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Abstract

The stick-slip phenomenon, at the basis of friction, is crucial for several
applications ranging from nanotechnology and biophysics to mechan-
ics and geology. Deep understanding of friction mechanisms and, in
particular, the methodologies for its reduction must be sought in its
nanoscopic nature, where atomic interactions and stick-slip processes
play a crucial role. At this scale, thermal fluctuations clearly have a
major effect on the physics of the problem. Hence, we develop here
a theory for rate-independent stick-slip, based on equilibrium statisti-
cal mechanics. In particular, we introduce suitably modified Prandtl-
Tomlinson and Frenkel-Kontorova models in order to study the system
with one particle and the chain with N particles, respectively. The
adopted corrugated substrate is composed of a sequence of quadratic
wells. Interestingly, the calculation of corresponding partition func-
tions shows a conceptual link with the theory of Jacobi and Riemann
theta functions, allowing an efficient determination of the average static
frictional force and other relevant quantities. We show some applica-
tions including the study of structural lubricity and thermolubricity.

Keywords: static nanofriction, Prandtl-Tomlinson and Frenkel-Kontorova
models, equilibrium statistical mechanics, thermolubricity
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1 Introduction

The stick-slip phenomenon is the basic feature of friction processes, which
play a crucial role in many physical systems covering a wide range of scales,
from molecular or nanoscopic to mesoscopic and macroscopic [1–4]. It rules the
physics of small contacts in nanoscience and nanotechnology [5–9], the slid-
ing of macromolecules in biological and soft structures [10–13], the mechanics
of machines with interacting surfaces [14–17], and the evolution of geophys-
ical systems [18–20]. Moreover, stick-slip and friction are also at the basis
of understanding plastic phenomena in solid materials, being able to con-
trol the nucleation of dislocations and fractures and to regulate the shear
transformations and the ductile-to-brittle failure transition [21–28].

From the historical point of view, the empirical laws governing the frictional
force occurring between a slider and a substrate have been investigated and
established by Leonardo da Vinci (1452-1519), Guillaume Amontons (1663-
1705), and Charles Augustin de Coulomb (1736-1806) [29]: (i) frictional force
is independent of the apparent contact area between slider and substrate, (ii)
the frictional force is proportional to the loading normal force, and (iii) kinetic
friction is independent of the sliding velocity and is typically smaller than
static friction. These macroscopic observations are purely empirical and ulti-
mately derive from the complex physical processes at the interface between
slider and substrate, involving the attachment and detachment of asperities
and the resulting variation of the real contact area [30, 31]. The nature of
friction at the nanoscale has begun to be studied more systematically with
the advent of the atomic force microscope [32], the surface force apparatus
[33], and the development of efficient molecular dynamics simulations and
multiscale models [34–37]. These approaches to nanotribology have enabled
the experimental and numerical observation of the characteristic stick-slip
motion of the slider atoms, which interact with the periodically corrugated
potential energy representing the atoms of the substrate. This result allowed
the validation of an older conceptual model, which is usually referred to as
the Prandtl-Tomlinson model [38, 39]. This is the most efficient model cur-
rently known for describing stick-slip motion or nanoscale friction and, for
this reason, has been largely investigated and compared with experimental
and numerical results [40, 41]. It consists in a single point mass moving on
a one-dimensional periodic potential (typically sinusoidal) pulled by a linear
spring characterized by its elastic constant. The analysis of this model reveled
different regimes of temperature and velocity and these theoretical achieve-
ments explained several atomic force microscope experiments [42–52]. The
most natural generalization of the Prandtl-Tomlinson model considers a one-
dimensional elastic chain of interacting atoms (or particles) moving over the
periodic potential mimicking the substrate. This scheme is known as Frenkel-
Kontorova model and perfectly describes the mutual sliding of two crystalline
interfaces. It has been first introduced by Dehlinger [53], and then adopted
by Kontorova and Frenkel to study the dislocations motion and explain the
plastic deformation in crystals [54–56]. The Frenkel-Kontorova model is able
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to describe a large range of nonlinear phenomena, such as solitons, chaos, fric-
tion, dislocations, incommensurate phases and glass-like systems. Because of
its simplicity and universality, it has been widely studied, eventually becom-
ing one of the most popular models used in low-dimensional nonlinear physics
[57–59]. We remark that the Frenkel-Kontorova model is sometimes named dis-
crete sine-Gordon model, since the continuous limit of the Frenkel-Kontorova
model exactly yields the sine-Gordon differential equation. Interestingly, this
equation was originally obtained by Edmond Bour in 1862 while conducting
researches on surfaces of constant negative curvature [60], and only rediscov-
ered by Frenkel and Kontorova in 1939 in their study on dislocations [54–56].
The tribological importance of the Frenkel-Kontorova model and of the sine-
Gordon equation is that their dynamics is characterized by topological solitons
named kinks (in case of the chain compression) and anti-kinks (in the case
of the chain extension), which move in the chain easily than particles, con-
trolling the overall chain motion. Indeed, the shift of the whole chain on the
left or the the right by one period of the corrugated substrate corresponds to
the propagation of a kink (or anti-kink) along the chain. The energy barrier
to be crossed to generate the kink movement is referred to as Peierls-Nabarro
barrier (introduced in the study of dislocations motion) and is smaller than
the amplitude of energetic oscillations of the corrugated substrate potential
[61–63]. In this context, Aubry proved an important transition for an infinite
incommensurate chain between a pinned state and an unpinned (frictionless)
state as its elastic constant increases [64–66] (see Section 3 for details). This
transition has been much studied in the past years, generalized to chains of
finite length and observed experimentally [67–75].

Although the absence of friction can be dangerous in some cases, facilitating
for example slipping on ice [76] or a banana peel [77], a great scientific challenge
consists in reducing its value in order to limit energy consumption in technolog-
ical process [16]. In this regard, the superlubricity phenomenon, corresponding
to a state of very low friction between two surfaces, has been observed and thor-
oughly investigated [78, 79]. This very special condition between surfaces can
be achieved by various techniques, the most important of which are the struc-
tural superlubricity, and the thermolubricity. In a structural superlubric state,
the two interacting surfaces have different or incommensurate lattices whose
mismatch leads to a nearly vanishing frictional force [80–82]. This effect has
been experimentally observed by scanning tunneling microscopy for W(011)
tip on Si(001) surfaces [83], by frictional force microscopy for metal tips over
graphite [84, 85] and by noncontact atomic force microscopy for graphene
nanoribbons on gold surfaces [86], just to name a few. These results have
been complemented by computational studies [87, 88]. The effect of temper-
ature on friction and the thermolubricity phenomenon are well described by
the Prandtl-Tomlinson minimalistic model introduced above [38, 39]. Actually,
in the early pioneering article by Prandtl [38], one already finds that fric-
tion decreases with temperature since thermal energy fosters the crossing of
energy barriers and eventually enables slip [42–52]. Once again, experimental
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evidence for this principle has been obtained for various materials using the
atomic force microscope [89, 90].

In order to have a comprehensive view of the effect of temperature on fric-
tion, we develop here a theory for the rate-independent stick-slip phenomenon,
based on equilibrium statistical mechanics. To do this, we implement the so-
called spin variable approach useful to deal with nonconvex potential energies
[91]. This technique has already been successfully applied to different prob-
lems such as the physics of muscles [92, 93], the folding of macromolecules
[94–97], the adhesion processes [98, 99] and the phase transformations in solids
[100, 101]. We remark that this approach is complementary to the methodolo-
gies commonly used to study the behavior of physical systems with multiple
stable and metastable states [102–105]. Here, we modify the Prandtl-Tomlinson
and Frenkel-Kontorova models by substituting the sinusoidal energy profile
of the substrate with a sequence of quadratic potentials, each of which rep-
resents a substrate well. It is important to remark that the sinusoidal profile
and the sequence of quadratic wells have a qualitatively similar behavior due
to their periodicity but different features from the quantitative point of view
because of the quite different shape. In this sense, the quadratic substrate
should not be seen as an approximation of the sinusoidal one, but rather as
an independent model with application, e.g., to frictional motion of defects
in solids or sliding of macromolecules on biological structures [12, 28]. Our
approach allows a simpler calculation of the partition functions for both (mod-
ified) Prandtl-Tomlinson and Frenkel-Kontorova systems. The spin variables
approach requires the introduction of a discrete variable (spin) for each parti-
cle of the system, useful to identify the substrate well locally explored by the
particle itself. The application of this methodology to the (modified) Prandtl-
Tomlinson and Frenkel-Kontorova models leads to explicit partition functions
written in terms of Jacobi or Riemann theta functions. This allows an efficient
calculation of all thermodynamic variables, including the average frictional
force (when the energy barrier between the wells is sufficiently larger than
KBT ). Eventually, this force depends on temperature and other geometri-
cal and physical variables, thus explaining possible structural and thermal
lubricity phenomena. In particular, we proved the existence for finite chains of
specific commensurate values of the lattice constant ratio between slider and
substrate, which are able to sensibly reduce the friction. We finally studied the
effect of the temperature on this friction reduction. The models introduced,
although rather simple, offer the future possibility of taking into account more
complex phenomena not accessible to current theories. We refer for example
to periodic but complex energy profiles and corrugated but deformable sub-
strates where the slider affects the shape of the substrate itself (this is relevant
in soft matter applications).

The paper is structured as follows. In Section 2, we develop the theory for
the modified Prandtl-Tomlinson model, and we discuss the results in Section
3. Then, in Section 4, we elaborate the statistical mechanics for the modified
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Fig. 1 Scheme of the modified Prandtl-Tomlinson model, characterized by a sequence of
quadratic potentials with stiffness k0 and placed at positions jd, ∀j ∈ Z. The energy barrier
W characterizes the corrugated substrate and must be sufficiently larger than KBT . The
particle at point P is linked by a first linear spring (constant kb) to the origin of the x-axis,
and by a second linear spring (constant k) to the position `, representing the sliding device.

Frenkel-Kontorova model, and we show some applications in Section 5. The
conclusions (Section 6) and a mathematical Appendix close the paper.

2 One-dimensional stick-slip model

We introduce a simple model concerning the one-dimensional stick-slip behav-
ior of a single particle in contact with a substrate described by a periodic
potential energy. In particular, we propose here a modification of the classi-
cal Prandtl-Tomlinson model [38–41], able to consider the effect of thermal
fluctuations on the static system behavior. Indeed, these fluctuations can
significantly modify the friction experienced by the particle deposited on
the substrate. While the interplay between temperature and velocity in the
Prandtl-Tomlinson model has been largely studied by means of several differ-
ent approaches [42–51], the static stick-slip behavior is directly investigated
here through statistical mechanics. In our approach, we assume to be close to
the thermodynamic equilibrium and therefore we consider rate independent
processes observed with the slider at rest or at sufficiently low speed. The
characteristic sinusoidal profile of the Prandtl-Tomlinson substrate potential
is substituted here by a periodic sequence of quadratic wells with elastic con-
stant k0 and spacing d (see Fig.1). The energy barrier between adjacent wells is
given by W = k0d

2/8 (it must be much larger than KBT , as discussed below).
Of course, we do not consider the natural transition rates between adjacent
wells (Kramers rate theory [106]) and the interaction of this dynamical pro-
cesses with the (low) speed of the traction device. These effects can be taken
into account only by means of the out of equilibrium statistical mechanics, and
this analysis has not been performed here. In order to identify the well occu-
pied by the particle, we have to introduce a new discrete variable n ∈ Z within
the phase space of the system, which represents the number corresponding
to the concerned substrate site. It is important to underline that the energy
barrier of the corrugated substrate (quantified by W or k0) has been directly
related to the normal load applied between slider and substrate [52]. This gives
still more importance to the Prandtl-Tomlinson model, whose features can be
easily put in relation to the experimental parameters.
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In our model, the manipulation of the particle is performed by a first linear
spring (constant kb) tethering the particle at the origin of the x-axis, and a
second linear spring (constant k) pulling the particle at position ` (see Fig.1).
These springs represent the device used to investigate the stick-slip behavior.
Of course, if we want to simulate a non-constrained particle interacting with
the substrate, we can let kb = 0, thus eliminating the bonding at the origin.
Moreover, ` must be considered slowly variable to allow the particle to explore
quasi-statically the substrate. These premises enable us to write the potential
energy of the system as

U(x, n) =
1

2
k0(x− dn)2 +

1

2
kbx

2 +
1

2
k(`− x)2, (1)

with x ∈ R and n ∈ Z. We suppose that the system is in contact with a thermal
reservoir at temperature T and we denote the Boltzmann constant by KB .
Hence, to introduce the partition function of the canonical distribution, we
have to sum over the discrete variable n and to integrate over the continuous
one x. Importantly, since we integrate the variable x for any potential well from
−∞ to +∞, we have to consider an energy barrier W sufficiently larger than
the thermal energy KBT . So doing, the effects generated by the overlapping
of quadratic potentials are negligible. For example, if we consider a silicon
cantilever sliding on a NaCl single crystal, we can observe that a normal load
in the range between 0 and 6 nN corresponds to an energy barrier W between
0 and 0.6 eV [52]. Then, it is not difficult to prove that the relation W � KBT
(we can say W = 10KBT ) is verified when W > 0.3 eV, which means a
normal load larger than 3 nN. This proves the applicability of our theory to
real cases. In addition, we work within the Helmholtz ensemble of statistical
mechanics since the distance ` is prescribed [107, 108]. These remarks lead to
the expression

ZH(`) =

+∞∑
n=−∞

∫ +∞

−∞
e
−U(x,n)

KBT dx, (2)

where we use Eq.(1). The integral can be now performed by means of the
classical gaussian integration∫ +∞

−∞
e−αx

2

eβxdx =

√
π

α
e
β2

4α , (α > 0), (3)

which is able to deliver the following result. To write it in compact form, we
define the parameters

ϕ =
k

2KBT

k0 + kb
kt

, η =
k0

2KBT

kb + k

kt
, ξ =

1

2KBT

k0k

kt
, (4)
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where kt = k0 + kb + k. We therefore observe that the partition function can
be written as follows

ZH(`) = e−ϕ`
2

+∞∑
n=−∞

e−ηd
2n2

e2ξd`n = e−ϕ`
2

ϑ3

(
−iξd`, i

π
ηd2

)
, (5)

where we have neglected the non influential multiplicative constant and being
ϑ3 (z, τ) the third Jacobi theta function defined below

ϑ3 (z, τ) =

+∞∑
n=−∞

eπin
2τe2inz = 1 + 2

+∞∑
n=1

eπin
2τ cos(2nz). (6)

Here z = −iξd` ∈ C is the argument, and τ = iηd2/π ∈ C is the so-called
lattice parameter satisfying the condition =m(τ) > 0 [109–113]. Sometimes,

also the nome q = eiπτ = e−ηd
2

is introduced with the assumption |q| <
1, assuring the series convergence. The introduced function satisfies the two
relations

ϑ3 (z + π, τ) = ϑ3 (z, τ) , (7)

ϑ3 (z + πτ, τ) =
e−2iz

q
ϑ3 (z, τ) , (8)

stating that the function is completely determined in the entire complex plane
by the values it assumes in the parallelogram identified by the four points
z0, z0 + πτ, z0 + π + πτ and z0 + π ∀z0 ∈ C (the fundamental domain) [109–
113]. There is a wide variety of notations for the theta functions. Here, rather
than the original Jacobi notation, we prefer the more modern notation intro-
duced in Refs.[109–113]. Interestingly, theta functions, historically used for the
study of elliptic functions and various problems in number theory, are also able
to completely describe the statistical mechanics of rate-independent friction.
From the thermodynamics of the system we know that the average value of
the force necessary to maintain the position ` of the device is given by

〈Fs〉 = −KBT
∂

∂`
logZH(`) = −KBT

1

ZH(`)

∂ZH(`)

∂`
. (9)

By using the following relation giving the logarithmic derivative of the third
theta function [109–113]

ϑ′3 (z, τ)

ϑ3 (z, τ)
= 4

+∞∑
n=1

(−1)n
qn

1− q2n
sin(2nz), (10)
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where ϑ′3 = ∂ϑ3

∂z , q = eiπτ , and which is valid for |=m(z)| < π
2=m(τ), we easily

obtain

〈Fs〉 =
dk0k

k0 + kb + k

[
`

d

k0 + kb
k0

+ 2

+∞∑
n=1

(−1)n
e−nηd

2

1− e−2nηd2
sinh(2nξd`)

]
,(11)

with validity in the range |ξ| < η/2. For the simplest case in which the particle
is not bound to the origin of the reference system (kb = 0), we obtain

〈Fs〉 =
dk0k

k0 + k

[
`

d
+ 2

+∞∑
n=1

(−1)n
e−nηd

2

1− e−2nηd2
sinh (2n`dη)

]
, (12)

with η = 1
2KBT

k0k
k0+k and |`| < d/2.

Concerning the average value of the discrete variable n, directly from
Eq.(5), we can write

〈n〉 =

∑+∞
n=−∞ ne−ηd

2n2

e2ξd`n∑+∞
n=−∞ e−ηd2n2e2ξd`n

, (13)

or, equivalently

〈n〉 =
1

2i

ϑ′3
(
−iξd`, iπηd

2
)

ϑ3

(
−iξd`, iπηd2

) . (14)

Using again Eq.(10), we get

〈n〉 = 2

+∞∑
n=1

(−1)n+1 e−nηd
2

1− e−2nηd2
sinh(2nξd`), (15)

which is valid if |ξ| < η/2. If kb = 0, this result can be easily simplified and
gives

〈n〉 = 2

+∞∑
n=1

(−1)n+1 e−nηd
2

1− e−2nηd2
sinh (2nηd`) , (16)

with η = 1
2KBT

k0k
k0+k and |`| < d/2.

Although correct and rather interesting, Eqs.(11)-(12) and (15)-(16) are
not very useful to give a physical interpretation of the phenomenon under
study. To get a new form for these solutions, we can introduce the following
Jacobi functional identity for the theta function [112, 113]

ϑ3 (z, τ) =
1√
−iτ

e
z2

πiτ ϑ3

(
z

τ
,−1

τ

)
, (17)
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where the square root is to be interpreted as the principal value (see the
Appendix for details). If we apply this identity to our partition function given
in Eq.(5), we eventually obtain

ZH(`) = e−ϕ`
2 1

d

√
π

η
e
ξ2

η `
2

ϑ3

(
−π ξ

η

`

d
, i

π

ηd2

)
, (18)

which is a new form completely equivalent to the previous one. From Eq.(9),
by using Eq.(10) we can obtain a new expression for the static friction force
as follows

〈Fs〉 =
kbk`

kb + k
+

4πKBTk

d(kb + k)

+∞∑
n=1

(−1)n+1e
−π2n
ηd2

1− e−
2π2n
ηd2

sin

(
2πn

ξ

η

`

d

)
. (19)

After the use of the Jacobi functional identity, this expression, contrary to
Eq.(11), is always convergent and is composed of a linear term in ` added to
a Fourier series in the same variable `. The convergence everywhere of the
new form in Eq.(19) depends on the fact that we are now dealing with a
Fourier series, whereas before in Eq.(11) we had an arbitrary function series
with limited convergence. The first term represents the effect of the bonding
spring kb whereas the second one comes from the periodic behavior of the cor-
rugated substrate. The physical interpretation of Eq.(19) is therefore evident
and transparent. When kb = 0, the linear term vanishes and we obtain

〈Fs〉 =
4πKBT

d

+∞∑
n=1

(−1)n+1 e
−π2n
ηd2

1− e−
2π2n
ηd2

sin

(
2πn

`

d

)
, (20)

which is the periodic rate-independent friction force. This expression allows
a simple analysis of the low temperature regime. Indeed, by using the limit
limx→0 x/(1− e−ax) = 1/a, Eq.(20) delivers

lim
T→0
〈Fs〉 =

k0kd

2π(k0 + k)

+∞∑
n=1

(−1)n+1 2

n
sin

(
2πn

`

d

)
, (21)

where we can recognize the Fourier series of a sawtooth wave

x =

+∞∑
n=1

(−1)n+1 2

n
sinnx, x ∈ (−π,+π), (22)

thus obtaining limT→0 〈Fs〉 = k0k`/(k0 +k), for any ` such that −1/2 < `/d <
1/2. This simple result exactly corresponds to the purely mechanical force
(without temperature effects) necessary to maintain the particle at position
` when it is attracted by the well centered at x = 0 (elastic constant k0)
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and pulled by the spring with constant k. The theory is therefore perfectly
consistent with the pure mechanics at T = 0.

We can now use Eq.(14) combined with Eq.(18) to find the new expression
for the average value 〈n〉 of the discrete or spin variable n. The result is

〈n〉 =
`

d

k

kb + k
+

π

2ηd2

+∞∑
n=1

(−1)ne
−π2n
ηd2

1− e−
2π2n
ηd2

sin

(
2πn

ξ

η

`

d

)
, (23)

which is again always convergent and composed of a linear term and a periodic
one. When kb = 0, we finally obtain

〈n〉 =
`

d
+

π

2ηd2

+∞∑
n=1

(−1)n
e
−π2n
ηd2

1− e−
2π2n
ηd2

sin

(
2πn

`

d

)
, (24)

where the linear term now remains present because it represents the increase of
〈n〉 during the sliding, i.e. the sequential transitions between the different wells
of the substrate potential. In conclusion, the latest results obtained through
the Jacobi functional relation are represented by Fourier series that always
converge, converge quickly, and have an immediate physical interpretation.

3 Results for the modified Prandtl-Tomlinson
model

All obtained expressions can be numerically implemented and some examples
can be found in Fig.2. In panels (a) and (b) of Fig.2 one can find the behav-
ior of the static force 〈Fs〉 /(k0d) and the spin variable 〈n〉 versus `/d for a
system with kb/k0 = 0 (without bonding spring). It means that the device
slowly spans some periods of the corrugated substrate and the main physical
quantities are calculated for different temperatures. By observing the energy
profile of the substrate, we see that the transitions of the particle between dif-
ferent wells occur at `/d = 1/2, 3/2, ..., and so on. Then, in correspondence to
these positions, we have peaks in the force [see panel (a) of Fig.2] and switches
between two adjacent integers in the average spin variable [see panel (b) of
Fig.2]. This is coherent with the Fourier series in Eqs.(20) and (24). Indeed,
since kb/k0 = 0, the curve representing 〈Fs〉 /(k0d) in panel (a) is periodic
in `/d with period 1. In panels (c) and (d) of Fig.2 we can find the behav-
ior of the same quantities 〈Fs〉 /(k0d) and 〈n〉 versus `/d for a system with
kb/k0 = 0.2 (with a spring tethering the particle at the axis origin). In this
case, the periodicity of the friction force is evidently lost, since a larger device
force will be necessary moving away from the origin of the axis, as described
by Eq.(19), with kb > 0. It is important to remark that, in both panels (a)
and (c) of Fig.2, we observe a reduction of the friction force with an increasing
temperature, clearly explaining the thermolubricity phenomenon [78, 79]. In
practice, the increase in temperature promotes thermal fluctuations and thus



Springer Nature 2021 LATEX template

Statistical mechanics of rate-independent stick-slip 11

0 1 2

-0.2

0

0.2

0 1 2
0

1

2

0 1 2

0

0.2

0.4

0 1 2
0

1

2

a)

d)

b)

c)

0 0.02 0.04 0.06 0.08 0.1 0.12

KBT
k0d20

0.1

0.2

0.3

0.4

m
a
x

{

〈F
s
〉

k
0
d
,0

<
ℓ d
≤

1

}

e)
kb
k0

= 0

k
k0

= 5ζ , ζ = −1, ...,+1

Fig. 2 Thermal stick-slip behavior of the modified Prandtl-Tomlinson model. Panels a)
and b): average adimensional static force 〈Fs〉 /(k0d) and average spin variable 〈n〉 versus `

d
for a system with kb/k0 = 0. We used Eq.(12) or (20) for the force and Eq.(16) or (24) for
the average value of n. Panels c) and d): the same quantities 〈Fs〉 /(k0d) and 〈n〉 versus `/d
for a system with kb/k0 = 0.2. We used Eq.(11) or (19) for the force and Eq.(15) or (23) for
the average value of n. In all panels a)-d) we adopted k/k0 = 1 and KBT/(k0d

2) assumes
8 values in the range (0.01, 0.12). Panel e): behavior of the maximum static friction force
as function of k/k0 and KBT/(k0d

2) with kb/k0 = 0. Here, k/k0 = 5ζ with ten equispaced
values of ζ in (−1, 1), and W > KBT .

the wider exploration of substrate energy basins. This then allows energy bar-
riers between wells to be more easily overcome and ultimately reduces friction.
We also note that in both in panels (b) and (d) the average value 〈n〉 exhibits
a sharp behavior with net transitions between the adjacent wells for low val-
ues of the temperature, and a more blurred response for high temperatures.
This is consistent with Eqs.(23) and (24).

To conclude, in panel (e), we show the behavior of the friction in
terms of the temperature and of the elastic constants ratio k/k0. To do
this, we quantify the static friction force by means of the maximum value
max {〈Fs〉 /(k0d), 0 < `/d ≤ 1} and we represent it as function of KBT/(k0d

2)
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and k/k0. It is important to recognize that this maximum force value corre-
sponds exactly to the force that the device must be able to apply to allow the
particle to advance from one period to another of the substrate corrugated
potential. This concept is in close analogy with the Peierls-Nabarro stress
introduced for the study of the onset of movement of dislocations [61–63]. We
observe that the maximum value of 〈Fs〉 /(k0d) in the period is decreasing with
an increasing adimensional temperature KBT/(k0d

2) and is increasing with an
increasing ratio k/k0. Importantly, we remark that the validity of the results
is in the range with W sufficiently larger than KBT . In Fig.2, we explored
the behavior of the system up to the limit W ' KBT in order to better show
the trend of the obtained results. The plot in panel (e) is useful to study the
behavior of the system when k is variable and k0 is constant. But we can show
that the dual behavior can be deduced directly from the previous one. Indeed,
if we define the functions

G(x, y) =
x

1 + x

[
`

d
+ 2

+∞∑
n=1

(−1)ne−
n
2y

x
1+x

1− e−
n
y

x
1+x

sinh

(
n `d

x
y

1 + x

)]
, (25)

F (x, y) = 4πy

+∞∑
n=1

(−1)n+1 e−2π2ny 1+x
x

1− e−4π2ny 1+x
x

sin

(
2πn

`

d

)
, (26)

we can rewrite Eqs.(12) and (20) as

〈Fs〉
k0d

= G

(
k

k0
,
KBT

k0d2

)
= F

(
k

k0
,
KBT

k0d2

)
, (27)

which represents the plot shown in panel (e) of Fig.2. Similarly, from Eqs.(12)
and (20) we can also easily obtain the dual result

〈Fs〉
kd

= G

(
k0

k
,
KBT

kd2

)
= F

(
k0

k
,
KBT

kd2

)
, (28)

which can be used when we consider k0 variable and k constant. We remark
that the function G of Eq.(25) has been obtained with the original partition
function in Eq.(5), while the function F of Eq.(26) with the partition function
in Eq.(18), modified by means of the Jacobi functional relation. Since the
behavior of Eqs.(27) and (28) is exactly the same, we deduce that in the
panel (e) of Fig.2 we can substitute 〈Fs〉 /(k0d), k/k0 and KBT/(k0d

2) with
〈Fs〉 /(kd), k0/k and KBT/(kd

2) and the curves remain unchanged. Therefore,
the maximum value of 〈Fs〉 /(kd) is decreasing with an increasing adimensional
temperature KBT/(kd

2) and is increasing with an increasing ratio k0/k. This
result is typically observed in several experimental measurements where the
friction is an increasing function of the relative corrugation k0/k [44, 52].
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Fig. 3 Scheme of the modified Frenkel-Kontorova model, characterized by a sequence of
quadratic potentials with stiffness k0 and placed at positions jd, ∀j ∈ Z. The energy barrier
W characterizes the corrugated substrate and must be sufficiently larger than KBT . The
mass-spring chain (elastic constant km, equilibrium length s), placed at x1, ..., xN , is linked
by a first linear spring (constant k1) to the position `1 (left device), and by a second linear
spring (constant kN ) to the position `N (right device).

4 Thermally modified Frenkel-Kontorova model

We consider a one-dimensional chain composed of N particles linked by lin-
ear springs with elastic constant km and equilibrium length s (see Fig.3). This
chain interacts with a substrate lattice composed by a sequence of pinning
sites with stiffness k0 and spaced by a uniform distance d (see Fig.3). This
arrangement corresponds to the Frenkel-Kontorova model, where a competi-
tion between the intrinsic chain spacing s and the substrate lattice spacing d is
introduced [53–59]. At the same time, the elastic potential energy of the mov-
ing chain competes with the pinning potential energy of the substrate. At the
extremity of the chain, we also introduce two more linear springs, with elastic
constant k1 and kN , which are mimicking the devices adopted to manipulate
the chain at the nanoscale. They try to keep the two ends in the positions `1
and `N , respectively to the left and right of the chain (see Fig.3). Actually,
in order to study the stick-slip phenomenon at the nanoscale, it is sufficient
to use only one device, let’s say at the right of the chain, but we keep in the
formalism the two lateral springs for symmetry reasons. In the original Frenkel-
Kontorova model, the lattice substrate is represented by a periodic potential
energy [53–59].

UFK(~x) = −1

2
W

N∑
j=1

cos(
2πxj
d

), (29)

where W is the energy barrier between adjacent sites and xj are the particle
positions. As before, we define here the substrate potential energy by intro-
ducing a sequence of quadratic wells (elastic constant k0). Then, we introduce
thermal fluctuations in the system and we work at thermodynamic equilib-
rium, corresponding to rate-independent or static friction. In order to identify
the pinning site concerned for each particle, we add N discrete or spin vari-
ables n1, ..., nN to the phase space of the system. It means that the value of nj
corresponds to the number of the site occupied by the j-th particle. To drawn
a comparison with the original Frenkel-Kontorova model, we observe that the
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energy barrier in our modified approach is given by W = k0d
2/8, being defined

by the intersection of two adjacent quadratic wells. As previously discussed, W
must be sufficiently larger than the thermal energy KBT . These assumptions
lead to total energy

U(~x, ~n) =

N∑
j=1

1

2
k0(xj − dnj)2 +

N−1∑
j=1

1

2
km(xj+1 − xj − s)2

+
1

2
k1(x1 − `1)2 +

1

2
kN (`N − xN )2, (30)

where ~x = (x1, ..., xN ) ∈ RN is the particle positions vector and ~n =
(n1, ..., nN ) ∈ ZN is the spin variables vector. We stress again that both those
vectors belong to the phase space of the system. Then, the Helmholtz partition
function can be calculated as

ZH =
∑
~n∈ZN

∫
RN

e
−U(~x,~n)

KBT d~x, (31)

where we integrated over ~x and summed over ~n. To simplify the calculations,
it is not difficult to rewrite the total energy U(~x, ~n) in the following compact
form

U(~x, ~n) =
1

2
km~x · A~x+ skm~v · ~x− k0d~n · ~x+ C. (32)

Here, we introduced the tridiagonal matrix A defined below

A =



a1 −1 0 . . . 0

−1 a2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . aN−1 −1

0 . . . 0 −1 aN


∈MN,N (R), (33)

with all the subdiagonal and superdiagonal elements equal to -1 and the
diagonal elements given by

a1 = 2 + k1+k0
km

,

a2 = ... = aN−1 = 2 + k0
km
,

aN = 1 + kN+k0
km

.

(34)

Moreover, we defined the vector ~v as

~v =

(
1− k1

km

l1
s
, 0, ..., 0,−1− kN

km

lN
s

)
∈ RN , (35)
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and the scalar quantity (independent of ~x)

C =
1

2
km(N − 1)s2 +

1

2
k0d

2~n · ~n+
1

2
k1`

2
1 +

1

2
kN`

2
N . (36)

These premises allow us to rewrite the partition function in the form

ZH =
∑
~n∈ZN

e
− C
KBT

∫
RN

e
− km

2KBT
~x·A~x

e
− k0d~n·~x−skm~v·~x

KBT d~x, (37)

that can be simplified using the gaussian integration∫
RN

e−
1
2~y·N~ye

~b·~yd~y =

√
(2π)N

detN
e

1
2
~b·N−1~b, (38)

holding for any symmetric and positive definite matrix N . This expression
represents the multidimensional generalization of Eq.(3). The integration leads
to the result

ZH =

√
(2πKBT )N

kNm detA
e
kms

2

2KBT
~v·A−1~v

e
− kms

2

2KBT
(N−1)

e
− k1`

2
1

2KBT e
− kN`

2
N

2KBT

×
∑
~n∈ZN

e
− k0d

2

2KBT
~n·(I− k0

km
A−1)~ne

− k0sd
KBT

~n·A−1~v
, (39)

where I ∈ MN,N (R) is the identity matrix. The partition function can be
finally written in terms of the so-called Riemann theta function [112, 113]

Θ(~z|Ω) =
∑
~n∈ZN

e2πi( 1
2~n·Ω~n+~n·~z), (40)

which is defined when the matrix Ω is in the following set: HN ={
Ω ∈MN,N (C) : Ω = ΩT ,=m(Ω) > 0

}
. This is the set of symmetric square

matrices whose imaginary part is positive definite. The set HN is called the
Siegel upper half-space and is the multi-dimensional analog of the upper half-
plane in C. Here, ~z ∈ CN is an arbitrary complex vector. It is known that
the Riemann theta function converges absolutely and uniformly on compact
subsets of CN × HN [112, 113]. It can be seen as the multidimensional gen-
eralization of the function ϑ3(z, τ) introduced in Eq.(6) to study the single
particle friction. Through the identifications

Ω =
k0d

2i

2πKBT

(
I − k0

km
A−1

)
, (41)

~z =
k0sdi

2πKBT
A−1~v, (42)
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we obtain the partition function as

ZH =

√
(2πKBT )N

kNm detA
e
kms

2

2KBT
~v·A−1~v

e
− kms

2

2KBT
(N−1)

e
− k1`

2
1

2KBT e
− kN`

2
N

2KBT

×Θ

(
k0sdi

2πKBT
A−1~v

∣∣∣∣∣ k0d
2i

2πKBT

(
I − k0

km
A−1

))
. (43)

Since it is possible to prove that the real matrix I − k0
km
A−1 is positive defi-

nite, Ω defined in Eq.(41) belongs to HN , and then Θ(~z|Ω) in Eq.(43) is always
convergent. The Riemann theta function is able therefore to fully describe the
complexity of the rate-independent stick-slip phenomena modeled by our ther-
mally modified Frenkel-Kontorova approach. In particular, it perfectly handles
the geometric and energetic compromise between chain and substrate.

We can give a physical interpretation of the exponential term summed in
Eq.(39), i.e. summed within the Riemann theta function. If we look at the
total energy of the system given in Eq.(32), we can minimize it with respect
of the particle positions ~x by stating that

∂U(~x, ~n)

∂~x
= 0. (44)

This condition delivers the following relation between the minimizing vector
~x0 and ~n

~x0 = sA−1

(
k0

km

d

s
~n− ~v

)
. (45)

Now, we can substitute this value ~x0 in U(~x, ~n), by obtaining

U(~x0, ~n) =
1

2
km~x0 · A~x0 + skm~v · ~x0 − k0d~n · ~x0 + C

=
1

2
k0d

2~n ·
(
I − k0

km
A−1

)
~n+ k0sd~n · A−1~v + ..., (46)

where we have omitted all terms not depending on ~n. We can note that the
~n-dependent part of U(~x0, ~n) in Eq.(46) represents the exponent of the terms
summed in Eq.(39) (or within the Riemann theta function), except for the
Boltzmann factor −1/(KBT ). This means that everything goes as if the Boltz-
mann statistic were applied only to the discrete spin variables after minimizing
the energy with respect to the continuous coordinate variables. This is possi-
ble only because all interactions are based on quadratic energies and therefore
on a linear response with respect to the applied forces. The nonlinearity of the
system emerges only thanks to the jumps of the spin variables, which make
the overall potential energy non-convex.
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Similarly to the one-particle case, also for the N -particle chain we can
obtain a second mathematical form for ZH . To this aim, it is possible to intro-
duce the following reciprocal formula or modular transformation (sometimes
also called Jacobi identity) for the Riemann theta function [112–114]

Θ(~z|Ω) =
1√

det (−iΩ)
e−πi~z·Ω

−1~zΘ(Ω−1~z| − Ω−1), (47)

which is valid for any Ω ∈ HN (see Appendix for details). Here, the square root
assumes its principal value. This property can be applied to Eq.(43) and allows
to obtain a second form for the partition function of our system, as follows

ZH =
(2πKBT )N√
kNmk

N
0 d

2N detB
e
kms

2

2KBT
~v·B−1~v

e
− kms

2

2KBT
(N−1)

×e−
k1`

2
1

2KBT e
− kN`

2
N

2KBT Θ

(
s

d
B−1~v

∣∣∣∣∣2πKBT

k0d2
iAB−1

)
, (48)

where B = A − k0
km
I. The possibility of having two different forms for the

partition function is useful from a numerical point of view. In fact, if we look at
the structure of the theta function, we observe that its convergence is faster if
all the eigenvalues of 2π=m(Ω) are much larger than one [113]. As a matter of
fact, if this condition is verified, the Gaussian shape summed within the theta
function is very narrow and therefore only a few values of ~n are needed to find
the whole sum accurately. So, when 2π=m(Ω), defined in Eq.(41), has large
eigenvalues (larger than one) it is better to use Eq.(43), and when 2π=m(Ω)
has small eigenvalues (smaller than one) it is better to use Eq.(48). We have
observed numerically that frequently (but not always) the matrix 2π=m(Ω) is
well-conditioned in the sense that the eigenvalues are typically either all larger
than one or all between zero and one. We can also affirm that Eq.(43) is a
partition function expression rapidly convergent in the low temperature regime
whereas Eq.(48) is more adapted in the high temperature regime (always with
KBT �W ). Anyway, numerical algorithms for the calculation of the Riemann
theta function can be found in the literature [115].

The knowledge of the partition function in both forms given in Eqs.(43)
and (48) allows the determination of the force applied by the device to hold
the chain in a given position. In the most general case, we fix the left device at
position `1 and the right device at position `2. Consequently, the two applied
forces can be determined as

〈F1〉 = −KBT
∂ logZH(`1, `N )

∂`1
, (49)

〈FN 〉 = −KBT
∂ logZH(`1, `N )

∂`N
, (50)
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−KBT logZH(`1, `N ) being the Helmholtz free energy of the system. Two
particular cases are of interest: (i) if the first extremity is left free, which means
that k1 = 0, then the partition function depends only on `N and the right
force reads 〈

F (i)
s

〉
= −KBT

∂ logZH(`)

∂`
, (51)

where we have considered `N = ` to simplify the notation; (ii) if the two
extremities are rigidly connected, we can write `1 = `− (N − 1)s and `N = `
[which means that the distance `N − `1 is maintained equal to the equilibrium
value (N − 1)s] and the total force is〈

F (ii)
s

〉
= −KBT

∂ logZH (`− (N − 1)s, `)

∂`
, (52)

representing the sum of the two left and right forces. Examples of application
of Eqs.(51) and (52) are given below.

To determine the average value 〈~n〉 of the spin variables vector, we can
simply use the expression of the partition function given in Eq.(39), and we
eventually get

〈~n〉 =

∑
~n∈ZN ~ne

− k0d
2

2KBT
~n·(I− k0

km
A−1)~ne

− k0sd
KBT

~n·A−1~v∑
~n∈ZN e

− k0d
2

2KBT
~n·(I− k0

km
A−1)~ne

− k0sd
KBT

~n·A−1~v
. (53)

This expression can be written in terms of the theta function and its derivatives
as follows. First of all, we can write the gradient of the Riemann theta function
with respect of the vector variable ~z in the form

~∇Θ(~z|Ω) =
∂Θ(~z|Ω)

∂~z
= 2πi

∑
~n∈ZN

~ne2πi( 1
2~n·Ω~n+~n·~z). (54)

Then, we can rewrite Eq.(53) as

〈~n〉 =

~∇Θ
(

k0sdi
2πKBT

A−1~v
∣∣∣ k0d

2i
2πKBT

(
I − k0

km
A−1

))
2πiΘ

(
k0sdi

2πKBT
A−1~v

∣∣∣ k0d2i
2πKBT

(
I − k0

km
A−1

)) , (55)

which is the multi-dimensional generalization of Eq.(14). Unfortunately, there
are no explicit formulas for the logarithmic derivatives of the Riemann theta
function and therefore we cannot obtain more explicit expressions for 〈~n〉 or
other quantities as we had done for a single particle system. By deriving
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Eq.(38) with respect to ~b, we obtain the integral expression∫
RN

e−
1
2~y·N~ye

~b·~y~yd~y =

√
(2π)N

detN
e

1
2
~b·N−1~bN−1~b, (56)

which can be used to determine the average value 〈~x〉 of the particles position
vector. Indeed, by definition we have

〈~x〉 =

∑
~n∈ZN e

− C
KBT

∫
RN ~xe

− km
2KBT

~x·A~x
e
− k0d~n·~x−skm~v·~x

KBT d~x∑
~n∈ZN e

− C
KBT

∫
RN e

− km
2KBT

~x·A~x
e
− k0d~n·~x−skm~v·~x

KBT d~x
, (57)

and by identifying N with kmA/(KBT ) and ~b with (k0d~n−skm~v)/(KBT ), we
easily obtain the simple relation

〈~x〉 = sA−1

(
k0

km

d

s
〈~n〉 − ~v

)
. (58)

Remarkably, it means that the knowledge of 〈~n〉 is sufficient to determine the
vector 〈~x〉. Moreover, it is also interesting to remark that Eq.(58) has exactly
the same mathematical form of Eq.(45). It means that the minimizing of the
total energy with respect to ~x delivers correct results even if the thermal
fluctuations act on the system.

In order to evaluate the effect of the substrate on the sliding chain, we can
define this sort of adimensional order parameter

Ψ =
1

d2

N−1∑
j=1

(〈xj+1〉 − 〈xj〉 − s)2
, (59)

which assumes the value zero if the chain is at equilibrium and larger values for
an heterogeneous non-equilibrium spacing. Of course, Ψ depends on ` during
the sliding of the chain and therefore we can also introduce its mean value over
a period of the corrugated substrate

〈Ψ〉 =
1

d

∫ d

0

Ψ(`)d` =
1

d3

N−1∑
j=1

∫ d

0

(〈xj+1〉 − 〈xj〉 − s)2
d`, (60)

which is useful to have an overall quantification of the trade-off between chain
and substrate energies.

5 Results for the modified Frenkel-Kontorova
model

The theoretical results previously shown have been numerically implemented
in order to explore the behavior of the thermally modified Frenkel-Kontorova
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Fig. 4 Static force 〈Fs〉 /(k0d), average particles positions 〈~x〉 /d and order parameter Ψ
for a chain with N = 4 (left column) and N = 5 (right column). Both the cases (i) with
the device acting only on the second chain extremity (red curves), and (ii) with the device
that keeps the distance between the ends fixed at s(N − 1) (blue curves) are considered.
The adimensional physical quantities are plotted versus the sliding ratio `/d. In the panels
showing 〈~x〉 /d, the shaded areas are useful to distinguish the substrate wells. We adopted
the parameters KBT/(k0d

2) = 0.002, km/k0 = 0.5, s/d = 0.39. Moreover, we imposed
k1/k0 = 0 and kN/k0 = 1 for the case (i) and k1/k0 = kN/k0 = 1 for the case (ii).

model. All examples have been studied under the assumption W � KBT to
ensure that we stay within the validity of the theory. We explore here the fol-
lowing issues: the Frenkel-Kontorova stick-slip with sliding boundary devices,
the effect of thermal fluctuations, the effect of the elastic contrast between
chain and substrate, the effect of the boundary devices intrinsic elasticity and,
finally, the effect of the geometric contrast between chain and substrate.

5.1 Frenkel-Kontorova stick-slip with sliding boundary
devices

A first example can be found in Fig.4, where we show the evolution of the
static friction force, the particles position and the order parameter as function
of the position ` of the device for the two cases (i) and (ii) defined above. It
means that we considered the case (i) with the device acting only on the right
of the chain and the case (ii) where the device acts on both extremities, keeping
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their distance fixed at s(N − 1). In both cases, the device spans one period
of the corrugated substrate and the previously mentioned physical quantities
are recorded for two chains of length N = 4 and N = 5. In this first example,
all parameters are fixed as declared in the caption of Fig.4. We observe that
in both cases (i) and (ii), to keep the device at `/d = 0, we have to apply
a given force since this configuration is not at equilibrium. Of course, this
issue depends in a complex way on the ratios s/d and km/k0. Indeed, we can
observe that there are some values of `/d for which the force is zero, and then
they correspond to the equilibrium configurations. Anyway, in the curves of
〈Fs〉 /(k0d), we can see some jumps corresponding to the transitions of the
particles between adjacent substrate wells. We adopted a low temperature
and a low ratio km/k0 to amplify and then easily identify this effect. This
behavior is consistent with the evolution of 〈~x〉 /d, where we can observe the
transitions of each single particle (stick-slip processes). It is interesting to see
that a transition of one particle between two adjacent substrate wells may
induce a step behavior (smoothed by the temperature) in the position of other
particles not transiting between the wells. This is due to the strong energetic
coupling of all variables within the Frenkel-Kontorova model. Furthermore,
we can observe that at transitions there is a significant decrease in the order
parameter Ψ. In fact, it represents a measure of the equilibrium state of the
chain and, therefore, must decrease as a result of the transitions that occur
due to the geometric and energetic compromise between chain and substrate.
In other words, transitions occur because they are energetically favored and
thus bring the system into a configuration closer to equilibrium, with a lower
Ψ. From Fig.4 we can also deduce that the friction force patterns are more
complicated in the case of the boundary condition (ii) since this configuration
is more constraining for the system, thus generating a more complex sequence
of transitions.

We are studying the geometric and energetic competition between a mass-
spring chain and a corrugated substrate. In this context, Aubry proved an
interesting transition originated by this competition in the Frenkel-Kontorova
model with an infinite (N → ∞) and incommensurate (s/d irrational) chain
without temperature effects [64–66]. For values of the ratio k0/km below a
certain threshold, chain elasticity prevails over the energy barrier of the sub-
strate and we observe an unpinned sliding phase. In this case the static friction
vanishes and we say that the sliding is superlubric (an infinitesimal force can
move the chain). We remark that even if the static friction is zero, the kinetic
friction is nonzero since the positive speed induces the excitation of phonons
in the chain, requiring a certain amount of energy. On the other hand, above
the critical value of k0/km the particles are pinned by the corrugated sub-
strate since the substrate energy is predominant over the chain elastic energy.
In this case, we have a non-zero static friction to move the chain since it must
be able to overcome the Peierls-Nabarro barrier (and in this case the static
friction force is analogous to the Peierls-Nabarro stress) [61–63]. The thresh-
old or critical value of k0/km that discriminates unpinned and pinned states
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Fig. 5 Hull functions for the chains considered in Fig.4. We considered the chain lengths
N = 4 (first column) and N = 5 (second column) and the two boundary conditions (i) (first
row) and (ii) (second row). All parameters are indicated in the caption of Fig.4.

depends in a very intricate way on the incommensurability ratio s/d [67]. In
particular, it reaches its highest value when s/d is equal to the golden ratio
(
√

5 − 1)/2 [59]. The shift between the unpinned sliding phase to the pinned
condition with stick-slip motion generates the so-called analyticity breaking
of the particle positions. It means that the curves generated by plotting the
actual particle position xj versus the unperturbed position xj,0 (without sub-
strate) exhibit discontinuities or gaps, induced by the jump of the particle
between substrate wells. In general, the relation between 〈~x〉 /d and 〈~x0〉 /d
(with ` variable) is called hull function and shows discontinuities in the pinned
Aubry state. Then, in this pinned state the hull function analyticity breaking,
the crossing of the Peierls-Nabarro barrier, and the stick-slip motion are three
different aspects of the same phenomenology. Although the Aubry transition
exists only for infinite and incommensurable chains at T = 0, it is interesting
to observe the shape of the hull functions for our system as well. In our case,
the reference positions are given by xj,0 = `− (N − j)s ∀j = 1, ..., N where ` is
the variable position of the sliding device. Of course, these references positions
can be used for both boundary conditions (i) and (ii), previously introduced.
In Fig.5, one can find the hull functions for the chains considered in Fig.4. We
considered the chain lengths N = 4 (first column) and N = 5 (second column)
and the two boundary conditions (i) (first row) and (ii) (second row). We can
easily recognize the jumps in the hull functions but they are not real disconti-
nuities because of the effect of the thermal fluctuations that are able to smooth
out their shape. We observe that our finite-size finite-temperature Frenkel-
Kontorova model is always statically pinned, even for an irrational value of
s/d since we always have a positive static friction corresponding to a positive
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Fig. 6 Temperature behavior of the static force 〈Fs〉 /(k0d), the average particles positions
〈~x〉 /d and the order parameter Ψ for a chain with N = 4 with both boundary condi-
tions (i) (left column) and (ii) (right column). The adimensional physical quantities are
plotted versus the sliding ratio `/d and parametrized by the temperature KBT/(k0d

2) =
0.001, 0.003, 0.005, 0.007, 0.009, 0.011. We adopted the parameters km/k0 = 0.5 and s/d =
0.39. Moreover, we imposed k1/k0 = 0 and kN/k0 = 1 for the case (i) and k1/k0 = kN/k0 =
1 for the case (ii).

Peierls-Nabarro barrier. It is also interesting to remember that an Aubry-like
transition, based a symmetry-breaking phenomenon, has been identified for
finite chain at zero temperature [68–70]. However, in our finite chain at finite
temperature all transitions are smooth as one can see in Fig.5, and the response
is controlled by the compromise between pinning intensity and thermal fluc-
tuations that can facilitate the chain sliding. Of course, the slope of the jumps
in our hull functions is larger for lower temperatures. Besides, from Fig.5 we
deduce that the jumps of the transitions are larger for the boundary condition
(i) since the second condition (ii) is more constraining, limiting the positions
discontinuity. However, under condition (ii), the height of the jumps is smaller
but the pattern of transitions is more intricate, as seen in Fig.4. Interestingly,
Aubry-type transitions have been experimentally observed in different finite
systems, as discussed in the recent literature for one-dimensional [71–74] and
two-dimensional [75] structures.
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Fig. 7 Influence of km on the behavior of the static friction force 〈Fs〉 /(k0d), the average
particles positions 〈~x〉 /d and the order parameter Ψ for a chain with N = 4 with both
boundary conditions (i) (left column) and (ii) (right column). The adimensional physical
quantities are plotted versus the sliding ratio `/d and parametrized by the values of km/k0 =
1, 5, 25, 125. We adopted the parameters KBT/(k0d

2) = 0.001 and s/d = 0.39. Moreover, we
imposed k1/k0 = 0 and kN/k0 = 1 for the case (i) and k1/k0 = kN/k0 = 1 for the case (ii).

5.2 Effect of thermal fluctuations

For the moment, we have considered all the fixed parameters of the system to
show some initial examples. We can now study the effects induced by vary-
ing the temperature T . In Fig.6, we plotted the adimensional static friction
force 〈Fs〉 /(k0d), the average particles positions 〈~x〉 /d and the order param-
eter Ψ as function of the sliding ratio `/d for a chain with length N = 4,
and for both boundary conditions (i) and (ii). The main important effect of
the temperature can be found in Fig.6 where the static friction quantified
by 〈Fs〉 /(k0d) is clearly decreasing with increasing temperature. At the same
time the transitions in the curves of 〈Fs〉 /(k0d) versus `/d are smoothed with
increasing temperature. The friction reduction with increasing temperature
has been already pointed out for the system with one particle and can be also
related to the decreasing of the Peierls-Nabarro stress with increasing temper-
ature classically observed in materials science [116–119]. In the plot of 〈~x〉 /d
versus `/d in Fig.6, we observe that particle transitions between different sub-
strate wells are smoother when the temperature is elevated. This means that
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Fig. 8 Influence of km and T on the behavior of the maximum static friction force
max {| 〈Fs〉 /(k0d)|, 0 < `/d ≤ 1} and on the average order parameter 〈Ψ〉 for a chain with
N = 4 with both boundary conditions (i) (first column) and (ii) (second column). We
adopted the parameters s/d = 0.39 and KBT/(k0d

2) = 0.001, 0.006, 0.01, 0.015, 0.02. More-
over, we imposed k1/k0 = 0 and kN/k0 = 1 for the case (i) and k1/k0 = kN/k0 = 1 for the
case (ii).

the temperature fosters these transitions allowing a more complete exploration
of the phase space, even where the total energy is higher. This behavior is
directly reflected in the graph of Ψ, which decreases significantly as the tem-
perature increases. In particular, the minimimum points of the Ψ function are
in correspondence of the transitions, occurring as soon as they are energeti-
cally favored and, therefore, bringing the system closer to equilibrium. As the
chain is already closer to equilibrium as a result of these transitions, temper-
ature has a lesser effect in reducing the value of Ψ at these points. This can
be seen in the graphs of Ψ versus `/d in Fig.6, where, at the transitions the
curves at different temperatures are very closed together as opposed to the
regions without transitions where the curves are more spaced.

5.3 Effect of the elastic contrast between chain and
substrate

The effects induced by varying the chain elastic constant km can be seen in
Fig.7. First of all, from the plots of 〈Fs〉 /(k0d) versus `/d, we deduce that the
static friction force rises as the elastic constant km increases. This behavior
is similar to the one obtained for a single particle in Fig.2. However, in the
present case with N = 4 particles, we also observe that the transitions occur
at positions that depend significantly on the elastic constant km [for both
boundary conditions (i) and (ii)]. This is easily explained by the fact that km
controls the forces in the system and thus modifies the energy competition
between chain and substrate. The transitions shift with km can be clearly seen
in both plots of 〈~x〉 /d versus `/d and Ψ versus `/d. The latter was represented
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Fig. 9 Effect of the boundary devices on the transitions pattern: we varied the elastic
constant kN in a system with N = 4 under of the condition (i). The static friction force
〈Fs〉 /(k0d), the average particles positions 〈~x〉 /d and the order parameter Ψ are plotted
versus `/d. The hull function 〈~x〉 /d versus 〈~x0〉 /d is shown as well. The dashed ellipses
show the emergence of a transition for the largest values of kN . We adopted the parameters
s/d = 0.39, km/k0 = 1 and KBT/(k0d

2) = 0.001. Moreover, we imposed k1/k0 = 0 and
kN/k0 = 0.5, 2, 8, 32 corresponding to the condition (i).

on a semi-logarithmic scale because the effects of varying km on Ψ are very
pronounced. It is in fact evident that a strong increase in km brings the system
very close to the equilibrium configuration with the particles equispaced at
distance s.

The effect of varying the temperature T and the elastic constant km can
be summarized by means of the plots in Fig.8. Here, one can find the influ-
ence of km and T on the behavior of the maximum static friction force
max {| 〈Fs〉 /(k0d)|, 0 < `/d ≤ 1} and on the average order parameter 〈Ψ〉 for
a chain with N = 4 with both boundary conditions (i) (first column) and
(ii) (second column). In this analysis we considered a fixed value of s but we
spanned an entire period of the corrugated substrate by varying ` in the inter-
val (0, d). This allowed us to determine the maximum friction force and the
average value of the order parameter, as defined in Eq.(60). The final result
is that the maximum of friction force 〈Fs〉 /(k0d) increases with km/k0 and
decreases with KBT/(k0d

2) (for each value of N and for both boundary con-
ditions (i) and (i)). Similarly, the average order parameter 〈Ψ〉 decreases with
both km/k0 and KBT/(k0d

2). This analysis is useful when k0 is constant and
km variable. The dual situation with k0 variable and km constant is not rep-
resented in Fig.8 but, as discussed for the system with one particle, its overall
behavior can be summarized as follows. The maximum value of 〈Fs〉 /(kmd) is
decreasing with an increasing temperature KBT/(kd

2) and is increasing with
an increasing ratio k0/km. At the same time, 〈Ψ〉 decreases with KBT/(kmd

2)
and increases with k0/km.
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5.4 Effect of the boundary devices intrinsic elasticity

To further show the complexity of the system under investigation, we show
in Fig.9 the effect of the boundary devices on the transitions pattern. We
considered a chain with length N = 4 under boundary condition (i), i.e. with
a single device pulling the chain from the right extremity. This device is here
modified by changing its elastic constant kN . It is interesting to observe that for
the first two values adopted kN/k0 = 0.5, 2 we have no transitions for `/d < 0.5
while for the other values kN/k0 = 8, 32 we observe the emergence of one
transition around `/d ' 0.3. This transition origination can be easily identified
in all panels of Fig.9 (see dashed ellipses). We give a direct interpretation of this
result as follows. The initial positions of the ideal chain particles for `/d = 0
would be x1/d ' −1.2, x2/d ' −0.8, x3/d ' −0.4 and x4/d ' 0, without
interaction with the corrugated substrate. Hence, at the beginning, the first two
particles are within the well with n = −1 (−3/2 < x/d < −1/2), and the others
in the well with n = 0 (−1/2 < x/d < 1/2). So, in an ideal situation, we should
expect a first transition for `/d ' 0.3, when x2/d ' −0.5, i.e. when the second
particle reaches the transition threshold between the two neighboring wells.
However, this transition is not observed for low values of kN since in this case
the device, instead of generating chain sliding, generates its own elongation
due to its weak elasticity. In this case the chain pinning is stronger than the
device pulling. Instead, for higher values of kN , the device deforms much less
and the chain has to move, generating the transition of the second particle
when `/d ' 0.3. This example explains that there is not only a geometric and
energetic trade-off between chain and substrate but also a competition between
device elasticity and chain elasticity. This brings additional complexity to the
friction phenomenon we are studying.

5.5 Effect of the geometric contrast between chain and
substrate

Up to this point, we have always considered the s/d ratio to be constant and
therefore assumed that we were working with the same geometric competition
between chain and substrate. Now it is interesting to explore the effects of
the ratio s/d on the stick-slip process and on the static friction. The results
of this analysis can be found in Figs.10, 11, 12, and 13, where we considered
chains of length N = 2, N = 3, N = 4 and N = 5, respectively. In each of
these figures, we plotted the static friction surface 〈Fs〉 /(k0d) as function of
`/d and s/d and the corresponding contour lines, for three different values of
the chain to substrate ratio km/k0 of elastic constants (with fixed temperature
and fixed device elastic constant). For the sake of brevity, we only considered
the boundary condition (i) in this analysis. These figures show that the friction
pattern over the period 0 < ` < d is strongly sensible to the variations of
s/d and this influence is stronger for large values of km/k0. Obviously the
pattern of the friction response is increasingly complicated as N and the ratio
km/k0 increase. For a given value of s/d the transitions observable in the
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Fig. 10 Static friction 〈Fs〉 /(k0d) as function of `/d and s/d for N = 2. We repre-
sented the surface and the contour lines of 〈Fs〉 /(k0d) for km/k0 = 0.5 (first column),
km/k0 = 1 (second column), and km/k0 = 10 (third column). We adopted the parameters
KBT/(k0d

2) = 0.01 and we analyzed only the case (i) with k1/k0 = 0 and kN/k0 = 1.

Fig. 11 Static friction 〈Fs〉 /(k0d) as function of `/d and s/d for N = 3. We repre-
sented the surface and the contour lines of 〈Fs〉 /(k0d) for km/k0 = 0.5 (first column),
km/k0 = 1 (second column), and km/k0 = 10 (third column). We adopted the parameters
KBT/(k0d

2) = 0.01 and we analyzed only the case (i) with k1/k0 = 0 and kN/k0 = 1.

curve 〈Fs〉 /(k0d) versus `/d (the friction pattern) can be identified by tracing
straight lines parallel to the `/d axis on the plane with axes s/d and `/d. This
is especially evident when considering the plane where the contour lines are
drawn. In fact, the highly visible height jumps noticeable in this plane are
precisely the transitions in the friction responses.
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Fig. 12 Static friction 〈Fs〉 /(k0d) as function of `/d and s/d for N = 4. We repre-
sented the surface and the contour lines of 〈Fs〉 /(k0d) for km/k0 = 0.5 (first column),
km/k0 = 1 (second column), and km/k0 = 10 (third column). We adopted the parameters
KBT/(k0d

2) = 0.01 and we analyzed only the case (i) with k1/k0 = 0 and kN/k0 = 1.

The results shown in Figs.10, 11, 12, and 13 concerns only one value
of temperature. We performed the same analysis by changing the tem-
perature over the interval KBT/(k0d

2) = 0.01j, ∀j = 1, .., 10, and we
collected the outcomes in order to show the maximum static friction force
max {| 〈Fs〉 /(k0d)|, 0 < `/d ≤ 1} as function of s/d and parametrized by the
temperature. The result of this operation can be found in Fig.14, where we
considered the chains of length N = 2, N = 3, N = 4 and N = 5 in the
first, second, third and fourth row respectively. Moreover, we used the chain
to substrate elastic constants ratio km/k0 = 1 in first column, km/k0 = 10
in the second column, and km/k0 = 50 in the third column. The collec-
tion of these graphs shows well the effect of geometric compromise between
chain and substrate as the temperature increases. In fact, the first thing we
can observe is that the maximum static friction is always decreasing with
temperature regardless of the structural parameter s/d. As far as the geo-
metric ratio s/d is concerned, we note that there are particular values of this
parameter that significantly reduce the maximum friction force when km is
sufficiently large. For N = 2 this happens when s/d = 1/2, for N = 3 when
s/d = 1/3 and 2/3, for N = 4 when s/d = 1/4, 1/2, and 3/4, and finally for
N = 5 when s/d = 1/5, 2/5, 3/5, and 4/5. On the contrary, for s/d = 0 and
s/d = 1 the friction is always higher than for all other values of the struc-
tural ratio s/d. In general, we can summarize this result by means of the two
following properties: (I) if s/d = 0, 1 ∀N then the friction assume the value
max0<s/d≤1 max0<`/d≤1 | 〈Fs〉 /(k0d)|; (II) if s/d = j/N ∀j = 1, ..., N − 1 then
the friction assume the value min0<s/d≤1 max0<`/d≤1 | 〈Fs〉 /(k0d)|.

We can explain this behavior as follows. We suppose to work with km and
kN sufficiently large and therefore we consider here a sliding finite chain at
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Fig. 13 Static friction 〈Fs〉 /(k0d) as function of `/d and s/d for N = 5. We repre-
sented the surface and the contour lines of 〈Fs〉 /(k0d) for km/k0 = 0.5 (first column),
km/k0 = 1 (second column), and km/k0 = 10 (third column). We adopted the parameters
KBT/(k0d

2) = 0.01 and we analyzed only the case (i) with k1/k0 = 0 and kN/k0 = 1.

equilibrium, corresponding to the positions xj = ` − s(N − j) ∀j = 1, ..., N .
It means that we introduce the geometrical competition between chain and
substrate but we neglect the corresponding energetic trade-off. Similarly, we
also neglect the thermal fluctuations. We also consider in this calculation the
original Frenkel-Kontorova potential stated in Eq.(29). So, we can write

UFK = −W
2

N∑
j=1

cos

(
2π`

d
− 2πsN

d
+

2πsj

d

)
= −W

2

N∑
j=1

<e
{
eiηe−iξNeiξj

}
,

(61)

where we defined η = 2π`/d and ξ = 2πs/d. Now, we can easily develop this
expression as follows

UFK = −W
2
<e

{
eiηe−iξN

N∑
j=1

eiξj

}
= −W

2
<e

{
eiη

e−iξ(N−1) − eiξ

1− eiξ

}
, (62)

where we used the sum
∑N

j=1 x
j = (x− xN+1)/(1− x).

We can now multiply numerator and denominator of the internal fraction
by 1− e−iξ and we get

UFK = −W
4

<e
{
eiη
[
e−iξ(N−1) − eiξ

]
(1− e−iξ)

}
1− cos ξ

= −W
4

{
cos[η − (N − 1)ξ]− cos(η + ξ)

1− cos ξ
− cos(η −Nξ)− cos η

1− cos ξ

}
.(63)
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Fig. 14 Behavior of the maximum static friction force max {| 〈Fs〉 /(k0d)|, 0 < `/d ≤ 1} of
the Frenkel-Kontorova modified model as function of N , km/k0, s/d and the temperature T .
We consider the chains of length N = 2, N = 3, N = 4 and N = 5 in the first, second, third
and fourth row respectively. Moreover, we show the results for km/k0 = 1 (first column),
km/k0 = 10 (second column), and km/k0 = 50 (third column). All curved are plotted
versus s/d and parametrized by the temperature KBT/(k0d

2) = 0.01j, ∀j = 1, .., 10. We
also imposed k1/k0 = 0 and kN/k0 = 10 for simulating the boundary condition (i).

Here, we can use a prosthaphaeresis formula obtaining the simplified result

UFK = −W
2

sin Nξ
2

[
sin
(
η + ξ − Nξ

2

)
− sin

(
η − Nξ

2

)]
1− cos ξ

. (64)

To conclude, we can use another prosthaphaeresis formula to get the final result

UFK = −W
sin Nξ

2 sin ξ
2

1− cos ξ
cos

(
η +

ξ

2
− Nξ

2

)
. (65)

This expression represents the Frenkel-Kontorova potential energy of a non-
deformable chain interacting with the corrugated substrate.

The force necessary to keep the chain at `/d = η/(2/π) is given by Fs =
∂UFK/∂` = (2π/d)∂UFK/∂η, or more explicitly by

Fs =
2πW

d

sin Nξ
2 sin ξ

2

1− cos ξ
sin

(
η +

ξ

2
− Nξ

2

)
. (66)
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Fig. 15 Behavior of the quantity maxη∈(0,2π) d|Fs|/(2πW ) given in Eq.(67) versus
ξ/(2π) = s/d for different values of N . The zeros of this function exactly correspond to the
minima observed in Fig.14.

The maximum value of this force over the period of the corrugated substrate
is then simply obtained as

max
η∈(0,2π)

|Fs| =
2πW

d

∣∣∣∣∣ sin Nξ
2 sin ξ

2

1− cos ξ

∣∣∣∣∣. (67)

This result perfectly explain the behavior of the friction force observed in
Fig.14. Indeed, the numerator of Eq.(67) vanishes when Nξ/2 = jπ, ∀j =
0, ..., N , which means s/d = ξ/(2π) = j/N , ∀j = 0, ..., N . However, the two
extremes values s/d = 0 and s/d = 1 must not be considered because they are
zeros of the denominator and they in fact correspond to the maximum value
of Eq.(67). This scenario exactly corresponds to the properties (I) and (II)
stated above, as one can also see in Fig.15. Finally, the particular values of
s/d that significantly reduce the maximum friction force are explained by the
pure geometrical competition between chain and substrate. It is interesting
to remark that for an infinite chain the Aubry sliding phase is observed with
incommensurate structures while for a finite chain the maximum reduction of
friction can be obtained for commensurate structures. This is not a contradic-
tion since the incommensurate Aubry chain is elastically deformable whereas
we considered here a rigid chain to explain the friction reduction. Moreover in
our analysis of Fig.14 we have considered the complete behavior of the system
including elasticity and thermal fluctuations.

6 Conclusions

In this work we have considered the equilibrium statistical mechanics of stick-
slip processes, with application to the nanoscale friction. In other words, we can
say that we studied the effect of thermal fluctuations on the rate-independent
nanoscale interactions between a slider and a corrugated substrate. We have
conveniently modified the one-particle Prandtl-Tomlinson model and the N -
particle Frenkel-Kontorova model so that we can easily calculate the partition
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function of both systems. In particular, instead of considering the classical sinu-
soidal energy profile of the corrugated substrate, we introduced a sequence of
quadratic potentials, each of which represents a substrate well. It is important
to remark that the sinusoidal and the quadratic profiles have a qualitatively
similar but quantitatively different behavior. Indeed, both profiles are periodic
but their shapes are quite different. Therefore, the scheme with the sequence
of parabolic wells should be considered as an independent model with specific
applications. First of all, it is interesting because of the possibility of a com-
prehensive analytical development, and moreover, it is well suited to the study
of the propagation of dislocations and fractures in solids or the sliding of bio-
logical structures [12, 28]. Of course, the quadratic potentials are integrable
and then allows a rather simple analytic treatment of the problem. Follow-
ing the classical spin variables approach, we had to add to the phase space
a discrete variable for each particle useful to identify the well explored by
the particle itself. In this context, it is important to remark that the calcula-
tion of the partition function based on the spin approach assumes that for all
substrate well, all possible particle positions are considered (also outside the
well extension). This effectively corresponds to a multivalued energy function
(see the superpositions of the quadratic curves in Figs.1 and 3). As shown in
Refs.[91, 96], the effect of this approximation is statistically negligible since
the potential energy in the regions outside the actual well extension is sensibly
higher than the energy in the internal region. Of course, this is true if the bar-
rier W between two adjacent wells is sufficiently larger than KBT . On the one
hand, the application of this technique to the (modified) one-particle Prandtl-
Tomlinson model leads to a partition function which can be written in terms
of the third Jacobi theta function. Then, the application of the classical Jacobi
functional identity allows us to obtain the closed form Fourier series describ-
ing the static friction force experienced by the single particle sliding on the
corrugated periodic substrate through a stick-slip motion. Importantly, this
force depends on the temperature and therefore the obtained results explain
clearly the thermolubricity phenomenon. On the other hand the spin variable
method applied to the (modified) N -particle Frenkel-Kontorova model leads
to a partition function written in terms of the N -dimensional Riemann theta
function. It is interesting to underline that the Riemann theta function is able
to fully describe the complexity of the rate-independent stick-slip phenomenon
controlled by the geometric and energetic compromise between chain and sub-
strate. In fact, in this case, we have the geometric compromise induced by the
difference of the characteristic lattice lengths of chain and substrate, and the
energetic compromise induced by the difference between the elastic constants
of chain and substrate. We discussed the effect of the elastic constants and of
the temperature of the stick-slip and friction responses. Moreover, we plotted
the hull functions for the particles of the chain in order to compare the tran-
sitions between the wells in our system and in the infinite incommensurate
Aubry configuration. We have shown that in our case with finite chains and
nonzero temperature the transitions are smooth, in contrast to those observed
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by Aubry for infinite incommensurable chains at zero temperature, where one
finds the so-called analyticity breaking of the particle positions. To conclude
we explored the effects of the geometric trade-off induced by the ratio s/d. In
particular, we proved the existence for finite chains of specific commensurate
values of the ratio s/d, which are able to strongly reduce the friction expe-
rienced by the slider. We investigated the effect of the temperature on this
friction reduction. To conclude, we can say that our proposed method to take
into account the temperature effect in friction phenomena can be adopted for
several problems, including the application to the motion of defects in solid
materials or the sliding of biological structures [12, 28]. The originality of this
approach will allow the study of a number of problems that are for the moment
only partially or not yet theoretically modeled. These perspectives concern the
generalization of this approach to the two-dimensional case [120], to more com-
plex corrugated substrates having for example two or more energy levels for
the intercalated wells [121], to corrugated soft substrates with elastically mov-
ing wells [122], to the interplay between adhesion and friction with application
to bio-systems [123], to the kinetic or dynamic case by means of the Langevin
and/or Fokker-Planck methodologies [124, 125], and so forth. In particular,
specific techniques for studying the dynamics of systems with multiwell energy
landscapes will be expolited [106, 126, 127].
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Appendix A Reciprocal relation for Jacobi
and Riemann theta functions

In this Appendix, we briefly discuss the conceptual relationship between direct
and reciprocal Bravais lattices, Dirac comb, Poisson summation formula and
reciprocal relation for the Riemann theta function and third Jacobi theta func-
tion. We consider a Bravais lattice composed of points ~r = n1~a1 + ...+nN~aN ∈
RN where nj ∈ Z and ~aj ∈ RN are the primitive vectors. We introduce a
periodic sampling function f(~x) on this Bravais lattice constructed by delta
functions (Dirac comb)

f(~x) =
∑
~n∈ZN

δ (~x− n1~a1...− nN~aN ) . (A1)
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To simplify the notation, we define a matrix C ∈ MN,N (R) where the columns
represent the vectors ~aj . It means that C = [~a1|...|~aN ] and we can write

f(~x) =
∑
~n∈ZN

δ (~x− C~n) , (A2)

with ~n = (n1, ..., nN )T . We assume that C is not singular. Then, if we define ~η
such that ~x = C~η, we have

f(~η) =
∑
~n∈ZN

δ (C(~η − ~n)) . (A3)

Now, the function f(~η) is multi-periodic with period one along all directions
η1, ..., ηN . Hence, it can be developed in Fourier series

f(~η) =
∑
~m∈ZN

c~me
2πi~m·~η, (A4)

where the coefficients are given by

c~m =

∫
[0,1]N

f(~η)e−2πi~m·~ηd~η. (A5)

In the set [0, 1]N we have f(~η) = δ (C~η) and therefore we get

c~m =

∫
[0,1]N

δ (C~η) e−2πi~m·~ηd~η =
1

det C
, (A6)

as we can easily prove by applying the substitution ~y = C~η. Coming back to
the variable ~x, we finally obtain

f(~x) =
1

det C
∑
~m∈ZN

e2πi~m·C−1~x, (A7)

which is the Fourier series of the Dirac comb defined in Eq.(A1) or (A2). We
can also determine the Fourier transform of the same function

F (~k) =

∫
RN

f(~x)e−i
~k·~xd~x =

1

det C
∑
~m∈ZN

∫
RN

e2πi~m·C−1~xe−i
~k·~xd~x. (A8)

Since δ(~q) =
∫
RN e

i~q·~xd~x/(2π)N , we easily get

F (~k) =
(2π)N

det C
∑
~m∈ZN

δ
(
~k − 2πC−T ~m

)
. (A9)
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It means that if ~r = C~n ∀~n ∈ ZN is the direct Bravais lattice, then ~k = 2πC−T ~m
∀~m ∈ ZN is the reciprocal Bravais lattice. In other words, the Dirac comb on
the direct lattice is Fourier transformed into a Dirac comb on the reciprocal
lattice. This property can be applied to find the so-called N -dimensional Pois-
son summation formula. We consider an arbitrary function φ(~x) for which the

Fourier transform Φ(~k) exists. We define the replication or periodic summation

g(~x) =
∑
~n∈ZN

φ(~x− C~n) = φ ∗ f, (A10)

where f is defined in Eq.(A2) and ∗ means convolution. Since the Fourier
transform of the convolution is the product of the two Fourier transforms
(convolution theorem), we have

G(~k) =
(2π)N

det C
∑
~m∈ZN

Φ(~k)δ
(
~k − 2πC−T ~m

)
(A11)

=
(2π)N

det C
∑
~m∈ZN

Φ(2πC−T ~m)δ
(
~k − 2πC−T ~m

)
.

Now, we can remember that the Fourier transform of ei~x·~v is given by
(2π)Nδ(~k−~v), and then from Eq.(A11) we come back to the original function
g(~x), eventually obtaining

∑
~n∈ZN

φ(~x− C~n) =
1

det C
∑
~m∈ZN

Φ(2πC−T ~m)e2πi~x·C−T ~m, (A12)

which is the Fourier series of the periodic summation. For ~x = 0, this result
delivers the Poisson summation formula∑

~n∈ZN
φ(C~n) =

1

det C
∑
~m∈ZN

Φ(2πC−T ~m). (A13)

We take now into account the following particular function φ(~x) with its

Fourier transform Φ(~k)

φ(~x) = e2πi( 1
2~x·T ~x+~x·~σ), (A14)

Φ(~k) =
1√

det(−iT )
e
−πi

(
~σ− ~k

2π

)
·T −1

(
~σ− ~k

2π

)
, (A15)

where T ∈ MN,N (C) with T = T T , =m(T ) > 0 and ~σ ∈ CN . To conclude,
we substitute Eqs.(A14) and (A15) in the Poisson summation formula given
in Eq.(A13) and we get, after straightforward calculations, the N -dimensional
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Jacobi reciprocal relation for the Riemann theta function

Θ(~z|Ω) =

√
1

det (−iΩ)
e−πi~z·Ω

−1~zΘ(Ω−1~z| − Ω−1), (A16)

where we have identified Ω = CTT C and ~z = CT~σ. This proves Eq.(47) of
the main text. Other more refined properties of Θ(~z|Ω) can be found in the
literature [112, 113]. The result given in Eq.(A16) can be specialized to the
case with N = 1 by obtaining the original Jacobi identity

ϑ3 (z, τ) =
1√
−iτ

e
z2

πiτ ϑ3

(
z

τ
,−1

τ

)
, (A17)

where we have conveniently compared the definitions of ϑ3 (z, τ) and Θ(~z|Ω)
with N = 1 [112, 113]. This finally proves Eq.(17) of the main text as well.
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Trapped ions in optical lattices for probingoscillator chain models, New
J. Phys. 13, 075012 (2011).

[71] A. Benassi, A. Vanossi, and E. Tosatti, Nanofriction in cold ion traps,
Nature Comm. 2, 236 (2011).

[72] A. Bylinskii, D. Gangloff, I. Counts and V. Vuletić, Observation of
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