(χy)

sinh y

+ αy

]
, (3.40) 

where L(y) = coth y − 1
y
. is the Langevin function. On the other hand, we get the 

average value of the spin variables as 

. 〈s〉 = χφ
sinh χy
sinh y

1 + χφ
sinh χy
sinh y

, (3.41) 

which does not depend on α .. An example of application of this theory is given 
in Fig. 3.9, left panel, where we compare a system with extensibility described 
by the exact Eq. (3.25) or by the approximated Eq. (3.39) and another system



3 Modeling Mechanical Micro-instabilities in Biophysics and Materials Science 131

Fig. 3.10 Force-extension response (left panel) and average spin (right panel) for a system with 
extensibility (k = 1.5.N/m) and a system without extensibility (k → ∞.). In the left panel, we 
also added the Gibbs force-extension responses for both cases. We adopted the parameters N = 8., 
� = 0.5 × 10−9 .m, T = 300.K, χ = 3., �E = 20kBT = 8.28 × 10−20 .J, and μ = 0. 

without extensibility described by Eq. (3.26). First of all, we remark the very good 
agreement between Eqs. (3.25) and (3.39) for the system with extensibility (red 
and blues curves, respectively, in Fig. 3.9). This proves the acceptability of the 
proposed approximation. Moreover, it is interesting to note the different asymptotic 
behaviors of systems with finite and infinite elastic constants. While the stiff system 
exhibits a vertical asymptote for large forces, the elastic one shows an asymptote 
with a slope representing the effective stiffness of the chain. In the force-extension 
curve, we observe a force plateau corresponding to f ∗ = �E

(χ−1)�
.. Similarly, in 

the spin behavior, we identify a transition from 0 to 1 corresponding to the same 
force f ∗

.. As before, we can explain these curves by means of a synchronized 
process, which generates the transition of all units at the same value of force f ∗

.. 
A larger variation of the elastic constant is shown in Fig. 3.9, right panel, where 
the force-extension curve and the spin variables are plotted for several values 
of k = 0.4, 0.8, 1.2, 1.6, 2.0. and 2.4.N/m. Also in this case, we underline the 
good agreement between exact and approximated results, with a small deviation 
appearing only for the softer chains. 

3.7.2 The Helmholtz Ensemble for the EBFJC Model 

We consider now the isometric condition represented by the Helmholtz ensemble 
of the statistical mechanics (see Fig. 3.8b). In this case, the first unit of the chain is 
tethered at the origin of the reference frame and the last unit is tethered at a given 
point r. of the space. By means of the Laplace transform between the Gibbs and 
Helmholtz partition functions previously discussed, we get the important integral 
expression 

. ZH (r) =
∫ +∞

−∞

{
sin y

y
+ χφ

sin(χy)

y

}N

exp

(
−N

αy2

2

)
y

r
sin
( ry

�

)
dy.

(3.42)
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The analysis of such an integral for α = 0. (i.e., without elasticity) has been per-
formed in recent literature (Giordano 2017), and in Sect. 3.6. Previous investigations 
considered the case with α = 0. and φ = 0., thus dealing with the classical FJC 
model under isometric condition (Rayleigh 1919; Polya 1913; Treloar 1946; Wang 
et al. 1952). However, the presence of a finite elasticity of the units, quantified 
by the parameter α �= 0., completely modifies the approach to be used to obtain 
a closed-form expression for ZH (r).. A detailed analysis of the problem has been 
performed by Benedito et al. (2018a), where the following closed-form expression 
of the Helmholtz partition function is derived 

. ZH (r) = − 1

2r

N∑

k=0

N−k∑

p=0

k∑

q=0

(
N

k

)(
N − k

p

)(
k

q

)
(−1)p+q

×(χφ)k

[
√

π

(
Nα

2

)N−2
2

e− 
2
2Nα H−N+1

(

√
2Nα

)

+ 1(
)

[
N
2 −1

]

∑

h=0

(−1)N−1π
(



2

)N−2

h!(N − 2 − 2h)!
(

Nα

2
2

)h

⎤

⎥⎥⎦ , (3.43) 

where [x]. represents the floor function giving the greatest integer that is less than 
or equal to x and 
. depends on k, p, and q through the r elation 
 = k − N +
2p − χk + 2χq − r

�
.. Here, 1(x). represents the Heaviside step function, defined as 

1(x) = 1. if x ≥ 0. and 1(x) = 0. if x < 0.. Moreover, H−n (z). are the Hermite 
elements with negative indices, which are known recursively (Hu et al. 1995). This 
result allows us to determine the complete response of the two-state freely jointed 
chain with extensible units. 

We show an example of application of this theory in Fig. 3.10, where we compare 
an elastic system described by Eq. (3.43) with a stiff one described by Eq. (3.36). 
In the left panel, we show the force-extension curve for the stiff system with 
k → ∞. and for the elastic one with k = 1.5.N/m. Moreover, to better compare 
the responses, we added the Gibbs force-extension responses for both cases. In the 
right panel, the average value of the spin variables is also represented for the stiff 
and the soft systems. These results prove a sequential behavior characterized by 
a progressive unfolding of units in response to the increasing overall length. This 
behavior corresponds to a series of peaks in the force-extension curves and to a 
staircase function for the spin variable. 

In Fig. 3.11, one can find the force-extension response (left panel) and the 
average spin variable (right panel) for a system with variable extensibility k =
0.4, 0.8, 1.2, 1.6, 2.0., and 2.4.N/m. We can observe the progressive increase of 
the peak-to-peak force of each unfolding transition with increasing values of the 
elastic constant. At the same time, the transition is sharper for stiffer systems, 
as clearly visible in the average spin curves. It means that for force spectroscopy
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Fig. 3.11 Force-extension response (left panel) and average spin variable (right panel) for a 
system with variable extensibility k = 0.4, 0.8, 1.2, 1.6, 2.0. and 2.4.N/m. We added the Gibbs 
force-extension responses (black curves) to facilitate the comparison. We adopted the parameters 
N = 5., � = 0.5 × 10−9 .m, T = 300.K, χ = 3., �E = 20kBT = 8.28 × 10−20 .J, and μ = 0. 

Fig. 3.12 Force-extension response (left panel) and average spin variable (right panel) for a 
system with a variable number of units N = 2, 3, 4, 5, 6, 7,. and 8. We added the Gibbs force-
extension responses (black curves) to facilitate the comparison. We adopted the parameters 
k = 1.N/m, � = 0.5 × 10−9 .m, T = 300.K, χ = 3., �E = 20kBT = 8.28 × 10−20 .J, and 
μ = 0. 

experiments, stiff macromolecules can be rather used than soft macromolecules to 
study cooperativity and other conformational properties. 

Finally, we show in Fig. 3.12 the behavior of the system as a function of the 
number of units of the chain. This is an important analysis since it concerns the 
validity of the ensembles equivalence in the thermodynamic limit. In Fig. 3.12, one 
can find the results for N from 2 to 8 for a system with an elastic constant k = 1.N/m. 
It is interesting to remark that for an increasing value of N , the peak-to-peak force 
is progressively reduced, confirming the convergence of the Helmholtz ensemble 
to the Gibbs ensemble for N → ∞.. This is perfectly coherent with known results 
concerning the ensembles equivalence in the thermodynamic limit (Winkler 2010; 
Manca et al. 2014a). 

To conclude, we can affirm that also the EBFJC model is able to show 
two different responses corresponding to the Gibbs and Helmholtz conditions, 
explaining the different classes of force-extension curves observed experimentally. 
Of course, we have shown here a qualitative explanation of these two types of 
behavior. It would be possible to refine the models with more specific ingredients 
(heterogeneity, dynamics, interactions between units, etc.) in order to show more 
quantitative comparisons as well, but we leave these aspects to the more specialized 
literature on the subject.
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4 Phase Transformations in Solid Materials 

We develop here a model to describe the temperature-dependent behavior of a 
one-dimensional nonlocal non-convex system (while the nonlocality describes the 
interaction among units, the non-convexity represents their multistable character). 
The paradigmatic system under investigation is composed of a sequence of units, 
which exhibit a bistable behavior described by a two-state potential energy and 
which are in interaction with each other. The proposed model is able to represent 
the phase transformations in materials and in particular in nanowires. This is a 
problem largely investigated within the micromechanics community (Truskinovsky 
et al. 1996; Shaw et al. 1997; Abeyaratne et al. 1996; Duval et al. 2011; Alessi et al. 
2015; Song 2020). The two states of the bistable behavior represent in this case 
the two microstructures allowed to the solid material, corresponding, for example, 
to two different crystalline structures or amorphous configurations. This enables 
the study of pseudo-elasticity and shape memory effects in solid systems such as 
whiskers, nanowires, or nanocomposites. In this physical system the creation of a 
surface between two different phases, i.e., the nucleation of a new phase, is costly 
from the energetic point of view, and, therefore, with respect to previous models, we 
have to introduce an interaction between the units which favors two adjacent units in 
the same phase. Indeed, for these systems, we can adopt the Ising interaction scheme 
which reproduces the energy cost of creating an interface between the two different 
states of matter. This is therefore at the origin of the nucleation (generation of a new 
phase), propagation (motion of the interface between the phases), and coalescence 
(deletion of the original phase) phenomena. The complete solution of this problem 
obtained by taking into account N independent spins corresponding to the N units 
of the system has been presented by Cannizzo et al. (2022). Here, we present a 
simplified solution where only one interface or domain wall between the two phases 
is admitted. It represents systems where the interface energy is sufficiently large, as 
typical in many solid systems with two crystalline or amorphous phases. 

We take into consideration a discrete chain of N two-state elements, each 
described by a bistable potential energy with a stable folded state and a metastable 
unfolded state (see F ig. 3.13a). The two potential wells can be characterized by the 
elastic constant k(Si)., the equilibrium length �0(Si)., and the basal energy v(Si)., 
where Si . is a discrete variable (or spin variable), assuming values in {−1,+1}., used  
to distinguish one well from the other. We state here that Si = +1. corresponds 
to unfolded elements, whereas Si = −1. corresponds to folded ones. In our case, 
we can therefore write that �0(−1) = �., v(−1) = 0., k(−1) = k0 ., �0(+1) = χ�., 
v(+1) = �E ., and k(+1) = h0 ., where χ . is the ratio between the unfolded and 
folded equilibrium lengths and �E . is the energy jump between the states. We 
remark that we use here the values {+1,−1}. for the spins instead of {0, 1}. in order 
to implement the Ising scheme. 

With the help of Fig. 3.13a, we can say that the bistable energy potential can be 
represented by two quadratic potentials (dashed lines) approximating the real wells 
of the units (continuous line). The introduction of the discrete variables also allows 
the direct implementation of an interaction between adjacent elements of the chain
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Fig. 3.13 Scheme of the investigated system. (a) Bistable potential energy U(x). of each unit of 
the chain under study, where x = xi − xi−1 . is the unit extension. The folded well corresponds to 
Si = −1. and is characterized by �0(−1) = �., v(−1) = 0., k(−1) = k0 .. Meanwhile, the unfolded 
well, identified by Si = +1., is defined through �0(+1) = χ�., v(+1) = �E ., k(+1) = h0 .. 
(b) Isotensional configuration (Gibbs ensemble) of the nonlocal non-convex chain. (c) Isometric 
configuration (Helmholtz ensemble) of the nonlocal non-convex chain 

that can be described by a classical Ising Hamiltonian. Hence, we will consider the 
overall Hamiltonian of the system written as 

.H =
N∑

i=1

{
v(Si) + 1

2
k(Si) [xi − xi−1 − �0(Si)]

2
}

− λ

N−1∑

i=1

SiSi+1, (3.44) 

where the first sum represents the energy of the series of non-convex bistable 
elements and the second sum the nonlocal interactions modeled by the Ising scheme, 
which is controlled by the parameter λ.. The variables xi . define the continuous 
positions of the material points interacting through the bistable potentials and the 
Ising scheme. We remark that λ > 0. tries to force two adjacent elements to be in 
the same state either folded or unfolded (ferromagnetic-like interaction), whereas 
λ < 0. tries to force two adjacent elements to be in different states folded and 
unfolded (antiferromagnetic-like interaction). The approach used to deal with this 
general system is discussed by Cannizzo et al. (2022). To simplify the analysis, we 
develop here the theory for the nonlocal non-convex chain of bistable units under 
the assumption of strong ferromagnetic behavior, namely λ � KBT .. When this 
hypothesis is verified, we can consider only one interface or domain wall between 
two regions of the chain where the units are unfolded and folded, respectively (see 
Fig. 3.14). It means that this interface can move along the chain in response to 
the mechanical action and the temperature. This simplification is quite important 
since this allows us to find explicit expressions for both the Gibbs and Helmholtz 
ensembles, which can also be handled to perform the analysis of the thermodynamic 
limit. In particular, it is possible to prove the equivalence between the Gibbs and 
Helmholtz ensembles for N → ∞.. To be more precise, we can say that imposing a 
strong ferromagnetic behavior allows us to consider a chain composed by N−ξ .units 
in the folded state and the remaining ξ . units in the unfolded, metastable, state. Here, 
ξ . is a discrete variable assuming values in the set {0, 1, 2, . . . , N}., representing the
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Fig. 3.14 Scheme of the zipper model. (a) Isotensional configuration (Gibbs ensemble) of the 
nonlocal non-convex chain with only one domain wall. (b) Isometric configuration (Helmholtz 
ensemble) of the nonlocal non-convex chain with only one domain wall 

position, in terms of chain units, of the moving domain wall between folded and 
unfolded regions (see Fig. 3.14). Since the variable ξ . can vary with temperature and 
external mechanical actions, this scheme can be called zipper model. This scheme 
has been used in other different statistical mechanics contexts (Gibbs et al. 1959; 
Crothers et al. 1965; Kittel 1969; Nishinari et al. 1990). 

We can start from the same Hamiltonian defined in Eq. (3.44), and we can 
apply the necessary simplifications as follows. To begin with, the zipper assumption 
modifies the Ising sum in Eq. (3.44). In general, the sum

∑N−1
i=1 SiSi+1 . is composed 

of N − 1. addends that can be enumerated as follows: There are I addends with 
value − 1. and N − 1 − I . addends with value + 1., where I represents the number 
of changes in the spin sequence S1, . . . , SN .. Hence, we have that 

∑N−1
i=1 SiSi+1 =

(N − 1 − I )− I = N − 1 − 2I .. In our zipper model, we must assume that I (ξ) = 0. 

if ξ ∈ {0, N}. (no interface) and I (ξ) = 1. if 1 ≤ ξ ≤ N − 1. (only one interface). 
Based on these considerations, the zipper Hamiltonian becomes 

.HZ =
N∑

i=1

{
v(i) + 1

2
k(i) [xi − xi−1 − �0(i)]

2
}

− λ(N − 1 − 2I (ξ)), (3.45) 

where we must assume that (i) if i ≤ N − ξ . (folded units), then we have 
v(i) = 0, k(i) = k0, �0(i) = �., and (ii) if i ≥ N − ξ + 1. (unfolded units), then 
v(i) = �E, k(i) = h0, �0(i) = χ�.. We can also write the zipper Hamiltonian by 
separating the sum in Eq. (3.45) between folded and unfolded elements, obtaining 

. HZ =
N−ξ∑

i=1

{
1

2
k0 [(xi − xi−1) − �]2

}

+
N∑

i=N−ξ+1

{
�E + 1

2
h0 [(xi − xi−1) − χ�]2

}
− λ [N − 1 − 2I (ξ)] .

(3.46)
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From now on, the discrete variable ξ . belongs to the phase space of the system 
together with the continuous positions xi .. 

4.1 Zipper Model Within the Gibbs Ensemble 

Now we can use the zipper Hamiltonian for the evaluation of the partition function 
in the Gibbs ensemble (see Fig. 3.14a), defined as 

.ZG(f ) =
N∑

ξ=0

∫

R
N

exp

[
−HZ − f xN

KBT

]
dx1 . . . dxN . (3.47) 

If we develop this expression, we obtain after straightforward calculations 

. ZG(f ) =
√

(2πKBT )N exp

(
(N − 1)λ

KBT

) N∑

ξ=0

1√
k
N−ξ
0 h

ξ
0

× exp

(
− 2λ

KBT
I (ξ) − �E

KBT
ξ

)

× exp

(
�f

KBT
[N + (χ − 1)ξ ] + f 2

2KBT

[
N − ξ

k0
+ ξ

h0

])
. (3.48) 

The knowledge of the Gibbs partition function allows us to calculate the average 〈x〉. 
of the chain extension (i.e., the average value of the last position xN .), the average 
number 〈u〉. of unfolded units, and the average number 〈i〉. of interfaces between 
folded and unfolded units as function of the applied force f , i.e., during a traction 
experiment. It is not difficult to realize that these three quantities can be expressed 
in the following way: 

.〈x〉 =KBT
∂ log ZG

∂f
= −∂G

∂f
, . (3.49)

〈u〉 = −  KBT 
∂ log ZG 

∂�E 
= 

∂ G 
∂�E 

, . (3.50)

〈i〉 =N − 1 

2 
− 

KBT 
2 

∂ log ZG 
∂λ 

= 
N − 1 

2 
+ 

1 

2 

∂G 
∂λ 

, (3.51) 

where we introduced the Gibbs free energy of the system G = −KBT log ZG . (see 
Sect. 2). We can find an example of application of these results in Fig. 3.15. The  
first row of Fig. 3.15 shows 〈x〉., 〈u〉., and 〈i〉. versus the applied force f for the 
zipper model under isotensional condition with a variable Ising coefficient λ., and 
the second row shows 〈x〉., 〈u〉., and 〈i〉. versus f for the same zipper model with
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Fig. 3.15 Behavior of the zipper model within the Gibbs ensemble. In the first row 〈x〉., 〈u〉., and  
〈i〉. are plotted versus f with a variable Ising coefficient λ = {5, 10, 15}. and a fixed temperature 
KBT = 10.. In the second row 〈x〉., 〈u〉., and  〈i〉. are plotted versus f with a variable t emperature 
KBT = {2, 4, 6, 8}. and a fixed Ising coefficient λ = 5.. We adopted the parameters N = 10., 
k0 = 30., h0 = 10., v(−1) = 0., v(+1) = �E = 20., � = 1., χ = 5.. All quantities are in arbitrary 
units 

a variable temperature T . Concerning the force-extension relation and the plot of 
the average number of the unfolded units, these results confirm the synchronized 
behavior typical of the Gibbs ensemble, where all the units unfold cooperatively. We 
can also observe, as expected, that the effects obtained by increasing the temperature 
are exactly opposite to those observed by increasing the Ising coefficient. It is 
important to observe that, when k0 > h0 ., the force plateau seen in the force-
extension curve decreases with temperature (while it increases with temperature 
when k0 < h0 .). As far as the average number of interfaces is concerned, we observe 
that a larger cooperativity reduces this value, as expected. Moreover, the number 〈i〉. 
of interfaces is an increasing function of the temperature. 

It is interesting to determine analytically the force-extension relation for the 
zipper chain under isotensional condition. It means that we can calculate 〈x〉. 
through Eq. (3.49), where we use the partition function found in Eq. (3.48). The long 
but straightforward calculation of the derivative ∂ZG

∂f
. delivers the force-extension 

relation in the form 

.
〈x〉
N�

=
[(

1 + f
�k0

)
+
(
χ + f

�h0

)
eNδ

] (
1 − x2

)+ x2�1
(
1 + eNδ

) (
1 − x2

)+ x2�2
, (3.52)
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where δ . is defined as 

.δ = 1

2
ln

(
k0

h0

)
− �E

KBT
+ �f (χ − 1)

KBT
+ f 2

2KBT

(
1

h0
− 1

k0

)
, (3.53) 

and where we introduced 

.�1 =
(

1 + f

�k0

)
1 − eδ(N+1)

1 − eδ
. (3.54) 

+
[
χ − 1 + 

f

�

(
1 

h0 
− 

1 

k0

)]
1 

N 
eδ 

(1 − eδ)2

[
1 − (N + 1)eNδ  + Neδ(N+1)

]
,

�2 = 
1 − eδ(N+1) 

1 − e δ
. (3.55) 

This result holds for nonlocal non-convex chains when λ � KBT .. This form of the 
force-extension relation is perfectly suited to study the thermodynamic limit, which 
is valid for N → ∞.and λ � KBT .. We observe that the value of limN→∞〈x〉/(N�). 

depends on the sign of δ ., and we perform therefore the following analysis. If 
δ < 0., then we get limN→∞ 〈x〉

N�
= 1 + f

�k0
., which represents the elastic branch 

of the response observed when all units are folded. Conversely, if δ > 0., we  
have limN→∞ 〈x〉

N�
= χ + f

�h0
., which represents the elastic branch of the response 

observed when all units are unfolded. Of course, the two elastic branches obtained 
here for δ < 0. and δ > 0. are separated by a force plateau corresponding to the 
equation δ = 0., whose temperature dependent solution represents the Maxwell force 
fM ., obtained as 

. fM(T ) =
−�(χ − 1) +

√
�2(χ − 1)2 − 2

(
1
h0

− 1
k0

) (
KBT

2 ln k0
h0

− �E
)

1
h0

− 1
k0

.

(3.56) 

A remarkable result is that the Maxwell force depends on the temperature T , as one 
can see in Fig  . 3.15 also for N = 10. (Cannizzo et al. 2022). This is due to the fact 
that the two wells have different elastic constant k0 �= h0 .. Indeed, when k0 = h0 ., we  
retrieve the expression f = �E/[�(χ − 1)]., well known in the previous literature 
(Giordano 2017; Bell  1978; Bell et al.  1984; Manca et al. 2013b). 

4.2 Zipper Model Within the Helmholtz Ensemble 

We now can determine the partition function of the zipper model within the 
Helmholtz ensemble (see Fig. 3.14b). We eventually obtain
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. ZH (xN) = e
λ

KBT
(N−1)

√
(2πKBT )N−1

N∑

ξ=0

exp

(
− 2λ

KBT
I (ξ) − �E

KBT
ξ

)

× 1√
k
N−ξ
0 h

ξ
0

√√√√
1(

N−ξ
k0

+ ξ
h0

) exp

⎛

⎝−{xN − �[N + (χ − 1)ξ ]}2

2KBT
(

N−ξ
k0

+ ξ
h0

)

⎞

⎠ .

(3.57) 

This result, as for the Gibbs partition function seen before, allows us to determine 
the average value 〈f 〉. of the force (i.e., the force-extension relation), the average 
value 〈u〉. of the number of unfolded units, and the average value 〈i〉. of the number 
of interfaces between folded and unfolded units. In fact, it is not difficult to prove 
these expressions 

.〈f 〉 = − KBT
∂ log ZH

∂xN

= ∂F
∂xN

, . (3.58)

〈u〉 = −  KBT 
∂ log ZH 

∂�E 
= 

∂ F 
∂�E 

, . (3.59)

〈i〉 =N − 1 

2 
− 

KBT 
2 

∂ log ZH 
∂λ 

= 
N − 1 

2 
+ 

1 

2 

∂F 
∂λ 

, (3.60) 

where we introduced the Helmholtz free energy of the system F = −KBT log ZH . 

(see Sect. 2). An example of application of these results can be found in Fig. 3.16, 
where we show 〈f 〉., 〈u〉., and 〈i〉. as function of the prescribed extension (we use x 
instead of xN . for notational simplicity) for different values of the Ising coefficient 
λ. and the temperature T . More precisely, the first row of F ig. 3.16 shows 〈f 〉., 〈u〉., 
and 〈i〉. versus x for the zipper model under isometric condition with a variable 
Ising coefficient λ., and the second row shows 〈f 〉., 〈u〉., and 〈i〉. versus x for the same 
zipper model with a variable temperature T . Concerning the force-extension relation 
and the plot of the average number of the unfolded units, these results confirm 
the nonsynchronized or sequential behavior of the Helmholtz ensemble, where the 
units unfold one at a time in response to the increasing prescribed extension. We 
can also observe, similarly to the Gibbs ensemble, that the effects obtained by 
increasing the temperature are exactly opposite to those observed by increasing 
the Ising coefficient. Remarkably, if λ � KBT ., the unfolding of the first unit 
shows a larger upward force peak since the units are favored to stay in the initial 
folded state. This upward force peak represents the nucleation stress necessary to 
generate a new phase (the unfolded one), which is energetically costly because of 
the Ising interaction. For the same reason, based on cooperativity, the unfolding 
of the last unit is characterized by a downward force peak. This downward force 
peak represents the coalescence of the folded phase to the unfolded one. One of the 
important points of the zipper model is that we can analyze the amplitude of the 
first peak analytically as discussed below. This is very useful to easily compare its
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Fig. 3.16 Behavior of the zipper model within the Helmholtz ensemble. In the first row 〈f 〉/(k0�)., 
〈u〉., and  〈i〉. are plotted versus x/(N�). with a variable Ising coefficient λ = {5, 10, 15}. and a fixed 
temperature KBT = 10.. In the second row 〈f 〉/(k0�)., 〈u〉., and  〈i〉. are plotted versus x/(N�). with 
a variable temperature KBT = {2, 4, 6, 8}. and a fixed Ising coefficient λ = 5.. We adopted the 
parameters N = 10., k0 = 30., h0 = 10., v(−1) = 0., v(+1) = �E = 20., � = 1., χ = 5.. All  
quantities are in arbitrary units 

value with experiments and numerical simulations. As far as the average number of 
interfaces is concerned, it is important to observe that it remains constantly at the 
value one, which is the assumption of the zipper model. This quantity assumes the 
value zero only when ξ = 0. or ξ = N ., i.e., for very small or very large values of 
the applied extension x. 

We study the thermodynamic limit based on the partition function obtained 
in Eq. (3.57), concerning the zipper model under isometric condition, i.e., within 
the Helmholtz ensemble. We can obtain three important results: (i) a simplified 
expression of the force-extension relation under isometric condition valid for large 
values of N and for λ � KBT ., (ii) an explicit expression for the amplitude of the 
first force peak, representing the nucleation of unfolded units, and (iii) a rigorous 
demonstration of the equivalence of the Gibbs and Helmholtz ensembles for the 
zipper model. To simplify the discussion we start by defining the adimensional 
extension z = x

�N
. prescribed for the chain in the Helmholtz ensemble. Long 

but straightforward calculations lead to the following force-extension response for 
1 + fM

�k0
< z < χ + fM

�h0
.: 

.〈f 〉 =
C
[√

k0�
2

2NKBT
eLN(z − 1)k0� +

√
h0�

2

2NKBT
eRN(z − χ)h0�

]
+ fM

C
[√

k0�
2

2NKBT
eLN +

√
h0�

2

2NKBT
eRN

]
+ 1

, (3.61)
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Fig. 3.17 Comparison between the isometric force-extension response of the exact zipper model, 
obtained by the partition function in Eq. (3.57), and the result of the stationary phase method, stated 
in Eq. (3.61). We considered different values of the temperature KBT = {4, 6, 8, 10, 12.14}. and 
the parameters N = 10., k0 = 30., h0 = 10., v(−1) = 0., v(+1) = �E = 30., � = 1., χ = 3., 
λ = 10.. All quantities are in arbitrary units 

where 

.L = − 1

2

�2k0

KBT

(
z − 1 − fM

�k0

)2

< 0, . (3.62) 

R = −  
1 

2

�2h0 

KBT

(
z − χ − 

fM

�h0 

)2 

< 0 , . (3.63) 

C = 
2 − x2 

2
√

πx2

[
χ − 1 + 

fM

�

(
1 

h0 
− 

1 

k0

)]
. (3.64) 

The explicit force-extension relation in Eq. (3.61) is particularly important since it 
represents a simple mathematical form containing all the physical features of the 
Helmholtz response, including the first nucleation peak and the last coalescence 
peak. Moreover, this result directly proves that limN→∞〈f 〉 = fM . (valid for 
1 + fM

�k0
< z < χ + fM

�h0
.), where fM . is the Maxwell force. It means that in the 

thermodynamic limit (N → ∞.), the force plateau found within the Gibbs ensemble 
is also reproduced within the Helmholtz ensemble (equivalence of the ensembles in 
the thermodynamic limit) (Cannizzo et al. 2022). 

In Fig. 3.17, we can find the comparison between the isometric force-extension 
curves obtained through the exact zipper model, whose partition function is stated in 
Eq. (3.57), and through the stationary phase method, as given in Eq. (3.61). We can 
observe that the agreement is good also for a rather limited number of units of the 
chain (N = 10. in Fig. 3.17). Moreover, we remark that the stationary phase is able to 
perfectly reproduce the amplitude of the first peak, representing the nucleation of the 
new unfolded phase, and that of the last peak, corresponding to the coalescence of 
the folded region to the unfolded one. We also note the force plateau (describing the 
domain wall propagation at force fM .), significantly depending on the temperature 
of the system.
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Fig. 3.18 Evolution of the isometric force-extension curve, stated in Eq. (3.61) and obtained by 
the stationary phase method, with an increasing number N of units. We adopted the p arameters 
k0 = 30., h0 = 10., v(−1) = 0., v(+1) = �E = 30., � = 1., χ = 3., λ = 10., KBT = 4., 
N = {10, 15, 20, . . . , 50}.. All quantities are in arbitrary units 

In Fig. 3.18, we can see the convergence of the Helmholtz response, as given 
in Eq. (3.61), for increasing values of N , toward the Gibbs response characterized 
by a plateau without peaks. This plot provides therefore graphical evidence of the 
equivalence between the Gibbs and the Helmholtz ensembles. Moreover, we can 
observe that the characteristic peaks of the isometric response do not appear in the 
stationary phase approximation except for the first and last, which represent the 
initial nucleation of the unfolded phase and the final coalescence of the folded phase 
to the unfolded one, respectively. This means that the force peaks of the intermediate 
transitions (clearly visible in Fig. 3.16) decrease with increasing N at a much faster 
rate than the first and last peaks. It can be said that these two peaks resist more 
when increasing N . This strictly explains why in experiments and simulations on 
phase transformations in nanowires or other nanostructures it is possible to see only 
the first nucleation peak (the last peak is more difficult to be observed because the 
specimen may break or because high levels of deformation are not reached). 

Given the importance of the first nucleation force peak, we have found an explicit 
expression of its magnitude, as follows (Cannizzo et al. 2022): 

.fP − fM = k0�√
a0N

W0

(
C
2

√
a0
eN

)

√
1
2 + W0

(
C
2

√
a0
eN

) , (3.65) 

where a0 = k0�
2

2KBT
., C. is defined in Eq. (3.64), and we introduced the force peak 

value fP .. Importantly, through Eq. (3.65), we have the explicit dependence of the 
peak force on the temperature T and on the number of chain units N .
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Fig. 3.19 Left panel: cross-sections of a Cu nanowire. Two different crystalline structures can 
be identified, and they are separated by a domain wall, which is moving in response to the applied 
strain. Right panel: temperature effect on the stress–strain curves of the Cu nanowire obtained from 
MD simulations. Both figures are reproduced with permission from Liang et al. (2007) 

4.3 Applications to the Tensile Behavior of Nanowires 

Recent researches revealed that single-crystalline metal nanowires with nanometric 
cross-section can exhibit a pseudo-elastic behavior characterized by very large 
elongations (up to 50% of the original length) (Liang et al. 2007, 2006; Guo  
et al. 2009; Ma et al.  2013). This behavior, which is exceptional compared to all 
other shape memory alloys, can be explained by a reversible lattice reorientation 
process. It means that the deformation mechanism is characterized by a twin 
boundary propagation between two differently oriented face-centered cubic (FCC) 
crystalline structures. This behavior is typical of Cu and Ni, where we can identify 
the following two configurations: the original one named <110>/ {111}. with axis 
<110>. and surfaces {111}. and the deformed one named <001>/ {100}. with axis 
<001>. and surfaces {100}., as shown by Liang et al. (2007) (see Fig. 3.19, left  
panel). Because of the nanometric dimensions of the cross-section geometry, the 
surface-to-volume ratio is very large, and surface energies dominate the strain 
energy difference between the two different nanowire configurations. 

Our model can be adapted to this system by simply introducing the physical 
quantities pertinent to continuous structures. We define s as the small area on the 
cross-section pertaining to a single longitudinal chain of atoms in the nanowire 
crystal structure. It means that the total area S of the nanowire cross-section is giv en 
by S = Ms ., where M is the average number of atoms in the cross-section. Similarly , 
�. is roughly the lattice constant of the crystal structure and, therefore, L = N�. is the 
total nanowire length, being N the number of atoms in the longitudinal direction. 
It is clear that SL is the total volume of the system, MN is the total number of 
atoms, and s�. is the average volume pertaining to one atom. Of course, we have
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that s � �2
. and s� � �3

.. It is important to remark that Eq. (3.56), giving the  
Maxwell force for a chain, and Eq. (3.61), giving the force-extension response in the 
stationary phase approximation, have been obtained for a single chain of units (here 
atoms), and therefore the continuous parameters must be introduced as follows. We 
define Ef = k0�/s . [GPa] and Eu = h0χ�/s . [GPa] as the Young moduli of the 
original and deformed configurations, respectively. In so doing, k0 . and h0 . must be 
seen as the elastic constants of the two crystals in the harmonic limit. Moreover, 
the jump energy between the two configurations can be written as �E = �es�., 
where �e. [.J/m 3]. is the energy density difference between the two crystal states. 
In addition, the Ising energy can be rewritten as λ = 
s ., where 
. [.J/m 2]. is the 
superficial energy density of the twin boundary separating original and deformed 
crystals. We remark that the parameters �e. and 
. may depend on the total area S 
when elastic surface effects are relevant, as in the case of metallic nanowires. Of 
course, the longitudinal stress is defined by σ = 〈f 〉/s ., with 〈f 〉. given in Eq. (3.61) 
if we consider the stationary phase approximation. Also, the strain is defined as 
ε = x−N�

N�
., and therefore we have ε = z − 1. or, equivalently, z = ε + 1.. These 

specifications allow us to use Eq. (3.61), or other previous results, to describe the 
tensile behavior of one-dimensional continuous structures. For instance, δ = 0. can 
be rewritten as follows: 

.
1

2
ln

(
Ef

Eu

χ

)
+ s�

KBT

[
σM(χ − 1) + 1

2
σ 2

M

(
χ

Eu

− 1

Ef

)
− �e

]
= 0, (3.66) 

to define the stress Maxwell σM .. Interestingly, since this equation depends directly 
on the atomic volume s�., we can further confirm that the discrete theory previously 
developed must be applied to a single longitudinal chain of atoms belonging to 
the entire crystalline nanowire. Similarly, the nucleation stress can be defined as 
follows: 

.σP − σM =
√

2KBT Ef

s�N

W0 (η)√
1
2 + W0 (η)

, (3.67) 

where η . is defined below: 

.η = 2e
2
s
KBT − 1

2

[
χ − 1 + σM

(
χ

Eu

− 1

Ef

)]√
s�Ef

2eNKBT
. (3.68) 

A series of molecular dynamics simulations have been performed to numerically 
obtain the stress–strain behavior of Cu nanowires at different temperatures and 
under quasi-static tensile deformation (Liang et al. 2007), which is compatible 
with our equilibrium statistical mechanics approach (see Fig. 3.19). The simulations 
are based on the embedded-atom-method interatomic potential for Cu, and the 
uniaxial displacement-controlled loading strategy is applied coherently with our 
Helmholtz ensemble. The stress–strain behaviors of a Cu nanowire (1.96 nm ×.
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Fig. 3.20 Comparison of the stress–strain curves obtained with molecular dynamic simulations 
(solid lines) and through our theoretical approach (dashed lines) for Cu nanowires (1.96 nm ×. 
1.96 nm) in panel (a) and Ge nanowires (radius of 1.8 Å) in panel (b). In panel (a) we used the  
temperatures T =100 K (blue lines), T =200 K (yellow lines), and T =300 K (red lines). In panel (b) 
we used the temperatures T =100 K (blue lines), T =200 K (green lines), T =300 K (yellow lines), 
and T =400 K (red l ines)

1.96 nm) at temperatures of 100, 200, and 300 K have been therefore obtained and 
are compared with our model in Fig. 3.20a. The theoretical results are based on 
the stationary phase approximation stated in Eq. (3.61). As one can see, the model 
is able to reproduce the magnitude of both the nucleation stress and the Maxwell 
stress plateau. We adopted the parameters N = 206., � = 0.14. nm, s = �2

., χ = 4.4., 
coherently with data taken from Liang et al. (2007). Moreover, we used a folded 
Young modulus slightly temperature dependent given by Ef = 122. GPa for T =100 
K, Ef = 114. GPa for T =200 K, and Ef = 105. GPa for T =300 K. For the unfolded 
Young modulus we used Eu = 10. GPa for T =100 K, Eu = 11. GPa for T =200 K, 
and Eu = 12. GPa for T =300 K. By introducing the parameterizations �e = γ

KBT0
s�

. 

and 
 = δ
KBT0

s
.with T0 = 300.K, we obtained the adimensional values γ = 7.7. and 

δ = 6.8.. Since δ . is sufficiently larger than 1, the use of the zipper model, simplified 
by the stationary phase method, is justified. 

We now turn to the study of a second example. Semiconductor nanowires have 
been recently studied since their properties are sometimes more interesting than 
those of the bulk counterpart (Yang et al. 2016). For this reason, the thermome-
chanical properties of ultrathin germanium nanowires have been investigated by 
means of molecular dynamics simulations (Yang et al. 2016). We consider here 
the results concerning the helix Ge nanowire with radius of 1.8 Å, for which the 
stress–strain curve has been obtained for temperatures of 100, 200, 300, and 400 K 
(Yang et al. 2016). The simulations for germanium were based on the Stillinger– 
Weber potential, coupled with the Nosé–Hoover thermostat to impose the system 
temperature. The comparison of molecular dynamics results with our model is 
shown in Fig. 3.20b. Again, nucleation stresses and Maxwell stresses are in fairly 
good agreement. The helical structure is perfectly ordered initially, as shown in 
Fig. 1 from Yang et al. (2016), and exhibits a transition to an amorphous structure, as 
shown in Fig. 5 from Yang et al. (2016), following a plastic process that begins with 
a peak of stress, namely the nucleation stress. After the yielding strain, the unfolded
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region evolves into the one-atom chain structure. In our theoretical formulation, we 
adopted the parameters N = 5562., � = 0.208. nm, s = �2

., χ = 3.36., coherently 
with data from Yang et al. (2016). Moreover, we used a folded Young modulus 
slightly temperature dependent given by Ef = 588. GPa for T = 100. K, Ef = 561. 

GPa for T = 200. K, Ef = 552. GPa for T = 300. K, and Ef = 540. GPa for 
T = 400. K. For the unfolded Young modulus we used Eu = 23. GPa for T = 100. 

K, Eu = 43. GPa for T = 200. K, Eu = 63. GPa for T = 300. K, and Eu = 83. GPa 
for T = 400. K. By introducing the parameterizations �e = γ

KBT0
s�

. and 
 = δ
KBT0

s
. 

with T0 = 300. K, we obtained the adimensional values γ = 2.3. and δ = 25.3.. As  
before, δ � 1. justifies the use of the zipper model, simplified by the stationary 
phase method. 

In the two examples discussed, we considered systems where two possible states 
or configurations are present. In the first example they correspond to two different 
crystal structures and in the second example to a regular helical structure and an 
irregular amorphous structure. It is interesting to note that the model based on 
statistical mechanics that we have developed is able, at least approximately, to 
represent the behavior of such systems. The important thing to underline is that 
in our model there is no crystallographic or morphological information of the three-
dimensional structures but only some elastic and energetic properties of the system. 
For this reason the model is able to summarize the physics of these systems without 
being able to describe the microstructural details. Of course, if it is necessary to 
take into account crystallographic details, structural anisotropies, twin-boundary 
geometries, and other morphological features, then it is necessary to turn to another 
class of models that are specifically adapted to the problem at hand, such as, e.g., 
the model by Liang et al. (2007) for the pseudo-elasticity of metallic nanowires. 

5 Adhesion/Deadhesion Processes: Application to Hairpins 
Unzipping 

We discuss here the modeling of the adhesion/deadhesion process of a film or a 
layer deposited on a substrate. We schematize this process by considering a one-
dimensional elastic chain of elements embedded in an on-site potential reproducing 
the behavior of breakable links. We approach the problem by considering the effect 
of thermal fluctuations, which play a central role in the decohesion behavior of 
biological materials. Therefore, we apply the equilibrium statistical mechanics and 
the spin variables method by considering the scheme in Fig. 3.1 (second panel). This 
scheme, as discussed in the Introduction section, can be used to study the adhesion 
of cells on substrates or tissues, the temperature controlled hairpins unzipping, or the 
mechanical/thermal denaturation of different macromolecules of biological origin 
(Florio et al. 2020). 

We introduce the adopted geometry, as shown in Fig. 3.21. The horizontal springs 
of the one-dimensional lattice (elastic constant k) are purely harmonic with potential
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Fig. 3.21 Energy landscapes of the harmonic (horizontal) shear springs in panel (a) and breakable 
(vertical) links in panel (b). Different loading conditions are considered: assigned end displacement 
(Helmholtz ensemble, hard device) on the left and assigned force (Gibbs ensemble, soft device) on 
the right 

energy ϕ = 1
2k (yi+1 − yi)

2
. (Fig. 3.21a), while the vertical ones (elastic constant 

h) can be broken or unbroken depending on their extension yi . (Fig. 3.21b). When 
|yi | < yM ., they behave as regular springs (intact state), and they break for |yi | > yM . 

(broken state). Therefore, an unbroken or intact spring leads to a contribution to 
the potential energy equal to ψ = 1

2hy2
i . (when |yi | < yM .) and a broken one a 

contribution equal to ψ = 1
2hy2

M . (when |yi | > yM .). As before, two different loading 
conditions are considered. In the first case (Fig. 3.21a), the process is controlled 
by the prescribed position yN+1 = yd . of the last element of the chain (isometric 
condition within the Helmholtz ensemble). In the second case (Fig. 3.21b), the 
process is controlled by the applied force f (isotensional condition within the Gibbs 
ensemble). The most important point, on which is grounded our approach, is that 
each vertical element is characterized by two different states (broken and unbroken 
configurations). Therefore, we associate each unit with a spin variable, and the 
energy potential of each vertical spring can be written a s 

.ψ = 1

4
(1 + si)hy2

i + 1

4
(1 − si)hy2

M, (3.69) 

where si = +1. corresponds to the unbroken state and si = −1. corresponds to the 
broken state, i = 1, . . . , N .. With this assumptions we have a phase space composed 
of the N continuous variables yi .and the N discrete variables si .. The switching of the 
variable si . and their statistics at thermodynamic equilibrium are directly controlled 
by the statistical ensemble (Helmholtz and Gibbs in our case) imposed to the system. 

In order to simplify the statistical mechanics analysis of this system, we assume 
to have N − ξ . broken elements on the right of the chain and ξ . unbroken elements 
on the left of the chain. In other words we are supposed to have a single moving 
interface or domain wall between the attached region and the detached region. As 
before, this hypothesis coincides with the so-called zipper model (Gibbs et al. 1959; 
Crothers et al. 1965; Kittel 1969; Nishinari et al. 1990). Under these hypotheses, 
we use a single discrete variable ξ . belonging to the phase space of the system and
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taking its values in the set {0, 1, 2, . . . , N}.. We separately analyze the cohesion– 
decohesion process in Helmholtz and Gibbs ensembles, thus providing a complete 
picture of the effect of temperature and mechanical load on this physical system. 

5.1 Hard Device Adhesion/Deadhesion: Helmholtz Ensemble 

Consider first the case of a prescribed extension yN+1 = yd .of the last element of the 
chain, as represented in Fig. 3.21a (isometric condition). The variables belonging to 
the phase space are the extensions yi . of the vertical springs (i = 1, . . . , N .) and the 
number ξ . of unbroken links. The total potential energy is 

.� =
N∑

i=0

1

2
k (yi+1 − yi)

2 +
ξ∑

i=1

1

2
hy2

i +
N∑

i=1+ξ

1

2
hy2

M, (3.70) 

where y0 = 0. and yN+1 = yd . with isometric condition. It is worth noticing that the 
last term in �. is not an irrelevant additive constant since it depends implicitly on ξ ., 
which is a variable of the phase space of the system. The energy function �. can be 
rearranged by means of the following matrix definition: 

.A(ξ) =
[
A11 A12

A21 A22

]
∈MN,N , (3.71) 

which is based on these four submatrices 

. A11 =

⎡

⎢⎢⎢⎣

2 + η −1 0 · · ·
−1 2 + η −1 · · ·
0 −1 2 + η · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎦∈Mξ,ξ ,A22 =

⎡

⎢⎢⎢⎣

2 −1 0 · · ·
−1 2 −1 · · ·
0 −1 2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎦∈MN−ξ,N−ξ ,

.A12 =

⎡

⎢⎢⎢⎣

0 · · · 0 0
0 · · · 0 0

0 . .
. ...

...

−1 0 0 0

⎤

⎥⎥⎥⎦ ∈MN,N−ξ ,A21 =

⎡

⎢⎢⎢⎣

0 0 0 −1
...

... . .
.

0
0 0 · · · 0
0 0 · · · 0

⎤

⎥⎥⎥⎦ ∈MN−ξ,N , (3.72) 

where η = h
k
. represents the ratio between the elastic constants of vertical 

and horizontal elastic elements. Moreover, we introduce the vectors v =
(0, 0, 0, . . . , 0, 1) ∈ RN

. and y = (y1, y2, y3, . . . , yN) ∈ RN
.. The energy function 

can then be rewritten as follows: 

.�(y, ξ ; yd) = 1

2
kA(ξ)y · y − kydv · y + 1

2
ky2

d + 1

2
kη(N − ξ)y2

M, (3.73)
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Fig. 3.22 Average force 〈f 〉H . in top panels (a) and (b), and average number of unbroken 
elements 〈ξ〉H . in bottom panels (c) and (d), versus yd . for a decohesion process ( yd . increasing) 
under isometric conditions (Helmholtz ensemble). We adopted the parameters N = 6. and yM = 4. 
for panels (a) and (c) and N = 30. and yM = 2. for panels (b) and (d). Other parameters are 
common: k = 5., h = 20., and six values of β−1 = kBT = 4, 7.2, 10.4, 13.6, 16.8., and 20 (in 
arbitrary units) 

where y . and ξ . are the main variables belonging to the phase space of the system. 
This expression of �. is useful in the following Gaussian integration for the partition 
function since it is constituted by the sum of a quadratic form and a linear form in 
y ., with an additional term independent of y .. 

The partition function of the system analyzed within the Helmholtz ensemble can 
therefore be written as 

.ZH (β, yd) =
N∑

ξ=0

∫

R
N

e−β�(y,ξ ;yd )dy, (3.74) 

where β = (kBT )−1
., kB . is the Boltzmann constant and T the absolute temperature. 

When Eq. (3.73) is substituted in Eq. (3.74), we get (Florio et al. 2020) 

.ZH (β, yd) =
(

2π

βk

)N/2

e−Nβ
ky2

M
2 η

N∑

ξ=0

�ξ (β, yd), (3.75)
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where 

.�ξ (β, yd) = eβ
ky2

M
2 η ξ

√
detA(ξ)

e
−β

ky2
d

2

{
1−A−1

NN (ξ)
}

. (3.76) 

The knowledge of the partition function allows us to determine the expectation value 
of the force conjugated to the assigned displacement yd . (Weiner 2002) 

. 〈f 〉H = − 1

β

∂ ln ZH

∂yd

=
(

1 −
∑N

ξ=0A
−1
NN(ξ) �ξ (β, yd)

∑N
ξ=0 �ξ (β, yd)

)
k yd . (3.77) 

Another important quantity to describe the decohesion process is the average 
value 〈ξ 〉H . of unbroken vertical springs. It can be directly evaluated through the 
expression 

. 〈ξ 〉H = 1

ZH

N∑

ξ=0

∫

R
N

ξe−β�(y,ξ ;yd )dy =
∑N

ξ=0 ξ �ξ (β, yd)
∑N

ξ=0 �ξ (β, yd)
. (3.78) 

These explicit formulas give the quantities detA(ξ). and 1 −A−1
NN(ξ). (Florio et al. 

2020) 

. detA(ξ) = (N − ξ + 1)γ (ξ + 1) − (N − ξ)γ (ξ), . (3.79) 

1 − [A(ξ)]−1 
NN  =

γ  (ξ  + 1) − γ  (ξ)  
(N − ξ + 1 )γ (ξ + 1) − (N − ξ)γ (ξ)

, (3.80) 

where the function γ (z). is defined as follows: 

.γ (z) = 1√
�

(
2 + η + √

�

2

)z

− 1√
�

(
2 + η − √

�

2

)z

, (3.81) 

with � = η2 + 4η .. 
In Fig. 3.22 we illustrate the obtained behavior for a system under isometric 

loading for a “short” chain with only N = 6. elements and for a “long” chain with 
N = 30. elements. The case with N = 6., in left panels (a) and (c) of Fig. 3.22, 
shows the importance of discreteness, exhibiting distinct rupture occurrences in the 
decreasing steps of the quantity 〈ξ 〉H ., and in the peaks of the force-displacement 
( 〈f 〉H ., yd .) curves along the whole decohesion process. As expected, for large 
values of the temperature T the curves are smoother, and it is more difficult to 
recognize the single ruptures. The case with a larger number of elements (N = 30.) 
is represented in the right panels (b) and (d) of Fig. 3.22. We observe that the 
system is initially characterized by some force oscillations corresponding to the first 
debonding effects, but the force curves rapidly converge to a constant force plateau.
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Fig. 3.23 Average position 〈yd 〉G . in top panels (a) and (b), and average number of unbroken 
elements 〈ξ〉G . in bottom panels (c) and (d), versus f for a decohesion process (f increasing) 
under isotensional conditions (Gibbs ensemble). We adopted the parameters N = 6. and yM = 4. 
for panels (a) and (c) and N = 30. and yM = 2. for panels (b) and (d). Other parameters are 
common: k = 5., h = 20., and six values of β−1 = kBT = 4, 7.2, 10.4, 13.6, 16.8., and 20 (in 
arbitrary units) 

The increase of temperature strongly reduces also this initial discreteness effect. The 
main interesting feature is the observation of the temperature dependent unfolding 
plateau, with a detachment force threshold sensibly decreasing as the temperature 
grows. 

5.2 Soft Device Adhesion/Deadhesion: Gibbs Ensemble 

We consider now the case when the film is detached by a fixed force f as in 
Fig. 3.21b (isotensional condition). In this case, we introduce the Gibbs ensemble 
of the statistical mechanics. The total energy of the system can now be written 
as � − fyN+1 ., where �. is the energy function introduced within the Helmholtz 
ensemble in Eq. (3.73). Hence, the Gibbs partition function can be written as
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. ZG (f ) =
∫

R
N+1

N∑

ξ=0

e−β�(y,ξ ;yN+1)eβfyN+1dydyN+1

=
∫ +∞

−∞
ZH (yN+1) eβfyN+1dyN+1. (3.82) 

Of course this corresponds to the Laplace transform of the Helmholtz partition 
function (Weiner 2002). By using Eqs. (3.75) and (3.76), we get (Florio et al. 2020) 

.ZG (f ) =
(

2π

βk

)N+1
2

e−N
βky2

M
2 η

N∑

ξ=0

�ξ(β, f ), (3.83) 

where 

.�ξ(β, f ) = eβ
ky2

M
2 ηξ e

β
f 2

2k

{
1−A−1

NN(ξ)
}−1

√
detA(ξ)

{
1 −A−1

NN(ξ)
} . (3.84) 

The expected value of the extension 〈yd〉 = 〈yN+1〉. of the last element can be 
evaluated as (Weiner 2002) 

. 〈yd〉G = 1

β

∂ ln ZG

∂f
=
∑N

ξ=0

{
1 −A−1

NN(ξ)
}−1

�ξ(β, f )

∑N
ξ=0 �ξ(β, f )

f

k
. (3.85) 

Similarly, we can also determine the average number of unbroken links 

. 〈ξ 〉G = 1

ZG

∫

R
N+1

N∑

ξ=0

ξe−β�(y,ξ ;yN+1)eβfyN+1dydyN+1

=
∑N

ξ=0 ξ �ξ (β, f )
∑N

ξ=0 �ξ(β, f )
. (3.86) 

The obtained results for the isotensional loading are illustrated in Fig. 3.23 for 
the same chains considered in Fig. 3.22, where the case of isometric loading was 
described. Important differences between the Helmholtz and the Gibbs responses 
can be recognized. In particular, the analysis of the evolution of 〈ξ 〉G . within the 
Gibbs ensemble shows that the detachment process corresponds to a cooperative 
breaking of the vertical elements. This result can be compared with the sequential 
unfolding behavior, observed with an extension controlled decohesion, obtained 
with the hard device. Another important difference concerns the shape of the 
force-extension curves measured within the two statistical ensembles. While the



154 A. Cannizzo et al.

Fig. 3.24 Panel (a): comparison between the Helmholtz force-extension curves ( 〈f 〉H . versus 
yd ., solid lines) and the Gibbs force-extension curves (f versus 〈yd 〉G ., dashed lines) proving 
the nonequivalence of the two statistical ensembles in the thermodynamic limit. The results 
are obtained for a discrete system with N = 100. based on Eqs. (3.77) and (3.85). Panel (b): 
critical behavior of the asymptotic force within the Helmholtz ensemble. We plotted 〈f 〉as . versus 
kBT = β−1 . (see Eq. (3.87)) for different values of the ratio η = h/k . between the elastic constants 
of the vertical and horizontal elements. Here k = 1., yM = 1. (in arbitrary units), and we plotted ten 
curves with 1/10 ≤ η ≤ 10. 

isometric case leads to a series of peaks corresponding to the rupture occurrences, 
the isotensional case is characterized by a monotone force-extension curve. Also 
this feature can be explained by the quite simultaneous rupture of all the elements 
observed within the Gibbs ensemble. Finally, the temperature dependent force 
plateau corresponding to the detachment can be observed in both Helmholtz and 
Gibbs ensembles. 

5.3 Thermodynamic Limit 

In this section, we study the behavior of the system, under both isometric and 
isotensional conditions, for a large chain length (ideally, N → ∞.), and we obtain 
explicit analytic results to describe the system behavior in the thermodynamic limit. 

A refined mathematical analysis of the problem leads to the following value of 
the asymptotic detachment force for both statistical ensembles (Florio et al. 2020): 

. 〈f 〉as = lim
yd→∞ 〈f 〉H = √

khyM

√

1 − T

Tc

, (3.87) 

where we introduced the critical temperature 

.Tc = hy2
M

kB ln 2+η+
√

η2+4η

2

. (3.88)
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This formula describes the asymptotic value of the force plateau (large value of N 
and of the extension of the last element of the chain) in terms of the temperature 
and the material parameters of the system. Therefore, it is the main important result 
describing the adhesion/deadhesion p rocess. 

The result is illustrated in Fig. 3.24a, where the force displacement relation 
is plotted for different values of the temperature. In particular, we compare 
the force-displacement response of a discrete system with N = 100. elements 
given by Eq. (3.77) (Helmholtz, colored continuous curves) with the result of 
Eq. (3.85) (Gibbs, colored dashed curves). Moreover, in Fig. 3.24a, we also reported 
the asymptotic value of the decohesion force provided by Eq. (3.87) (horizontal 
straight lines). In any case, the asymptotic result given in Eq. (3.87) is in perfect 
agreement with the numerical result obtained with a discrete system analyzed 
through Eq. (3.77) or Eq. (3.85). Although the asymptotic behavior is the same, the 
difference between the curves in the two ensembles proves the nonequivalence of 
the Gibbs and Helmholtz condition for the adhesion processes. Moreover, Fig. 3.24 
explains the variation of the plateau force with the temperature in terms of a 
phase transition occurring at the critical temperature Tc .. Indeed, in Fig. 3.24b, we 
plot the obtained temperature dependent value of the asymptotic unfolding force 
for different values of the nondimensional parameter η .. We note that the force 
approaches zero at the critical temperature Tc . and that Tc . is an increasing function 
of the ratio η .. We therefore conclude that for T → Tc . we have a phase transition 
corresponding to the rupture of all the vertical elements of the chain, i.e., to the 
complete detachment of the chain from the substrate. For this reason, the critical 
temperature can also be referred to as the denaturation temperature of the system, as 
frequently adopted in the biological context (Peyrard et al. 1989; Theodorakopoulos 
et al. 2004; Grinza et al. 2004). The decreasing trend of the peeling force with the 
temperature is the same for both statistical ensembles. However, these ensembles 
are nonequivalent in the thermodynamic limit since they show a different force-
extension curve. In particular, the force-extension curve for the Helmholtz case is 
characterized by a force peak followed by some oscillations before reaching the 
asymptotic force value. On the contrary, the force-extension curve for the Gibbs 
case is always monotonically increasing from zero to the asymptotic force value. 

5.4 Application to Nucleic Acid Hairpins 

Recently, the mechanical unfolding of nucleic acid hairpins has been experimentally 
and numerically investigated in order to determine the phase diagram in the force-
temperature plane (Hyeon et al. 2005; Mishra et al. 2011). Hairpins are closed 
loops composed of nucleobases of DNA or RNA as shown in Fig. 3.25. The force 
spectroscopy techniques are applied to measure the force necessary to open the 
hairpin structures. Since the geometry of the hairpins experiments is very similar 
to the one adopted in the previous investigation concerning adhesion/deadhesion 
processes, and because of the generality of our results, we can show here the
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Fig. 3.25 Hairpin structures. (a) DNA hairpin example composed of C, T, A, and G bases. (b) 
RNA hairpin example composed of C, U, A, and G bases. (c) Pyrimidine nucleobases cytosine 
(C), thymine (T), and uracil (U) consist of simple ring molecules. (d) Purine nucleobases adenine 
(A) and guanine (G) consist of fused-ring molecules. The images are adapted from Wikipedia 
under CC BY 3.0 license 

comparison between experimental and theoretical findings. In particular, the theory 
previously developed can be applied to give a theoretical interpretation of the 
experimental results obtained through the unfolding of RNA and DNA hairpins 
by optical–thermal tweezers (Stephenson et al. 2014; De Lorenzo et al. 2015). 
Concerning RNA, the unfolding of a 20-base-pair tetraloop hairpin was studied 
under different ionic conditions and at temperatures ranging from 22 ◦ .C to 42  ◦ .C 
(Stephenson et al. 2014). Aluminum heating plates with thermoelectric coolers 
have been used to heat the system, and the temperature has been measured by a 
thin thermocouple. At each temperature, single hairpin molecules have been held 
at constant force (Gibbs ensemble), and the transition force has been measured 
versus the controlled temperature of the experiment (see Fig. 3.26, top right panel). 
The experimental data are also plotted in Fig. 3.26 (bottom panel, red down-
pointing triangles) together with the theoretical curve obtained through Eqs. (3.87) 
and (3.88), with k = 0.6.N/m, h = 86.3.N/m, and yM = 7.77.pm. Concerning 
DNA, a 6.8 kbp hairpin obtained from λ.-DNA has been used in a temperature-
jump optical trap for single-molecule manipulation (De Lorenzo et al. 2015). In 
this case the temperature is controlled by a heating laser with a wavelength highly 
absorbed by water in order to have a quite broad range of temperatures between 
5 ◦ .C and 50 ◦ .C (see Fig. 3.26, top left panel). The resulting transition force is also 
plotted in Fig. 3.26 (bottom panel, blue up-pointing triangles) against the theoretical 
curve obtained, as before, through Eqs. (3.87) and (3.88), and now with k = 1.N/m, 
h = 5.34.N/m, and yM = 19.5.pm. In Fig. 3.26, bottom panel, we also added a green 
square symbol corresponding to the measured denaturation temperature of DNA 
(here also assumed for RNA) (Wang et al. 2014; Wallace et al. 1979). We remark 
however that the denaturation temperature is rather sensible to the solvent conditions 
and the base composition of the nucleic acids (Marmur et al. 1962). The value 
k = 1.N/m for DNA has been imposed since a Young modulus of 300 MPa has been
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Fig. 3.26 Top left panel: DNA hairpin unfolding experimental data, reproduced with permission 
(De Lorenzo et al. 2015). The experimental data (blue points) are compared with two theoretical 
predictions, HU and UO, described by De Lorenzo et al. (2015). Top right panel: RNA hairpin 
unfolding experimental data, reproduced with permission (Stephenson et al. 2014). The down-
pointing triangles correspond to the unfolding, the up-pointing triangles to the refolding, and the 
circles to the equilibrium force (at which the unfolding and refolding rate constants are equal). 
Bottom panel: comparison between experimental results for the unzipping of RNA and DNA 
hairpins. Red down-pointing triangles: RNA hairpins (Stephenson et al. 2014), and blue up-
pointing triangles: DNA hairpins (De Lorenzo et al. 2015). Both sets of results are shown in the 
first two panels, and our theoretical predictions are here represented by continuous lines. The green 
square symbol corresponds to a measurement of the denaturation temperature (Wang et al. 2014; 
Wallace et al. 1979) 

estimated for the linear elasticity of DNA (Marko et al. 2003). Indeed, by assuming 
a Young modulus E = 300.MPa, a DNA radius r = 1.nm, and a distance between 
base pairs � = 0.34.nm, we easily obtained k = πr2E/� �.1 N/m. Concerning the 
RNA stretching modulus, we adopted the value k = 0.6.N/m since calculations and 
experiments indicate that the stretch modulus of dsDNA is nearly twofold larger 
than that of dsRNA (Bao et al. 2017; Marin-Gonzalez et al. 2017). The different 
mechanical behaviors of DNA and RNA are thoroughly explained in the recent 
literature (Bao et al. 2017; Marin-Gonzalez et al. 2017). The other parameters (h 
and yM .) have been fitted to obtain a good agreement between experimental and
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theoretical results for both RNA and DNA hairpins. It is interesting to note that 
the curves are able to jointly represent both the experimental data with the applied 
force at different temperatures (Stephenson et al. 2014; De Lorenzo et al. 2015) 
and the measurements concerning the denaturation temperature (Wang et al. 2014; 
Wallace et al. 1979). Moreover, the obtained values of h are larger than k, coherently 
with other DNA models based on the Morse potential (Peyrard 2004). To conclude, 
also the values of the extension threshold yM . are reasonable being lesser than the 
distance between base pairs � = 0.34.nm, which is a characteristic length for nucleic 
acids. 

6 Adhesion/Deadhesion Processes with Softening 
Mechanism: Application to Fracture 

In this section, we generalize the previous adhesion/deadhesion problem by intro-
ducing an intermediate state between the intact and broken states of the vertical 
elements. We suppose that before the complete breaking there is a phase of softening 
where the vertical elements assume a reduced elastic stiffness with respect to its 
intact value (Cannizzo et al. 2021). This model is particularly useful to represent 
the behavior of materials in terms of fracture strength. It is in fact important to 
underline that the process of deadhesion is very similar to the process of fracture: 
In both cases there is a sequence of links which break progressively in response to 
the external mechanical action and the temperature. Of course, assuming that the 
two processes can be modeled by means of the same scheme is an approximation 
and more in-depth studies are in progress. Anyway, we suppose here that we can 
also use deadhesion geometry for the fracture problem. An important problem in 
material science, and in particular in mechanics of materials, is the determination 
of the properties of structures at elevated temperature. One of the most important 
quantities is represented by the fracture strength, whose high-temperature behavior 
is crucial for construction and building materials for obvious reasons of stability 
and security. On the one hand, some investigation has been performed on the 
development of models capable of describing the temperature dependent fracture 
strength of materials (Nemat-Nasser et al. 1999; Li et al.  2016; Neuenschwander 
et al. 2017a). On the other hand, in several experiments the strength versus 
temperature response has been measured for many materials including metals, 
ceramics, and thermoplastic polymers (Neuenschwander et al. 2017b; Cheng et al. 
2020; Huang et al. 2020). The proposed approach represents therefore a conceptual 
step forward in the understanding of the strength–temperature relationship. As 
anticipated, the temperature dependent deadhesion model is applied to describe the 
fracture propagation in the sample under mechanical load. In particular, our model is 
able to describe the strength behavior in some specific cases where a given transition 
occurs during the increasing of the deformation (represented by the softening 
mechanism). Importantly, the model is able to reproduce the high-temperature
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Fig. 3.27 Scheme of the cohesion–decohesion process within both the Helmholtz (a) and the  
Gibbs (b) ensembles. While in the first case we prescribe the position yN+1 . and we measure the 
average force 〈f 〉., in the second case we apply a force f and we measure the average position 
〈yN+1〉.. In both cases, we consider a linear elastic behavior for the horizontal springs (c) and a  
breakable response with softening mechanism (d) for the vertical elements. The energy potentials 
W and U correspond to the horizontal and the vertical springs, respecti vely 

behavior of the strength in sapphire whiskers and some high-entropy and medium-
entropy alloys. In the case of the sapphire whiskers (Brenner 1962), the softening 
transition is represented by the damaging evolution from brittle fracture propagation 
at low temperature to the nucleation of dislocations before crack propagation at 
more elevated temperature. On the other hand, for medium-entropy and high-
entropy alloys (Miracle et al. 2017; Gali et al.  2013), the softening transition can be 
identified by a different structure and mobility of dislocations with different strains 
and temperatures. Of course, in order to model the softening correctly, we would 
have to consider an arbitrary number of weakened states between the intact and 
completely broken states, but this would be extremely complicated mathematically. 

We consider the cohesion–decohesion process in the system represented in 
Fig. 3.27 (panels a and b), where we can identify the longitudinal springs, which 
are linear, with potential energy W(z) = 1

2kz2
. for any z ∈ R. (see panel c), and the 

transverse springs, which can be intact, partially broken, or completely broken (see 
panel d), depending on their extension. These breakable elements can be described 
by the potential energy (Cannizzo et al. 2021)
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.U(y) =
⎧
⎨

⎩

1
2hey

2 |y| < yp,
1
2hpy2 + �E yp < |y| < yb,
1
2hpy2

b + �E |y| > yb.

(3.89) 

The behavior of the breakable elements represents a generalization of a simpler case 
(without the softening mechanism) recently introduced in the literature (Florio et al. 
2020). The values ± yp . of the extension correspond to the softening points A and 
B of the breakable spring, where the elastic constant switches from he . to hp < he .. 
The force jump at y = ±yp . is given by

√
2�E(he − hp). and can be noticed in 

panel d of Fig. 3.27. We simply calculate that 

.yp =
√

2�E

he − hp

, (3.90) 

and we must always impose the inequality yb > yp ., or equivalently, yb >
√

2�E
he−hp

., 

where ± yb . are the extensions at the breaking points C and D of the transverse 
elements. It means that the elements are intact if |y| < yp ., partially broken if yp <

|y| < yb ., and completely broken when |y| > yb .. In the following, we assume that 
a first group of ξ . elements of the chain are intact (i = 1, . . . , ξ .), a second group 
of η − ξ . elements are partially broken (i = ξ + 1, . . . , η .), and a third group of 
N − η . elements are completely broken (i = η + 1, . . . , N .). In other terms, it means 
that we consider two domain walls, the first between intact and partially broken 
elements and the second between partially broken and completely broken elements 
(see Fig. 3.27). These walls can move in response to the mechanical action applied 
to the system and are also influenced by the thermal fluctuations. 

We describe the main results we can find within the Helmholtz ensemble. We 
can introduce the elastic constant ratios α = he/k ., β = hp/k .. In order to further 
simplify the analysis of the system, we can now introduce the adimensional applied 
extension Y = yN+1/yb ., the adimensional average force 〈F 〉 = 〈f 〉

kyb
., and the 

energy ratios δ = ky2
b

2KBT
> 0., ϕ = �E

KBT
> 0.. The following quantities are useful to 

show the system behavior: 

. � = α2 + 4α, α0 = 2 + α + √
�

2
, � = β2 + 4β, β0 = 2 + β + √

�

2
.

(3.91) 

Also, the temperature 

.T0 = 2�E

KB log α0
β0

(3.92) 

must be considered, since it corresponds to an important transition in the system 
behavior.
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By using these definitions, it is possible to prove that the curve 〈F 〉. versus Y. is 
characterized by an asymptotic force 〈F 〉as . for large values of Y.. This asymptotic 
value represents the strength of the system, and it can be calculated as follows for 
any temperature T < T0 . or T > T0 .. The asymptotic values follow (Cannizzo et al. 
2021) 

.T < T0 ⇒ 〈F 〉as =
√

βδ − 1
2 log α0 + ϕ

δ
=
√

2�E

ky2
b

+ hp

k

√

1 − T

Tb

, (3.93) 

where 

.Tb = 2�E + hpy2
b

KB log α0
= 2�E + hpy2

b

KB log 2+α+
√

α2+4α
2

, (3.94) 

and 

.T > T0 ⇒ 〈F 〉as =
√

βδ − 1
2 log β0

δ
=
√

hp

k

√

1 − T

Tc

, (3.95) 

where 

.Tc = hpy2
b

KB log β0
= hpy2

b

KB log 2+β+
√

β2+4β

2

. (3.96) 

The temperatures Tb . and Tc . represent two critical temperatures of the system, as 
widely discussed below. In a few words, we can say that when we are close to these 
critical temperatures, the system undergoes a phase transition corresponding to the 
complete breaking of all the elements. 

An important point concerns the emergence of two different cases depending on 
the parameters of the system. Indeed, it can be easily verified that for small values 
of the breaking extension yb ., we have Tc < Tb < T0 ., and for larger value of yb ., we  
have T0 < Tb < Tc .. More precisely, we can state that 

.
β

α − β
<

hpy2
b

2�E
<

log β0

log α0 − log β0
⇒ Tc < Tb < T0, . (3.97) 

hpy2 
b 

2�E 
> 

log β0 

log α0 − log β0 
⇒ T0 <  Tb <  Tc. (3.98) 

We remark that the first limitation β
α−β

<
hpy2

b

2�E
. corresponds to the existence of the 

softening region, i.e., to yb > yp .. On the other hand, the second ratio log β0
log α0−log β0

. 

is at the origin of a real transition in the system behavior. It follows that, for small
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Fig. 3.28 Behavior of the asymptotic force versus the temperature for a small (panels a, b, and  
c) and a large (panels d, e, and  f) value of the breaking extension yb .. Panels a and d: comparison 
between the solution of the problem with N = 300. (colored curves) and Eqs. (3.93) (black straight 
lines) and (3.95) (red straight lines). In panel a, we used eight values of T between 0 and Tb ., and in  
panel d, we used ten values of T between 0 and Tc .. Panels b and e: potential energy of the adopted 
breakable elements with different yb . (yb = 1.5yp . in panel b and yb = 3.5yp . in panel e). Panels c 
and f: asymptotic force versus temperature (the green lines corresponds to Eqs. (3.93) and (3.95) 
and the circles to the colored curves of panels a and d forY = 10.). The adopted parameters follow: 
he = 20., hp = 1., �E = 2., k = 5., and KB = 1. (all in arbitrary units) 

values of yb ., only Eq. (3.93) describes the behavior of the asymptotic force versus 
the temperature of the system. Differently, for larger value of yb ., both Eqs. (3.93) 
and (3.95) represent the force-temperature curve, with a transition for T = T0 .. 
In this case, we have to examine continuity of 〈F 〉as . for T = T0 .: It can be easily 

proved that
√

2�E

ky2
b

+ hp

k

√
1 − T0

Tb
=
√

hp

k

√
1 − T0

Tc
., where T0 . is defined in Eq. (3.92) 

and Tb . and Tc . are defined in Eqs. (3.94) and (3.96), respectively. This demonstrates 
that the asymptotic force is a continuous function of the temperature (for large value 
of yb .). 

This complex scenario is illustrated in Fig. 3.28, where the solution of the 
problem with a large value of N is compared with Eqs. (3.93) and (3.95). When 

β
α−β

<
hpy2

b

2�E
<

log β0
log α0−log β0

., the phase transition corresponds to the critical 

temperature Tb .. Conversely, when
hpy2

b

2�E
>

log β0
log α0−log β0

., the phase transition occurs 
at the critical temperature Tc . (after a behavioral continuous transition at T0 ., as  
previously explained). From panels c and f of Fig. 3.28, we deduce that the force
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needed to obtain the complete detachment of the system monotonically decreases 
to zero for increasing values of the temperature. This process terminates at T = Tb . 

in panel c and at T = Tc . in panel f. It means that the thermal fluctuations are able 
to promote the fracture of the breakable elements and that the critical temperatures 
Tb . and Tc . are sufficient to completely break the system even without an applied 
mechanical action. 

The transition at T0 . in Fig. 3.28, panel f, can be explained by determining the 
behavior of the average number of partially broken elements 〈η − ξ 〉. versus the 
temperature (Cannizzo et al. 2021). We can obtain that 〈η − ξ 〉 → ∞. for T → T0 ., 
proving that all elements are (at least) partially broken for temperatures larger than 
T0 .. Therefore, we have the first transition at T0 . where all the elements are partially 
broken and a second transition at Tc . where all the elements are completely broken. 
This is coherent with the result stating that 〈N − η〉 → ∞. for T → Tc . for any 
value of the extension Y.. 

We do not discuss here the behavior of the system under the Gibbs condition. 
Anyway, we can affirm that the two ensembles are not equivalent in the thermody-
namic limit, but the asymptotic decohesion forces given by Eqs. (3.93) and (3.95) are  
the same (similarly to what has been observed for the system without the softening 
mechanism) (Florio et al. 2020; Cannizzo et al. 2021). The curves observed in 
Fig. 3.28 (panels c and f) are useful to describe the strength of some materials as 
function of the temperature as discussed in the next section. 

6.1 Comparison with Experimental Results 

In this section, we use the obtained results to give an interpretation of some 
experiments conducted to determine the tensile behavior of different materials at 
elevated temperature, under an applied mechanical load. 

The first case concerns filamentary crystals or whiskers of sapphire (Al 2 .O 3 .) with 
a diameter between 8 and 40 μ.m (Brenner 1962). In these structures, the damage 
can be generated by the propagation of a fracture that, at the microscopic scale, can 
be modeled by our dechoesion theory, discussed in the previous section. Indeed, 
the fracture propagation can be viewed as a sequence of ruptures, representing 
the breaking of the chemical bonds along a direction of the crystal structure. In 
particular, our model will be used to analyze the effect of the temperature on 
this damaging process. The whiskers being essentially free of dislocations, at least 
without applied stress and for low temperature, the magnitude of their strengths 
should be an indication of the stresses required for either crack propagation or 
dislocation nucleation. The temperature dependence of these stresses has been 
measured by Brenner (1962). The experimental average fracture strength and the 
experimental maximum fracture stress as a function of temperature are reported 
in panels (a) and (b) of Fig. 3.29, respectively (Brenner 1962). The transition at 
around T = 1550. ◦ .C in the stress decrease suggests a change in the mechanism of 
failure leading to the complete fracture. Brenner (1962) has proposed the following
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Fig. 3.29 Mechanical behavior of sapphire whiskers at elevated temperatures. The experimental 
average fracture strength (panel a) and the experimental maximum fracture stress (panel b), 
as a function of temperature, are reproduced with permission from Brenner (1962). Panel (c): 
comparison between theoretical and experimental average and maximum strengths based on 
Eqs. (3.93) and (3.95) 

scenario. First of all, it is supposed that some defects are distributed within the 
whiskers (formed during the crystal growth), and they are able to intensify the 
applied stress through Griffith- and/or Eshelby-like mechanisms. At a given level 
of applied stress, the locally intensified stress around the defects can generate prop-
agation of the crack or nucleation of dislocations. Brenner (1962) provides evidence 
that at the lower temperatures, the enhanced stress causes crack propagation without 
dislocation nucleation, while at elevated temperatures, dislocations are generated 
before the fracture propagation. In the latter case, the population of dislocations is 
able to reduce the elastic stiffness of the material. In our model, the generation of 
dislocations can be therefore represented by the softening mechanism described by 
the transition of the stiffness of the vertical springs between he . and hp ., shown in  
Fig. 3.27. It is interesting to observe that the theoretical behavior of the strength 
shows a transitional behavior at T0 ., as shown in Fig. 3.28, panel f. The temperature 
T0 . is therefore around 1550 ◦ .C for the sapphire whiskers. The decohesion forces 
given by Eqs. (3.93) and (3.95) are able to represent the experimental results on the 
strength of the sapphire whiskers, as shown in panel (c) of Fig. 3.29. The quite good 
agreement between theory and experiments can be noticed.
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Fig. 3.30 Mechanical behavior of high-entropy and medium-entropy alloys over a large tem-
perature range. The experimental tensile yield stress (panel a) and the experimental ultimate 
tensile stress (panel b), as a function of temperature, are reproduced with permission from Miracle 
et al. (2017). Panel (c): comparison between theoretical and experimental results for the quinary 
CrMnFeCoNi alloy (also named Cantor alloy), based on Eqs. (3.93) and (3.95) 

Another class of materials where our theory can be applied is represented 
by high-entropy alloys. These systems are typically composed of five or more 
elements with equal (or relatively equal) stoichiometric coefficients. These materials 
are named high-entropy alloys since the mixing entropy is maximized if the 
components are present in equal proportions, and it is an increasing function of 
the number of components. Consequently, when these systems are composed of two 
to four components, then they are typically named medium-entropy alloys. From 
a historical point of view, the idea of creating alloys has been used to generate 
desirable properties in a given artificial material. High-entropy alloys represent a 
new strategy introduced to exploit a multidimensional compositional space in order 
to induce exceptional properties to these recent exotic materials. Today, only a 
small region of this multidimensional space has been explored, and many other 
alloys can be discovered in the future (George et al. 2019). In Fig. 3.30, one can 
find the experimental data concerning the tensile yield stress (panel a) and the 
ultimate tensile stress (panel b) of several high-entropy alloys and medium-entropy 
alloys (Miracle et al. 2017). The mechanisms at the origin of the mechanical 
response in these systems are very complex. The distribution of defects plays
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Fig. 3.31 Mechanical behavior of the medium-entropy alloy CrFeCoNi over a large temperature 
range. The experimental tensile yield stress and ultimate tensile stress (panel a), as a function 
of temperature, are reproduced with permission from Gali et al. (2013). Panel (b): comparison 
between theoretical and experimental results for the CrFeCoNi alloy (also named HE-4), based on 
Eqs. (3.93) and (3.95) 

a crucial role in defining the mechanical properties. At the atomic scale typical 
defects include vacancies, dislocations, and grain boundaries. At larger scale, other 
defects are represented by pores, precipitates, cracks, and residual stresses. The 
static and dynamic interplay of these microstructures is able to determine the overall 
mechanical response of the whole material. In spite of this complexity, the yield and 
ultimate strengths, shown in panels (a) and (b) of Fig. 3.30, decrease continuously 
over the full range of temperatures. More specifically, a first region characterized by 
a steep drop is followed by a second region where the decrease is slower. As before, 
the transition between these regions can be interpreted as a change in the underlying 
damaging physical mechanism. 

As a paradigmatic example, we consider the quinary CrMnFeCoNi alloy (also 
named Cantor alloy), which is one of the first high-entropy alloys investigated 
(Cantor et al. 2004). This structure crystallizes as a single-phase FCC solid. The 
strength of this alloy exhibits a strong drop for temperatures below 350 ◦ .K and a 
weaker temperature dependence at elevated temperatures up to around 1270 ◦ .K. 
There is therefore a behavioral transition at the temperature T0 = 350. ◦ .K. From 
the microstructural point of view, this can be explained as follows. For small 
deformation the CoCrFeMnNi alloy exhibits the development of planar dislocation 
glide, which is typical for FCC metals (Otto et al. 2013). For larger strain, 
dislocations lose their planar character and organize into cell structures (Otto et al. 
2013). This modification induces a larger ductility and a lower stiffness of the overall 
material. Finally, this process is represented in our model by the softening of the 
vertical breakable springs, which change their elastic coefficients from he . to hp ., as  
shown in Fig. 3.27. In panel (c) of Fig. 3.30, we draw a comparison between the 
experimental and theoretical results for both the yield and ultimate stress of the 
quinary CrMnFeCoNi alloy. As before, we remark that the model is able to capture 
the transition in the behavior of the strength as function of the temperature. Another
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example is given in Fig. 3.31, where we take into consideration the mechanical 
properties of the medium-entropy alloy CrFeCoNi (also named HE-4). In panel (a) 
of Fig. 3.31 experimental ultimate and yield stresses are reported (Gali et al. 2013). 
As before, a transition can be observed for a temperature around 200 ◦ .C. Also in 
this case, this transition can be interpreted by a different structure and mobility 
of the dislocations with different strains and temperatures (Gali et al. 2013). The 
comparison with the theoretical results is drawn in panel (b) of Fig. 3.31, where a 
good agreement can be underlined. 

We described the application of the softening mechanism to the strength behavior 
of sapphire whiskers and of high-entropy and medium-entropy alloys. For these 
material systems, we provided evidence that the theory is able to describe the 
behavior of both yield and ultimate stress as function of the temperature. 

7 Conclusion 

We described some biophysical and materials science phenomena governed by 
internal micro-instabilities, and we introduced some related models based on the 
combination of micromechanics and statistical mechanics. This combination gener-
ates models able to take into consideration both the effect of the thermal fluctuations 
and the externally applied mechanical actions. These approaches are useful for 
both systems exhibiting bistability or multistability and for systems characterized 
by breaking or fracture phenomena including deadhesion and decohesion. The 
main idea is that of reducing the complexity of the models in order to emphasize 
common essential features of most real systems and phenomena characterized by 
micro-instabilities. This approach allows us to develop models of wide applicability, 
ranging from biophysics to material science, which are independent of the actual 
molecular architecture of the investigated system. Moreover, the proposed modeling 
activity is useful for interpreting experimental results by original mathematical 
approaches that can inspire further generalizations of continuum mechanics with 
a more comprehensive understanding of thermal phenomena. One of the most 
promising devices of our approach is the spin variable method, which permits to 
consider the different states allowed to the units or elements of the system. For 
example, for a bistable unit the spin variable corresponds to a bit identifying the two 
possible states of the unit itself. Similarly, in breakable systems, a unit can be in 
the broken or unbroken state that can be described by a discrete variable with two 
possible values. More in general, a vector of spin variables can completely represent 
the state of a system composed of an arbitrary number of bistable or breakable 
units. These discrete variables belong to the phase space of the system described 
by the classical statistical mechanics. Hence, when we determine the partition 
function of the system, we have to integrate the classical continuous Hamiltonian 
variables and to sum over the discrete values of the spin variables. The knowledge 
of the partition function enables us to evaluate all the macroscopic thermodynamic 
quantities of interest to better understand the system behavior. This procedure can
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be applied to different statistical ensembles, namely corresponding to the Helmholtz 
(isometric) or Gibbs (isotensional) conditions. We can therefore analyze the problem 
of the equivalence of the ensembles in the thermodynamic limit (for very large 
systems). We discussed in this review four specific problems: The first concerns 
the force-extension response of macromolecules observed through the force spec-
troscopy methodology, the second the phase transformations in solid materials 
with application to whiskers or nanowires, the third the adhesion or deadhesion 
process of chain or films with the application to the hairpins unzipping, and finally, 
the fourth the softening mechanism in the cohesion/decohesion process useful to 
better understand the temperature dependence of strength for some materials. In 
the first problem investigated, we proposed an interpretation of the two classes 
of experimental responses observed through single molecule force spectroscopy 
methods. Indeed, one can observe force-extension curves with a force plateau 
(synchronized response) or sawtooth curves with a series of force peaks (sequential 
response). The method of spin variables allowed to give an interpretation of the 
two responses based on a unified model, simply used with traction devices having 
different intrinsic elasticity: soft devices for the plateau-like response (isotensional 
or Gibbs ensemble) and hard device for the sawtooth-like response (isometric or 
Helmholtz ensemble). In the second problem, we generalized the bistable models 
in order to consider the interaction between the units by means of an Ising scheme 
based on the spin variables. This is particularly important to model the behavior of 
phase transformations in solid materials where the creation of an interface between 
different phases is costly from the energetic point of view. The interaction coefficient 
of the Ising scheme exactly describes the energy associated with the domain walls 
or grain boundaries separating internal phases. The model solution allows us to 
perfectly understand the nucleation stress and the temperature dependent plateau 
observed in the experimental stress–strain response. The third problem concerns the 
adhesion or deadhesion processes of chains or films, and the proposed solution is 
able to reveal a critical behavior of the system characterized by a critical temperature 
corresponding to a phase transition. It means that there exists a temperature able 
to completely detach the system without mechanical actions. This behavior fully 
corresponds to the observed temperature dependent hairpin unzipping for both DNA 
and RNA. The agreement between theory and experiments has been evidenced and 
discussed. Finally the fourth problem concerns the softening mechanism in the 
cohesion/decohesion processes. It means that the intact elements of the system may 
be softened before the full rupture. The introduction of this new feature allows us to 
describe the plastic phenomena associated with the rupture processes and to give 
an interpretation to the experimentally observed temperature dependent strength 
of materials. This point has been explicitly discussed for sapphire whiskers, high-
entropy, and medium-entropy alloys. 

A rather important feature of systems with rupture phenomena is the presence of 
a phase transition at a well-defined critical temperature. This means that thermal 
fluctuations have the ability to promote ruptures in the system, favoring the 
exploration of the phase space corresponding to the broken state (horizontal part 
of the potential energy). When the temperature reaches its critical value, all bonds
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break regardless of the mechanical forces applied to the system (phase transition). 
This corresponds well with experimental observations obtained with DNA, RNA, 
and a variety of ceramic and semiconductor nanowires. What is interesting is that 
our spin variable-based method is able to provide exact mathematical solutions that 
completely describe these phase transitions and corresponding critical temperatures. 

To conclude, we want to underline the fact that the combination of microme-
chanics with statistical mechanics is able to give further insights about the behavior 
and the internal mechanisms of complex phenomena in real materials. Of course, 
the models presented can be improved from several points of view in order to better 
represent further features of real structures. For example, we have not discussed 
the time-behavior of these processes (which must be described by the out-of-
equilibrium statistical mechanics), the possible heterogeneity of these systems, we 
always studied one-dimensional structures when more realistic systems are two-
or three-dimensional, we have not implemented the real molecular architecture of 
the investigated materials, and we often adopted a coarse-grained vision in order to 
simplify the model development. In any case, the interesting results obtained with 
the preliminary simple models motivate further research in order to implement all 
these improvements and extensions. 
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Walther KA, Brujić J, Li H, Fernández JM (2006) Sub-angstrom conformational changes of a 
single molecule captured by AFM variance analysis. Biophysical Journal 90(10):3806–3812. 
https://doi.org/10.1529/biophysj.105.076224 

Wang J, Kouznetsova TB, Boulatov R, Craig SL (2016) Mechanical gating of a mechanochemical 
reaction cascade. Nature Communications 7(1):13433. https://doi.org/10.1038/ncomms13433 

Wang MC, Guth E (1952) Statistical theory of networks of non-gaussian flexible chains. The 
Journal of Chemical Physics 20(7):1144–1157. https://doi.org/10.1063/1.1700682 

Wang X, Lim HJ, Son A (2014) Characterization of denaturation and renaturation of DNA for DNA 
hybridization. Environmental Health and Toxicology 29:e2014007. https://doi.org/10.5620/eht. 
2014.29.e2014007 

Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose 
nucleic acid. Nature 171(4356):737–738. https://doi.org/10.1038/171737a0 

Weiner JH (2002) Statistical mechanics of elasticity. Dover Publications, New York 
Wenner JR, Williams MC, Rouzina I, Bloomfield VA (2002) Salt dependence of the elasticity 

and overstretching transition of single DNA molecules. Biophysical Journal 82(6):3160–3169. 
https://doi.org/10.1016/S0006-3495(02)75658-0 

Winkler RG (2010) Equivalence of statistical ensembles in stretching single flexible polymers. Soft 
Matter 6(24):6183–6191. https://doi.org/10.1039/C0SM00488J 

Woodside MT, García-García C, Block SM (2008) Folding and unfolding single RNA molecules 
under tension. Current Opinion in Chemical Biology 12(6):640–646. https://doi.org/10.1016/j. 
cbpa.2008.08.011 

Xia S, Ponson L, Ravichandran G, Bhattacharya K (2012) Toughening and asymmetry in peeling 
of heterogeneous adhesives. Physical Review Letters 108(19):196101. https://doi.org/10.1103/ 
PhysRevLett.108.196101 

Yamahata C, Collard D, Legrand B, Takekawa T, Kumemura M, Hashiguchi G, Fujita H 
(2008) Silicon nanotweezers with subnanometer resolution for the micromanipulation of 
biomolecules. Journal of Microelectromechanical Systems 17(3):623–631. https://doi.org/10. 
1109/JMEMS.2008.922080 

Yang P-Y, Ju S-P, Lai Z-M, Hsieh J-Y, Lin J-S (2016) The mechanical properties and thermal 
stability of ultrathin germanium nanowires. RSC Advances 6(107):105713–105722. https:// 
doi.org/10.1039/C6RA21841E 

Zaltron A, Merano M, Mistura G, Sada C, Seno F (2020) Optical tweezers in single-molecule 
experiments. The European Physical Journal Plus 135(11):896. https://doi.org/10.1140/epjp/ 
s13360-020-00907-6

https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1083/jcb.101.1.130
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1016/S0006-3495(87)83244-7
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1007/s12551-019-00585-4
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1093/nar/6.11.3543
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1529/biophysj.105.076224
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1038/ncomms13433
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.5620/eht.2014.29.e2014007
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1016/S0006-3495(02)75658-0
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1039/C0SM00488J
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1109/JMEMS.2008.922080
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1039/C6RA21841E
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6
https://doi.org/10.1140/epjp/s13360-020-00907-6

	Part II Selected Essays: Methods & Results
	3 Modeling Mechanical Micro-instabilities in Biophysics and Materials Science
	Contents
	1 Introduction
	2 Thermodynamics of Small Systems with Micro-instabilities
	3 Single-Molecule Force-Spectroscopy Measurements and Their Interpretation
	3.1 Optical Tweezers
	3.2 Magnetic Tweezers
	3.3 Atomic Force Microscope
	3.4 MEMS Devices
	3.5 Experimental Results on Force-Extension Curves
	3.6 Bistable Freely Jointed Chain Model
	3.6.1 The Gibbs Ensemble for the BFJC Model
	3.6.2 The Helmholtz Ensemble for BFJC Model

	3.7 Extensible Bistable Freely Jointed Chain Model
	3.7.1 The Gibbs Ensemble for the EBFJC Model
	3.7.2 The Helmholtz Ensemble for the EBFJC Model


	4 Phase Transformations in Solid Materials
	4.1 Zipper Model Within the Gibbs Ensemble
	4.2 Zipper Model Within the Helmholtz Ensemble
	4.3 Applications to the Tensile Behavior of Nanowires

	5 Adhesion/Deadhesion Processes: Application to Hairpins Unzipping
	5.1 Hard Device Adhesion/Deadhesion: Helmholtz Ensemble
	5.2 Soft Device Adhesion/Deadhesion: Gibbs Ensemble
	5.3 Thermodynamic Limit
	5.4 Application to Nucleic Acid Hairpins

	6 Adhesion/Deadhesion Processes with Softening Mechanism: Application to Fracture
	6.1 Comparison with Experimental Results

	7 Conclusion
	References



