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Foreword

When I started out on my career, CMOS technology had just begun its domination in elec-
tronics. Although there are major challenges in continued scaling, no other technology was
expected to be able to compete with CMOS commercially in the near future. However, the
research community had always been interested in looking beyond CMOS and searching for
alternative technologies. I was very fortunate to be surrounded by wise mentors and brilliant
colleagues, who ultimately convinced me it would be fun to be in the arena of “beyond CMOS
technologies.” On many occasions I wished somebody had written a book summarizing the
most promising developments, saving professionals and students the time and aggravation
of sifting through a plethora of many approaches. The fact that Jayasimha Atulasimha and
Supriyo Bandyopadhyay are doing just that, putting together a collection of the latest and
most promising developments in spintronics, is going to benefit not only young students
and researchers new to the field, but will also provide a convenient reference for experts
and experienced researchers to build their discoveries upon.

The field of spintronics has enjoyed rapid progress during the last decade, mostly due to
the major challenge of excessive power dissipation in further CMOS scaling, which threatens
perhaps a complete halt to scaling in the near future. As any active researcher in this field will
tell you, the race to be the first to discover novel devices far beyond CMOS applications is both
exhilarating as well as exhausting. It is therefore with great pleasure and honor that I am writing
this foreword to introduce you to this timely treatise on the latest developments in this field,
edited by recognized experts as well as my friends and colleagues, Supriyo Bandyopadhyay
and Jayasimha Atulasimha.

This new book delivers a summary of the latest developments in spintronics in a way that is
pleasantly digestible for any graduate level student and beyond, aspiring to excel in this field.

Professor Kang L. Wang
Distinguished Professor and Raytheon Chair in Electrical Engineering

University of California, Los Angeles



Preface

The complementary metal-oxide semiconductor (CMOS) device technology has dominated
electronics for the last 70 years. CMOS has been able to scale down at an incredible pace,
predicted by the famed Moore’s law. However, it appears that further scaling of CMOS devices
may encounter a road block by the end of the decade due to various issues, primarily among
which is the rapid increase in heat dissipation as more and more devices are packed on to a
chip with increasing densities.

There is also a strong need for computing devices that can operate with 2–3 orders of
magnitude lower energy dissipation than current CMOS devices in embedded applications.
Mobile and medical applications would prefer processors that would dissipate so little power
that they can be run on energy harvested from the ambient without requiring a separate power
source. If this comes to pass, it will open up myriad applications in wearable electronics,
medical devices embedded to monitor the health of patients and sensor networks that monitor
critical infrastructure such as buildings and bridges.

For these reasons, several new device concepts have been advanced as potential replace-
ments for CMOS devices, or to complement CMOS devices for specific applications such as
nonvolatile memory and logic, or to implement certain functionalities such as neuromorphic
computing in a way better than CMOS devices can. They draw upon different physical mech-
anisms to elicit computational or signal processing activity. Among these different physical
paradigms, spintronic and nanomagnetic devices form an important class both for the rich
variety of physical phenomena on which these devices are based and the many different device
concepts that they have spawned.

The editors hope that this book will provide the reader with a broad understanding of
the key concepts behind spintronic and nanomagnetic devices as well as summarize the
latest developments in this field. Questions and comments can be addressed to J. Atulasimha
(jatulasimha@vcu.edu) and S. Bandyopadhyay (sbandy@vcu.edu).
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