
Continuum Mech. Thermodyn.           (2025) 37:75 
https://doi.org/10.1007/s00161-025-01406-8

ORIGINAL ARTICLE

Giuseppe Florio · Stefano Giordano · Giuseppe Puglisi

Continuum vs thermodynamical limit in Statistical
Mechanics

Received: 19 February 2025 / Accepted: 17 July 2025
© The Author(s) 2025

Abstract Determining the limiting behavior of discrete systems with a large number of particles in Statistical
Mechanics is crucial for developing accurate analytic models, especially when addressing multistability and
multiscale effects. Typically, one considers the so called thermodynamical limit or the continuum limit. The
guiding principle for selecting the correct limit is to preserve essential properties of the discrete system,
including physical attributes such as the interplay between enthalpic and entropic contributions, the influence
of boundary conditions, and possible other energetic contributions such as interface effects. In this sense, an
important role is played by the fundamental constants. Selecting appropriate rescaling factors for the Planck
and Boltzmann constants, according to the specific limit considered, is a key theoretical concern. Despite the
importance of this problem, the existing literature often lacks clarity on how different rescalings affect model
accuracy. This work aims to clarify these issues by examining classical lattice models – particularly those that
exhibit multistable behavior – and by proposing suitable limit rescalings to retain the discrete model’s material
response when the number of particles increases.

1 Introduction

The important conceptual relation between the atomistic and continuum picture in mechanics and thermody-
namics has been extensively discussed from a theoretical point of view. Already at the end of the 19th century,
Boltzmann pointed out [1]:

<<The question whether matter is atomistically constituted or continuous therefore reduces to the
question: Which represents the observed properties of matter most accurately, the properties on the
assumption of an extremely large finite number of particles, or the limit of the properties if the number
grows infinitely large?>>

On the other hand such deep problem has been longly questioned from a mathematical point of view, and
is at the root of the sixth Hilbert problem [2]:
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<<Thus Boltzmann’s work on the principles of mechanics suggests the problem of developing mathe-
matically the limiting processes, there merely indicated, which lead from the atomistic view to the laws
of motion of continua.>>

The question of a correct analysis of this limit has been faced in different fields of science. From a
physical point of view the importance of the answer to this question is related both to a correct deduction of
the macroscopic thermodynamic laws, starting from the statistical mechanical framework or statistical field
theory [3–6], and to the relevant aspect of the modern multiscale approaches to mechanics of materials [7–13].
Also, crucial mathematical aspects are related to this problem, where the theories of homogenization and
�-convergences constitute theoretical frameworks aimed at the deduction of continuum, homogenized limits,
starting from discrete microstructures [14–20]. In particular, the concept of �-limit, introduced by the Italian
mathematician Ennio De Giorgi, helps in solving the important physical problem of determining limit energy
functionals having as (global) minima the limit of the energy (global) minima of the discrete problems.

Basically two different approaches can be considered, according to the physical context: the thermodynamic
limit and the continuum limit. The thermodynamic limit conceptually considers a system with an increasing
number of particles keeping fixed the density of the system (number of particles over volume) and determining
the equation of states and the constitutive laws based on the evaluation of the limiting value of the free energy
density. Historically this large limit behavior has been at the base of the kinetic theory of ideal and non ideal
gases and allowed to develop the theoretical framework of equilibrium phase transitions [22,23]. Roughly
speaking we can argue that the main advantage of this approach is the possibility of keeping a real atomistic
architecture of the system whereas the limitation can be seen in the loss of boundary conditions effects and in
the difficulty of comparing the (growing to infinity) total energy with the energy of local phenomena (interfaces,
defects, etc.). This problem is sometimes solved by considering a periodic distribution of interfaces or defects,
but this is only an apparent solution since this method typically introduces so called “spurious correlations”.

On the other hand, the continuum limit consists in considering a fixed volume with an increasing number
of particles. With a correct rescaling of the system parameters the total energy remains finite thus losing
the discrete structure of the system. In this case previous limitations are overcome, but the microstructure is
neglected as in classical homogenization techniques. Moreover, as will be fully discussed in the following, the
correct description of both kinetic energy and entropy leads to a divergent behavior due to the equipartition
theorem. This limitation must be solved by rescaling the Planck and Boltzmann constants, as suggested in
previous literature [3–5], keeping in the limit finite values for kinetic energy and entropy. Historically, the
continuum limit obtained from the molecular theory of elasticity, as proposed by Navier [25] and Cauchy [26],
is fully discussed in the classical treatise of Love on the mathematical theory of elasticity [27]. Already in that
case the important problem of neglecting boundary conditions leads to the unphysical theory of rariconstant
elasticity [28], previously discussed in terms of central (two-body) or multi-body interaction potentials [27].
The possibility of considering boundary effects in the continuum approximation can be crucial in several
context such as grain growth and interface effects in phase transitions [21,29,30]. We notice that, in absence
of a rescaling, the divergence observed in the thermodynamical potentials in the limit of infinite n is consistent
with the approach used in the paper based on the framework of classical Statistical Mechanics, in particular
with the classical equipartition theorem. On the other hand, in the quantum case the situation would require
the extension of the equipartition theorem as observed in Refs. [31,32].

A related problem, which has been highly debated in the physics literature concerns the statistical ensembles
describing the different possible conditions under which a system evolves. As well known, starting from the
same Hamiltonian, the boundary conditions define the statistical ensembles and the corresponding exploration
of the phase space. Different statistical ensembles lead to different macroscopic behavior for finite number of
particles of the system. In this respect, when focussing on the Helmholtz ensemble case (e.g. assigned volume in
a gas, extension in a chain, strain in a solid) or on the Gibbs ensemble case (e.g. assigned pressure in a gas, force
in a chain, stress is a solid), different results regarding the equivalence or inequivalence of the ensembles in the
continuum and thermodynamic limit can be investigated (see [33]). For example, in Ref.[34] the equivalence of
the two ensembles in the thermodynamic limit for a chain with a continuous nearest-neighborhood interaction
has been demonstrated. This result has been extended to non-nearest neighbor interaction for describing phase
transformation is solids with interfacial energy effects [21]. Examples of non equivalences have been observed
for more complex lattice geometries such as for adhesion of films [35], adhesion with softening mechanism
[36], confined systems [37–40], desorption of polymers [42,42,43], and fracture models [51]. Continuous
models of adhesion also show the non-equivalence of statistical ensembles, along with the presence of phase
transitions [52]. In the perspective of describing the correct limit of a discrete system, whose behavior differs
in the two ensembles, we argue that the equivalence in the thermodynamic or continuum limit of the two
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Fig. 1 Scheme of a system made of n non-interacting particles confined on a line

ensembles may come from a non correct consideration of the boundary conditions. In the following, we will
discuss in details several examples on how to respect the different limit behavior reflecting the discrete model
response. In particular, we show that in the continuum limit we can more realistically account for the boundary
conditions, leading to inequivalence for some cases where thermodynamic limits are equivalent. The issue
becomes more subtle when systems are also inequivalent in the thermodynamic limits.

To get insight in the described problems, we consider different limits in some explicit paradigmatic exam-
ples: a one-dimensional ideal gas, a mass-spring chain, and a multistable mass-spring chain with interfaces
in the so called ‘zipper approximation’. While in the first example we have only purely entropic forces, in
the second one we also introduce elastic interactions. In the third example, we also introduce bistability in
the chain units and consider possible interactions among the units themselves. These models are paradigmatic
examples allowing the possibility to obtain analytical formulas and, more important as we will see in the
following, to fully understand the role of approximations and rescaling of physical quantities and constants.
Moreover, one-dimensional models have been able to capture fundamental properties and relations at the
macroscale by considering a proper analysis of costitutive parameters of materials and physical systems in
two and three dimensions [21,53]. In all cases, we analyze the Gibbs ensemble characterized by an applied
force and the Helmholtz ensemble defined by a prescribed extension of the system. To this aim, we introduce a
Laplace-Fourier transform between the Gibbs and Helmholtz partition functions, useful to define a theoretical
link between different statistical ensembles. In all cases, we show that the relevant thermodynamic quantities
remain finite in both the thermodynamic and continuum limits. In the latter case, we must introduce an appro-
priate rescaling of the Planck and Boltzmann constants, coherent with the previous literature [3–5]. In the third
example, we present the features of a chain made of bistable units with next-to-nearest neighbor interaction
allowing the presence of interfaces. In this case, we use the saddle point approximation, thus showing how in
the continuum limit and with a proper parameters rescaling, the interface nucleation and coalescence is still
present and observable.

2 The one-dimensional ideal gas

In this Section we consider the case of a one-dimensional system made of non-interacting particles. We derive
the partition function both in the case of fixed external force (Gibbs ensemble) and fixed position of the end-
point particle on the right (Helmholtz). In both cases we can obtain the relevant thermodynamical potentials
(free energy, internal energy or enthalpy) as well as entropic contribution and derive the relation between force
and size of the system, finally considering the different expression in the thermodynamical and continuum
limit. In subsection 2.3 we explicit the relation between the partition functions of the two ensembles in terms
of Laplace transform.

Consider first the simplest paradigmatic example of a one-dimensional ideal gas composed by n particles
of mass m, moving on the real axis with positions x1, x2,..., xn , and momenta p1, p2,..., pn (see Figure 1). Let
us assume that the particles can collide without passing through each other: 0 ≤ x1 ≤ x2, x1 ≤ x2 ≤ x3,...,and
xn−2 ≤ xn−1 ≤ xn . We consider two different boundary conditions (i.e. statistical ensembles).

2.1 Gibbs Ensemble

In the first case we apply a (negative) force f to the last particle at xn (isotensional condition, Gibbs ensemble),
and in the second case we prescribe a fixed value for xn (isometric condition, Helmholtz ensemble). Thus, in
the Gibbs ensemble we calculate the expected (average) value of the position (volume) 〈xn〉 as function of f ,
and in the Helmholtz ensemble we determine 〈 f 〉 in terms of xn .

In the case of the Gibbs ensemble the extended Hamiltonian of the system is

HG = HK − f xn, (1)



   75 Page 4 of 28 G. Florio et al.

where the first sum represents the kinetic energy

HK =
n∑

i=1

p2
i

2m
, (2)

and the second term describes the potential energy associated to the applied force. The partition function for
this system can be calculated as

ZG( f ) = 1

hn

∫

Rn

∫

�

exp

(
− HG

kBT

)
dx1 dx2... dxn dp1 dp2... dpn, (3)

where h is the Planck constant, kB is the Boltzmann constant, and T is the temperature.
The presence of Planck’s constant makes the partition function dimensionless and can be justified as fol-

lows. The exact quantum partition function can be written as ZQ
G = ∑+∞

i=0 exp(−εi/kBT ). Here, εi are the
eigenvalues of the Hamiltonian operator, defined by the equation ĤG�i = εi�i , where �i are the correspond-
ing eigenfunctions. If we develop the expression for ZQ

G for small values of h, the first term is exactly given
by Eq.(3). This result and the following terms of the developement, representing the first quantum corrections,
have been largely studied in the first half of the twentieth century by Wigner [54], Uhlenbeck and Gropper
[55], and Kirkwood [56]. More details can be found in the Landau’s textbook [57].

In Eq.(3), the set � ⊂ R
n is characterized by 0 ≤ x1 ≤ x2, x1 ≤ x2 ≤ x3,..., ≤ xn−2 ≤ xn−1 ≤ xn .

Therefore, through the change of variables ξ1 = x1, ξ2 = x2 − x1,..., ξn = xn − xn−1, we can consider
�̄ = {ξi ≥ 0, i = 1, ..., n} and we get

ZG( f ) = 1

hn

∫

Rn
exp

(
− 1

kBT

n∑

i=1

p2
i

2m

)
dp1 dp2... dpN

∫

�̄

exp

(
f
∑n

i=1 ξi

kBT

)
dξ1 dξ2... dξN

=
(√

2πmkBT

h

)n (
−kBT

f

)n

=
(

−kBT

f

√
2πmkBT

h2

)n

, (4)

where the condition f < 0 ensures the convergence of the integral. It follows that the Gibbs free energy is
given by

G = −kBT ln ZG = −kBT n ln

(
−kBT

h f

√
2πmkBT

)
. (5)

Moreover, the entropy can be evaluated as

S = −∂G

∂T
= n kB ln

(
−kBT

h f

√
2πmkBT

)
+ 3

2
n kB, (6)

and the enthalpy of the system is

H = G + TS = 3

2
n kBT . (7)

The term 3
2n kBT , shown in the enthalpy expression, describes two contributions: the quantity 1

2n kBT repre-
sents the equipartition theorem applied to the kinetic terms associated to the n particles; the quantity n kBT
represents the thermal fluctuations associated to the potential energy of the applied force (this second term is
double the previous one, as it must be).

Consider then the limit of growing number n of particles and, in particular, the thermodynamic and con-
tinuum limits to understand how the considered functions converge to finite values in the two cases.

In the thermodynamic limit n tends to infinity by increasing the extension of the system (keeping all physical
constants and the particle density fixed). Thus, h, kB , and m are independent of n as well as the densities of
Gibbs free energy G /n, entropy S /n, and enthalpy H /n, which converge to a constant for n → ∞. This
convergence can be seen immediately from the formulas above.

On the other hand, in the continuum limit n increases while keeping the total size of the system fixed, and
thus increasing the particle density. It means that the total mass M = n m must remain constant, and therefore
we have a varying particle mass m = M/n. In this case, the values of the Gibbs free energy G , the entropy
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S , and the enthalpy H have to converge to a constant for n → ∞. This can be obtained only if nkB and
n2h are constant for n → ∞. These conditions are verified if we apply the rescaling laws kB = k̃B/n and
h = h̃/n2, where k̃B and h̃ are constants to be determined by comparison with the real behavior of the discrete
system to be approximated by the continuum limit. The result that the Boltzmann constant tends to zero with
an increasing particle density is due to the fact that the energy of the thermal fluctuations would tend to infinity.
In other words, this indicates that without a correct rescaling we are overestimating this term. Furthermore,
the convergence of Planck’s constant to zero does not mean that we are applying a classical limit to the study
of the system, but that, once again, the particle density is divergent and therefore we must introduce a specific
rescaled Planck constant. These arguments are consistent with previous investigations [3–5]. In particular,
it is easy to verify that our result k2

B/h = k̃2
B/h̃ valid for one-dimensional geometries can be generalized to

kd+1
B /hd = k̃d+1

B /h̃d for the d-dimensional case. We notice that the ratio of the Plank and Boltzmann constants
also appears in the context of models for the evaluation of the coefficient of friction at the nanoscale [59].
Also in that context it is possible to observe that the rescaling here introduced can be used to properly define
physical quantities in the thermodynamical and continuum limits.

To conclude the analysis of this first paradigmatic example, we can study the force-extension relation for our
one-dimensional gas under isotensional condition and compare the behavior obtained in the thermodynamic
and continuum limit. It is well known that within the Gibbs ensemble the force-extension relation is given by

〈xn〉 = −∂G

∂ f
= −kBT n

f
, (8)

where, as before, we consider f < 0.
As expected, in the thermodynamic limit the total extension 〈xn〉 at assigned force diverges whereas the

average strain 〈xn〉 /n remains finite. It follows that the force-extension relation assumes the form 〈xn〉 /n =
−kBT/ f , where both left and right hand sides are finite also for n → ∞. On the other hand, in the continuum
limit 〈xn〉 remains finite and the force-extension relation 〈xn〉 = −kBT n/ f is composed by finite left and right
hand sides since kBn is constant for n → ∞.

2.2 Helmholtz Ensemble

Let us now consider the Helmholtz ensemble, describing the case of assigned total displacement xn . Since the
last particle cannot move, the space of configurations � ⊂ R

n−1 is defined by 0 ≤ x1 ≤ x2, x1 ≤ x2 ≤ x3, ...,
≤ xn−2 ≤ xn−1 ≤ xn , with xn fixed. The Helmholtz Hamiltonian is simply given by the kinetic energy of the
first n − 1 moving particles

HH =
n−1∑

i=1

p2
i

2m
, (9)

and, therefore, the Helmholtz partition function is defined as

ZH (xn) = 1

hn−1

∫

Rn−1

∫

�

exp

(
− HH

kBT

)
dx1 dx2... dxn−1 dp1 dp2... dpn−1. (10)

We adopt the change of variables ξ1 = x1, ξ2 = x2 − x1,..., and ξn−1 = xn−1 − xn−2, and we can write the set

� in terms of the new variables ξi as �̄ =
{
ξi ≥ 0, i = 1, ..., n − 1,

∑n−1
i=1 ξi ≤ xn

}
, and we get

ZH (xn) =
(√

2πmkBT

h

)n−1 ∫

�̄

dξ1 dξ2... dξn−1, (11)

where �̄ represent a (n − 1)−dimensional simplex. Since
∫
�̄

dξ1 dξ2... dξn−1 = xn−1
n /(n − 1)!, we have

ZH (xn) = 1

(n − 1)!

(√
2πmkBT

h2 xn

)n−1

, (12)
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Table 1 Summary of the parameters and constitutive relations for a system of non-interacting particles (one-dimensional gas) in
the thermodynamic and continuum limit

Non-interacting particles (1D ideal gas)

Thermodynamic limit Continuum limit
Mass m = M/n fixed M fixed
Planck constant h fixed h̃ = n2h fixed
Boltzmann constant kB fixed k̃B = nkB fixed
Parameter (Gibbs) 〈xn〉 /n finite 〈xn〉 finite

Relation (Gibbs) 〈xn 〉
n = − kBT

f 〈xn〉 = − k̃B T
f

Parameter (Helmholtz) xn/n finite xn finite

Relation (Helmholtz) 〈 f 〉 = − kBT (n−1)
xn

〈 f 〉 ∼ − k̃B T
xn

which is defined for xn ≥ 0. The Helmholtz free energy is therefore obtained as

F = −kBT ln ZH = −kBT (n − 1) ln

(√
2πmkBT

h
xn

)
+ kBT ln(n − 1)!. (13)

We can use the Stirling approximation ln n! ∼ n ln(n/e), valid for n � 1 and, thus, both in the thermodynamic
and in continuum limit this approximation leads to

F ∼ −kBT (n − 1) ln

(√
2πmkBT

h

xn
n
e

)
. (14)

Thus the entropy is given by

S = −∂F

∂T
∼ kB(n − 1) ln

(√
2πmkBT

h

xn
n
e

)
+ 1

2
kB(n − 1), (15)

and the internal energy is evaluated as

U = F + TS ∼ 1

2
kBT (n − 1). (16)

The value of U could have been written directly from Eq.(9), based on the energy equipartition theorem.
Again, it is clear that in the thermodynamic limit the Helmholtz free energy F/n, the entropy S /n, and the
energy U /n, converge to a constant for n → ∞. Note that in this case the extension diverges and thus xn/n
converges to a finite value. It is interesting to note that the n in the denominator of xn comes from the logarithm
of (n − 1)!, and thus, finally, from the integration over the simplex domain. It is simple to verify that in the
continuum limit the Helmholtz free energy F , the entropy S , and the energy U , converge to a constant for
n → ∞, provided that m = M/n, kB = k̃B/n, and h = h̃/n2, as before.

The force-extension relation within the Helmholtz ensemble is obtained as

〈 f 〉 = ∂F

∂xn
= −kBT (n − 1)

xn
, (17)

which has the same form as Eq.(8) except that now we determine the average value of f at assigned xn . As
before, this relation is consistent with both thermodynamic and continuum limits.

In this simple example concerning a one-dimensional ideal gas, the Gibbs and Helmholtz force-extension
relations assume exactly the same form for n → ∞. It means that the ensembles are equivalent under both
thermodynamic and continuum limits. This point can also be underlined by observing that, for n → ∞, H in
the Gibbs ensemble and U in the Helmholtz one are connected through a Legendre transform H = U − f xn ,
or by using the free energies G = F − f xn . Recall that while the Legendre transform between energies is
only satisfied, for n large, when the ensembles are equivalent, the Laplace-Fourier transform between partition
functions is always valid [23,24,34], as discussed in the following Section.

We summarize the obtained results, the correct rescalings and the differences between the thermodynamic
and continuum limit in Table 1.
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Fig. 2 Scheme of a one-dimensional system made of n particles interacting by an elastic force. (a) System subject to a fixed
force. (b) System subject to a fixed total extension

2.3 Relation between Gibbs and Helmholtz partition functions

The general expressions for the partition functions within the Helmholtz and the Gibbs ensembles are given
in Eqs.(3) and (10), which are valid for any one-dimensional system. By comparing these equations, it easily
follows that

ZG( f ) =
√

2πmkBT

h2

∫ +∞

−∞
ZH (xn) exp

(
f xn
kBT

)
dxn, (18)

where the square root in front of the integral exactly corresponds to the inverse of the thermal De Broglie wave-
length. In general, the domain of integration encompasses the entire real axis but can be restricted according to
the cases under study. This relationship, except for the multiplicative constant, corresponds to a Laplace trans-
form between the partition functions. We can verify that this relationship is correct for the partition functions
obtained for the ideal gas. One can substitute Eq.(12) into Eq.(18), to get

ZG( f ) = 1

(n − 1)!
(√

2πmkBT

h

)n−1 ∫ +∞

0
(xn)

n−1 exp

(
f xn
kBT

)
dxn, (19)

where we recall that xn > 0 and f < o (see Eqs.(4) and (12)). By changing variable f xn = −t kBT , and by
using the Euler Gamma function defined as [58,60]

�(z) =
∫ +∞

0
t z−1e−t dt, (20)

with �(n) = (n − 1)!, we exactly obtain Eq.(4). Interestingly enough, it is possible to find the Helmholtz
partition function from the one in the Gibbs ensemble by evaluating the inverse Laplace transform. Thus,
we can verify that Eq.(12) is exactly derived from Eq.(4) by using the same method. This procedure will be
generalized in the following sections by using the Fourier transform.

3 The one-dimensional mass-spring chain

Consider now the simple system composed of a mass-spring chain represented in Figure 2. As in the case
of non-interacting particles, we consider the case of assigned force (Gibbs ensemble) in subsection 3.1 and
assigned elongation xn in subsection 3.2. After evaluating the partition function in the former case, we derive it
in the latter by using the Fourier transform. We thus obtain the costitutive relations both in the thermodynamic
and continuum limit.

3.1 Gibbs ensemble

We start by analyzing the behavior of the system within the Gibbs ensemble. Therefore, we can write the
extended Hamiltonian in the form

HG =
n∑

i=1

p2
i

2m
+

n∑

i=1

1

2
k0(xi − xi−1 − 	)2 − f xn, (21)
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where x0 = 0, k0 is the elastic constant, and 	 is the resting length (or equilibrium lenghth) of each spring.
The Gibbs partition function can be evaluated as

ZG( f ) = 1

hn

∫

Rn

∫

Rn
exp

⎡

⎣− 1

kBT

⎛

⎝
n∑

i=1

p2
i

2m
+

n∑

i=1

1

2
k0(xi − xi−1 − 	)2 − f xn

⎞

⎠

⎤

⎦ dp1 dp2... dpn dx1 dx2... dxn,

(22)
where the integrals can be elaborated through the expression

∫ +∞

−∞
e−αx2

eβx dx =
√

π

α
e

β2

4α (for α > 0). (23)

Straightforward calculations eventually lead to

ZG( f ) =
(

2πkBT

h

√
m

k0

)n

exp

(
n	 f

kBT
+ n f 2

2kBT k0

)
. (24)

Thus, the Gibbs free energy is given by

G = −kBT ln ZG = −kBT n ln

(
2πkBT

h

√
m

k0

)
− n

(
	 f + f 2

2k0

)
. (25)

We can determine the entropy

S = −∂G

∂T
= kBn + kBn ln

(
2πkBT

h

√
m

k0

)
, (26)

and the enthalpy

H = G + TS = kBT n − n

(
	 f + f 2

2k0

)
. (27)

Consider then also for this system the thermodynamic and continuum limits. As already seen in the case of
the ideal gas, the thermodynamic limit is characterized by an increasing extension of the system, performed by
keeping all the physical constants fixed. Thus, in this case h, kB , k0, 	 and m are independent from n, whereas
the densities of Gibbs free energy G /n, entropy S /n, and enthalpy H /n converge to a constant for n → ∞.
This convergence can be easily seen from previously determined expressions.

Otherwise, in the continuum limit, the physical parameters scale as follows: 	 = L/n, where L is the
system length, m = M/n, where M is the total mass, kB = k̃B/n, h = h̃/n2, and k0 = nAE/L , where A
is the system cross-section and E is the Young’s modulus. When such assumptions are taken into account,
the values of the total Gibbs free energy G , the entropy S , and the enthalpy H converge to a constant for
n → ∞, as expected.

The force-extension relation for the mass-spring chain is then obtained by deriving the Gibbs free energy,
as follows

〈xn〉 = −∂G

∂ f
= n

(
	 + f

k0

)
. (28)

On the one hand, in the thermodynamic limit, we can write the average strain 〈xn〉 /n = 	 + f/k0, with both
left and right hand sides that are convergent to finite values. On the other hand, in the continuum limit, the
force-extension relation assumes the form σ = Eε, where ε = (〈xn〉 − L)/L is the strain, and σ = f/A is
the stress. We then obtain the classical linear response of the one-dimensional solid mechanics.
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3.2 Helmholtz ensemble

As already seen in the previous Section, it is possible to find a direct connection between the partition functions
in the different ensembles, see Eq.(18). In particular, one can use the Fourier transform to derive the Helmholtz
partition function from the Gibbs ensemble [23]. This approach is often adopted with respect to a direct
calculation because, typically, the calculation of the Gibbs partition function is simpler.

To this aim, we firstly introduce in Eq.(18) the variable g such that f = −ikBTg (i is the imaginary unit),
and we get

ZG(−ikBTg) =
√

2πmkBT

h2

∫ +∞

−∞
ZH (xn) exp (−igxn) dxn. (29)

This expression corresponds to a Fourier transform and can be inverted as it follows

ZH (xn) = 1

2π

√
h2

2πmkBT

∫ +∞

−∞
ZG(−ikBTg) exp (+igxn) dg. (30)

A further change of variable η = −kBTg leads to the final expression

ZH (xn) = 1

2πkBT

√
h2

2πmkBT

∫ +∞

−∞
ZG(iη) exp

(
−i

ηxn
kBT

)
dη, (31)

which allows the determination of ZH if we know ZG . It is important to underline that this expression is based
on the analytic continuation of the Gibbs partition function over the imaginary axis.

We can use Eq.(31) by substituting the Gibbs partition function given by Eq.(24) so that we obtain

ZH (xn) = 1

2πkBT

√
h2

2πmkBT

∫ +∞

−∞

(
2πkBT

h

√
m

k0

)n

exp

(
i
n	η

kBT
− nη2

2kBT k0
− i

ηxn
kBT

)
dη,

=
(

2πkBT

h

√
m

k0

)n−1 1√
n

exp

[
− k0

2nkBT
(n	 − xn)

2
]

, (32)

where we used the Gaussian integral
∫ +∞

−∞
e−αx2

eiβx dx =
√

π

α
e− β2

4α , (for α > 0). (33)

The Helmholtz partition function allows to determine the Helmholtz free energy, entropy, and internal energy
of the system, as it follows:

F = −kBT ln ZH = −kBT (n − 1) ln

(
2πkBT

h

√
m

k0

)
+ kBT

2
ln n + 1

2
nk0

(
	 − xn

n

)2
, (34)

S = −∂F

∂T
= kB(n − 1) ln

(
2πkBT

h

√
m

k0

)
− kB

2
ln n + kB(n − 1), (35)

U = F + TS = kBT (n − 1) + 1

2
nk0

(
	 − xn

n

)2
. (36)

We can easily recognize in the internal energy the thermal fluctuation term (which corresponds to n − 1
kinetic terms and n−1 potential terms governed by the equipartition theorem) and the mechanical energy term
corresponding to the n chain springs. Regarding the convergence in the thermodynamic limit, as in previous
case, the densities of free energy, entropy and internal energy are finite in the thermodynamic limit where all
physical parameters of the system are constant. When instead we consider the continuum limit, the total free
energy, entropy and internal energy remain finite if we apply the rescaling 	 = L/n, m = M/n, kB = k̃B/n,
h = h̃/n2, and k0 = nAE/L (note that the term proportional to ln n in the free energy and entropy does not
play any role since ln n/n → 0 when n → ∞).

To conclude we can evaluate the force-extension relation for the chain as

〈 f 〉 = ∂F

∂xn
= k0

( xn
n

− 	
)

, (37)



   75 Page 10 of 28 G. Florio et al.

Table 2 Summary of the parameters and costitutive relations for a mass-spring chain in the thermodynamic and continuum limit

Mass-spring chain

Thermodynamic limit Continuum limit
Mass m = M/n fixed M fixed
Geometric parameter l = L/n fixed L fixed
Elastic parameter k0 fixed E = k0L

nA fixed
Planck constant h fixed h̃ = n2h fixed
Boltzmann constant kB fixed k̃B = nkB fixed
Parameter (Gibbs) 〈xn〉 /n finite 〈ε〉 = 〈xn 〉−L

L finite
Relation (Gibbs) 〈xn 〉

n = l + f
k0

〈ε〉 = σ
E with σ = f/A

Parameter (Helmholtz) xn/n finite ε = xn−L
L finite

Relation (Helmholtz) 〈 f 〉 = k0
( xn
n − l

) 〈σ 〉 = Eε with 〈σ 〉 = 〈 f 〉
A

which corresponds exactly to what was found in the Gibbs ensemble. This proves that also in this simple elastic
extension of previous example there is a statistical equivalence of the ensembles in the thermodynamic and
continuum limit. Again, this result is consistent with the fact that there is a Legendre transformation between
the two ensembles, as can be easily verified [23].

We summarize the obtained results, the corresponding rescalings, and the differences between the thermo-
dynamic and continuum limit in Table 2.

4 One-dimensional multistable mass-spring chain with interfacial energy

We introduce in this Section, a model composed of bistable units with an interaction scheme described by
an Ising type energy, see Figure 3. To simplify the analysis of the system, we adopt the zipper assumption,
which describes a system divided into two parts, each of them being in a different phase (for instance, folded
and unfolded conformational phase). These two parts are separated by a single domain wall that can evolve
either due to the external mechanical action or thermal fluctuations. This model can be used to describe
phase transformations in the mechanics of solids or the configurational transition of macromolecules in the
biophysical context. This system highlights the possible important differences between the continuous and
thermodynamic limits. In particular, we observe that the energy associated with the domain wall is localized
and must compete with the total energy of the system. Since in the thermodynamic limit the total energy
diverges, such competition can only be observed in the continuous limit. This difference is then studied in
detail in what follows as a paradigmatic example of the role of local energy terms in the limit of growing
number of particles. Thus, this represents a first important example where the two different approaches can
lead to important differences in the system response.

4.1 Model of a mass-spring chain with bistable units

Consider a chain made of n bistable units, each subject to a next-to-nearest neighbor interaction [21]. In
particular, the configuration of the chain is described by the Hamiltonian H , defined as

H = HK + Hel + HJ , (38)

where the different terms are defined as follows. The kinetic energy is given by

HK = 1

2

n∑

i=1

p2
i

m
. (39)

The multistable elastic potential energy Hel is defined as

Hel =
n∑

i=1

{
1

2
k(Si )

[
xi − xi−1 − l0(Si )

]2 + Q(Si )

}
, (40)
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Fig. 3 Scheme of a one-dimensional system of n particles interacting by multi-stable elastic forces characterized by different
elastic constants and natural lengths. (a) System subject to a fixed force (Gibbs ensemble). (b) System subject to a fixed total
extension (Helmholtz ensemble). Bottom figures: Energy profile of a multi-stable elastic energy with each phase defined by the
value of the spin variable Si . Central panel: energy wells with the same elastic constant (α = 1). Left and right panels: energy
wells with different elastic constant (α < 1 representing a softening transition behavior and α > 1, representing a hardening
transition behavior, respectively)

where we consider the boundary condition x0 = 0. Each term in Hel can exhibit two phases, each characterized
by using the spin variable Si that can assume the values ±1, where Si = −1 corresponds to the first well (folded
element), whereas Si = +1 corresponds to the second well (unfolded element). In general, the two phases are
characterized by different values of the elastic constants k(Si ), energy gaps �E between the minima of the
potential wells measuring the transition energy, and different natural lengths l0(Si ). In particular, we fix

l0(Si ) =
{
l, if Si = −1

χl, if Si = +1
, k(Si ) = k0α(Si ) =

{
k0, if Si = −1

αk0, if Si = +1
, Q(Si ) =

{
0, if Si = −1

�E, if Si = +1
, (41)

where χ > 1, l > 0, k0 > 0, α > 0, �E > 0. In Figure 3 we show the energetic profile of a single bistable
unit.

Finally, we model the non-local interaction by considering the Ising energy term

HJ = −J
n−1∑

i=1

Si Si+1, (42)

where the coupling constant J > 0 characterizes the interaction strength. The choice of a positive value for J
corresponds to favor phase coalescence in the configuration of the chain (interface energy penalization).

In order to simplify the analysis and obtain analytically simple expressions, we consider here a modified
version of the Hamiltonian. In particular, as previously anticipated, we focus on the so-called zipper model
[61–63]. Within this approximation, a single interface between the folded and unfolded parts of the chain
is nucleated and propagated along the system (single domain wall approximation). Thus, we introduce the
discrete variable ξ ∈ {0, . . . , n} representing the number of elements in the unfolded state (correspondingly,
we have n − ξ units in the folded state).

In the following we distinguish the cases when the two wells have the same elastic constant (α = 1) or
different elastic constant (α 
= 1) because they lead to a different transition behavior.

4.2 Identical wells

Consider first the case with α = 1, when the elastic constants of the different potential wells coincide and only
the reference lengths of the two material phases are different.
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4.2.1 Zipper model in the Gibbs ensemble

When the external force f is assigned, the Hamiltonian describing the system reads

HG (ξ) =
n∑

i=1

p2
i

2m
+

n−ξ∑

i=1

{
k0

2

(
xi − xi−1 − l

)2
}

+
n∑

i=n−ξ+1

{
�E + αk0

2

(
xi − xi−1 − χl

)2
}

− J [n − 1 − 2I (ξ)] − f xn (43)

where I (ξ) represents the number of interfaces corresponding to the assigned value of ξ . In particular, within
the zipper model, we have I (0) = I (n) = 0 (no interface) and I (ξ) = 1 if 1 ≤ ξ ≤ N −1 (only one interface).
We also stress that the quantity n− ξ represents the position of the domain wall in the chain. Finally, we notice
that HG depends explicitly on the number of unfolded elements ξ .

The partition function for the Gibbs ensemble can be evaluated as in the previous Sections. We have

ZG = 1

hn

n∑

ξ=0

∫

Rn

∫

Rn
exp

[
−HG(ξ)

kBT

]
dp1 dp2... dpn dx1 dx2... dxn, (44)

where we included the summation over ξ in order to take into account the different configurations of the
interface between folded and unfolded sections of the chain. An explicit calculations gives

ZG =
(

2πkBT

h

√
m

k0

)n

exp

[
J (n − 1)

kBT

] n∑

ξ=0

exp

[
− 2J

kBT
I (ξ)

]
�G(ξ), (45)

where

�G(ξ) = exp

[
− �E

kBT
ξ

]
exp

{
1

kBT

[
n f 2

2k0
+ f l[n + (χ − 1)ξ ]

]}
. (46)

As in the previous case, the Gibbs free energy is

G = −kBT ln ZG . (47)

The relation between the applied force and the expectation value of the total elongation of the chain is

〈xn〉 = −∂G

∂ f
, (48)

finally giving

〈xn〉
n

= f

k0
+ l

(
1 − 〈ξ〉

n

)
+ χl

〈ξ〉
n

, (49)

where the expectation value of the unfolded fraction 〈ρ〉 = 〈ξ〉/n is defined as

〈ρ〉 = 〈ξ〉
n

= 1

n

∑n
ξ=0 ξ exp

[
− 2J

kBT
I (ξ)

]
�G(ξ)

∑n
ξ=0 exp

[
− 2J

kBT
I (ξ)

]
�G(ξ)

. (50)

We notice that the relation between force and extension remains valid both in the thermodynamic limit and in
the continuum limit where it assumes the form

σ

E
= 〈xn〉

L
− (1 − 〈ρ〉) − χ〈ρ〉. (51)
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4.2.2 Zipper model in the Helmholtz ensemble

Consider now the case of the Helmholtz ensemble when the value of the extension xn is assigned and we want
to determine the expectation value of the force 〈 f 〉 experienced by the chain. We proceed by using the Fourier
trasform method outlined in Section 3. We obtain

ZH (xn) = 1

2πkBT

√
h2

2πmkBT

∫ +∞

−∞
ZG(iη) exp

(
−i

ηxn
kBT

)
dη

= 1√
n

(
2πkBT

h

√
m

k0

)n−1

exp

[
J (n − 1)

kBT

] n∑

ξ=0

exp

[
− 2J

kBT
I (ξ)

]
�H (ξ), (52)

where

�H (ξ) = exp

[
− �E

kBT
ξ

]
exp

{
− k0

2nkBT
[xn − l (n + (χ − 1)ξ)]2

}
. (53)

Evaluating the Helmholtz free energy
F = −kBT ln ZH , (54)

gives us the possibility to obtain the force-elongation relation in this ensemble as

〈 f 〉 = ∂F

∂xn
. (55)

We get
〈 f 〉
k0

= xn
n

− l

(
1 − 〈ξ〉

n

)
− χl

〈ξ〉
n

= xn
n

− l (1 − 〈ρ〉) − χl〈ρ〉, (56)

where the expectation value of the unfolded fraction 〈ρ〉 = 〈ξ〉/n in the Helmholtz ensemble is defined as

〈ρ〉 = 〈ξ〉
n

= 1

n

n∑

ξ=0

ξ exp

[
− 2J

kBT
I (ξ)

]
�H (ξ)

n∑

ξ=0

exp

[
− 2J

kBT
I (ξ)

]
�H (ξ)

. (57)

After some algebraic manipulation we obtain

〈ρ〉 = 〈ξ〉
n

= 1

n

n�H (N )
[
exp

(
2J
kBT

)
− 1

]
+

n∑

ξ=0

ξ�H (ξ)

[�H (0) + �H (N )]

[
exp

(
2J

kBT

)
− 1

]
+

n∑

ξ=0

�H (ξ)

. (58)

We finally have
〈 f 〉
E A

= λ − (1 − 〈ρ〉) − χ〈ρ〉 = λ − 1 − (χ − 1)〈ρ〉, (59)

where
λ = xn

L
(60)

and the function �H reads

�H (ξ) = exp

[
− q

kBT

ξ

n

]
exp

{
− AEL

2kBT

[
1 + (χ − 1)

ξ

n
− λ

]2
}

, (61)

with q = n�E . This rescaling is consistent with the fact that the energy corresponding to the transition of the
whole system n�E remains fixed as n grows. Thus, this represents the correct scaling in the continuum limit.
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Fig. 4 Panels (a)-(b): expectation value of σ/E versus λ (with σ = f/A). In all cases we fixed E = A = L = 1, q = 0.5, χ = 5.
Panel (a): we used n = 100, 200, 300, 400, β = 100, J = 0.01. Panel (b): we used n = 100, 200, 300, 400, β/n = 1, J = 0.01.
Panel (c): expectation value of f/k0 versus xn/n, see Eq.(56); we fixed k0 = l = β = �E = J = 1, χ = 5, and n = 20, 50, 80

In Figure 4, we show the stress-stretch behavior of the system for increasing number of elements. In order to
show the behavior in the n → ∞ limit, we use the rescaling adopted in Section 3 for the material parameters
in Figure 4 (a) (for the thermodynamic limit) and in Figure 4 (b) (for the continuum limit). We also remark
that since in the thermodynamic limit the total stiffness decreases to zero, we rescale with L the total stress.
Observe that the nucleation stress peak decreases in the thermodynamic limit rescaling with increasing n, see
Figure 4 (a). This is an artificial effect of the rescaling making the contribution of the the ‘localized’ interfacial
energy negligible with respect to the total energy of the system, which diverges to infinity when n → ∞. As
a result, the nucleation peak disappears in the thermodynamic limit. On the other hand, the behavior in the
continuum limit rescaling, represented in Figure 4 (b) shows that the nucleation peak is slightly increasing with
n. It is possible to show that this peak converges to a given value for n → ∞, as discussed in the next Section.
For comparison, in Figure 4 (c) we plot the expectation value of f/k0 versus xn/n, see Eq.(56). Having in
mind the thermodynamic limit with n, L → ∞, we fix l and consider increasing values of n. Also in this case
we observe that the nucleation peak decreases for larger values of n.

It is worth noticing that in phase transition phenomena the presence of stress peaks, distinguishing nucle-
ation vs interfaces propagation stresses represents a crucial aspect to be described [21,29]. Therefore, models
that want to describe such phenomena must be able to represent this behavior. For this reason, the continuum
limit becomes essential in this field of applications.

4.2.3 Continuum limit in the Helmholtz ensemble

Consider now the continuum limit of the multistable system analyzed in terms of the saddle point approxima-
tion. Specifically, consider the classical Euler–MacLaurin approximation for a given function φ and substitute
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the summation over ξ with integrals as

n∑

ξ=0

φ(ξ) �
∫ n

0
φ(ξ)dξ, (62)

where we neglected higher order terms in order to simplify the calculations and to make the final formulas
more transparent. To exhibit the important role of the continuum limit as compared with the thermodynamic
limit when interfacial effects – and, similarly, when boundary conditions take an important role in defining
phase nucleation and evolution for systems with non-local interactions [29] –, in the following we evaluate
explicitly the limit with n → +∞ with L fixed. We can thus rewrite the expectation value of the fraction 〈ρ〉
in Eq.(58) as

〈ρ〉 �
�H (n)

(
e2Jnβ̃ − 1

)
+ n

∫ 1
0 ρe−nβ̃g(ρ)dρ

(�H (0) + �H (n))
(
e2Jnβ̃ − 1

)
+ n

∫ 1
0 e−nβ̃g(ρ)dρ

, (63)

where we defined

g(ρ) = qρ + AEL

2
[1 + (χ − 1)ρ − λ]2 , (64)

and we introduced the rescaled inverse temperature

β̃ = 1

nkBT
= 1

k̃BT
. (65)

The definition of β̃ is consistent with the observations in previous Sections where we considered the continuum
limit taking into account the rescaled Boltzmann constant as kB = k̃B/n.

In order to obtain the correct limit for n → +∞, we evaluate the asymptotic expression for 〈ρ〉 and,
thus, the relation obtained from Eq.(59). Let us first determine the expectation value of the phase fraction for
two-phases solution with 0 < ρ < 1 corresponding to the conditions

1 + q

AEL(χ − 1)
< λ < χ + q

AEL(χ − 1)
. (66)

In this case we can evaluate the integrals in Eq.(63) by the stationary phase method. By considering

∂g

∂ρ
= 0, (67)

we can find the solution

ρ∗ = λ − 1

χ − 1
− q

AEL(χ − 1)2 . (68)

Thus, we obtain the asymptotic expression for the integrals in Eq.(63) as

∫ 1

0
ρe−nβ̃g(ρ)dρ ∼ ρ∗

∫ +∞

−∞
e−nβ̃[g(ρ∗)+ 1

2 g
′′(ρ∗)(ρ−ρ∗)2]dρ = ρ∗e−nβ̃g(ρ∗)

√
2π

nβ̃g′′(ρ∗)
, (69)

∫ 1

0
e−nβ̃g(ρ)dρ ∼

∫ +∞

−∞
e−nβ̃[g(ρ∗)+ 1

2 g
′′(ρ∗)(ρ−ρ∗)2]dρ = e−nβ̃g(ρ∗)

√
2π

nβ̃g′′(ρ∗)
, (70)

where

g(ρ∗) = q
λ − 1

χ − 1
, g′′(ρ∗) = AEL(χ − 1)2. (71)
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Fig. 5 Panel (a): expectation (asymptotic) value 〈σ 〉as/E versus λ for increasing values of n. We fixed E = A = L = 1, q = 0.5,
χ = 5, J = 0.1 and β̃ = 0.1. The curves correspond to n = 200, 103, 104, 105. Panel (b): comparison of the expectation value
〈σ 〉/E (solid line) and the asymptotic limit (dashed line) versus λ. We fixed E = A = L = 1, q = 0.5, χ = 5, J = 0.1, n = 100
and β̃ = 1

We finally find

〈ρ〉as ∼ ρ∗ + e−nβ̃ fχ (λ)

√
β̃g′′(ρ∗)

2πn

1 + e−nβ̃ fχ (λ)
(

1 + e−nβ̃( f1(λ)− fχ (λ))
)√

β̃g′′(ρ∗)
2πn

(72)

= ρ∗ + (χ − 1)e−nβ̃ fχ (λ)

√
β̃AEL

2πn

1 + (χ − 1)e−nβ̃ fχ (λ)
(

1 + e−nβ̃( f1(λ)− fχ (λ))
)√

β̃AEL
2πn

(73)

where

f1(λ) = AEL

2
(λ − 1)2 − 2J − g(ρ∗), fχ (λ) = q + AEL

2
(λ − χ)2 − 2J − g(ρ∗). (74)

On the other hand, when

λ ≤ 1 + q

AEL(χ − 1)
or λ ≥ χ + q

AEL(χ − 1)
, (75)

we find, respectively,

〈ρ〉as ∼
(
e2β̃ Jn − 1

)
e−nβ̃ AEL

2 (λ−χ)2−nβ̃q

(
e2β̃ Jn − 1

) (
e−nβ̃ AEL

2 (λ−1)2 + e−nβ̃ AEL
2 (λ−χ)2−nβ̃q

)
+ ne−nβ̃ AEL

2 (λ−1)2
, (76)

〈ρ〉as ∼
(
e2β̃ Jn − 1

)
e−nβ̃ AEL

2 (λ−χ)2−nβ̃q + ne−nβ̃[q+ AEL
2 (λ−χ)2]

(
e2β̃ Jn − 1

) (
e−nβ̃ AEL

2 (λ−1)2 + e−nβ̃ AEL
2 (λ−χ)2−nβ̃q

)
+ ne−nβ̃[q+ AEL

2 (λ−χ)2] . (77)

The force-stretch relation in the asymptotic (continuum) limit is thus given by

〈 f 〉as
E A

= λ − 1 − (χ − 1)〈ρ〉as . (78)

In Figure 5 (a), we plot the asymptotic expectation value 〈σ 〉as/E versus λ given by Eq.(78) for increasing
values of n. We notice the the use of β̃ with the rescaling of the Boltzmann constant as nkB allows to observe
the peaks corresponding to the nucleation and reabsorption (coalescence) of the domain wall generated by the
coupling energy J .

In order to compare the asymptotic result with the original one, in Figure 5 (b) we plot the expectation
value 〈σ 〉/E (solid line) and the asymptotic limit (dashed line) versus λ (values of the parameters in the caption
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of the figure). In agreement with the rescaling argument of the Boltzmann constant, we have to evaluate the
exact result for β = nβ̃. Having this in mind, we notice the excellent agreement of the results.

In order to get insight in the continuum limit, we focus our attention on the limit of the force peak when
n → +∞. The analytic expression of this quantity can be obtained by considering that, for λ � 1, Eq.(78)
can be approximated as

〈 f 〉as
E A

= q

E AL(χ − 1)
+
[
λ − 1 − q

E AL(χ − 1)

]
ae−nβ̃ f1

1 + ae−nβ̃ f1
, (79)

where

a = (χ − 1)

√
β̃E AL

2πn

(
e2β̃ Jn − 1

)
. (80)

We can impose the condition to find the maximum value of the force as

∂

∂λ
〈 f 〉as = 0. (81)

An explicit computation shows that this condition leads to the Lambert equation

wew = s, (82)

where

w = nβ̃
AEL

2

(
λ − 1 − q

χ − 1

)2

− 1

2
, (83)

s = χ − 1

2

√
β̃E AL

2πne

(
e2β̃ Jn − 1

)
. (84)

The solution can be written as [64,65]

w = W0(s), (85)

where W0 is the so-called Lambert function. Using this result with Eq. (79), we can evaluate the force peak as

〈 f 〉P
E A

= q

E AL(χ − 1)
+
√

2

nβ̃AEL

W0(s)√
1
2 + W0(s)

, (86)

When s � 1 (verified when β̃ is fixed for n → +∞) we have that W0(s) ∼ ln s and, thus, the force peak in
the continuum limit can be written as

〈 f 〉P
E A

∼ q

E AL(χ − 1)
+ 2

√
J

AEL
. (87)

The second term in the right-hand side corresponds to the force gap between the plateau (corresponding to
the first term in the summation of the right-hand side) and the peak. Interestingly, we have obtained that the
gap does not depend on temperature if we use the rescaled inverse temperature β̃ in the continuum limit. This
result is drastically different with respect to the analysis of the continuum limit without considering k̃b constant
when the force peaks goes to zero. We also point out the important difference in the behavior between the
thermodynamic and the continuum limit. In the former case, the nucleation peak disappears when n → ∞. In
the second case the peak tends to a constant that depends on the Ising interaction factor, which represents the
energy associated with the domain wall.



   75 Page 18 of 28 G. Florio et al.

Fig. 6 Comparison of the zipper model (blue curve) with the results obtained from the total energy including the term in Eq.(42)
with all possible configurations (red curve), see Appendix A. Panel (a), (b) and (c) corresponds to decreasing values of temperature
(increasing values of β as reported in each figure. We considered n = 30, J = 0.1, E = 1, A = 1, L = 1, q = 0.5, χ = 5

Table 3 Summary of the parameters and costitutive relations for a multi-stable chain in the thermodynamic and continuum limit

Mass-spring bistable chain with Ising interactions

Thermodynamic limit Continuum limit
Mass m = M/n fixed M fixed
Geometric parameter l = L/n fixed L fixed
Elastic parameter k0 fixed E = k0L

nA fixed
Planck constant h fixed h̃ = n2h fixed
Boltzmann constant kB fixed k̃B = nkB fixed
Parameter (Gibbs) 〈xn〉 /n finite 〈λ〉 = 〈xn 〉

L finite

Relation (Gibbs) 〈xn 〉
n = f

k0
+ l

(
1 − 〈ξ 〉

n

)
+ χl 〈ξ 〉

n 〈λ〉 = σ
E + (1 − 〈ρ〉) + χ 〈ρ〉 with σ = f/A

Parameter (Helmholtz) xn/n finite λ = xn
L finite

Relation (Helmholtz) 〈 f 〉
k0

= xn
n − l

(
1 − 〈ξ 〉

n

)
− χl 〈ξ 〉

n
〈σ 〉
E = λ − (1 − 〈ρ〉) − χ 〈ρ〉 with σ = f/A

Nucleation peak (Helmholtz) 〈 f 〉P
E A − q

E AL(χ−1)
= 0 〈 f 〉P

E A − q
E AL(χ−1)

= 2
√

J
AEL

4.2.4 Remark and summary

As a remark, we stress that the zipper model is an approximation of the real behavior of the system that
includes the elastic energy and the total non-local interaction energy in Eq.(42). One should actually include
the possibility of more barriers (i.e., more domain walls) and consider their effect in the evaluation of the
macroscopic quantities. On the other hand, this would make the analytical treatment more difficult and the
results less transparent in their physical interpretation. The analysis of the complete model is reported in
Appendix A. In order to show the validity of the zipper approximation, we plot in Figure 6 the comparison of
the two models. We can appreciate that the zipper model is in very good agreement with the complete model
for the typical values of the parameters considered in our discussion.

In Figure 7 we summarize the behavior of the σ −λ relation depending on the limit performed. The results
obtained and the differences between the thermodynamic and continuum limit are reported in Table 3.

4.3 Different energy wells: the case with α 
= 1

In the previous example the elastic constants of the different phases were equal, i.e., the parameter α in Eq.(40)
was equal to one. In the case of α 
= 1, it is possible to observe a different phenomenology. In particular,
one observes that the Maxwell force phase transition plateau is temperature dependent [21]. We are going to
consider the effect of the difference of the elastic constants also for the continuum limit using the rescaled
inverse temperature β̃ = β/n.

Starting from Eq.(43), we can obtain the partition function in the Gibbs ensemble as in the case with α = 1.
In particular, the results found for α = 1 can be generalized as

Z (α)
G =

(
2πkBT

h

√
m

k0

)n

exp

[
J (n − 1)

kBT

] n∑

ξ=0

�
(α)
G (ξ), (88)
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Fig. 7 Summary of the behavior of the σ −λ relation. As explained in the main text, depending on the limit performed we observe
different results in the diagrams. Starting from a finite value of n (left branch of the diagram), performing the limit n → ∞
with kB constant (right upper branch of the diagram) corresponds to the thermodynamic limit whereas the limit n → ∞ with
k̃B = nkB constant (right lower branch of the diagram) corresponds to the continuum limit

where

�
(α)
G (ξ) = 1

αξ/2 exp

[
−2J I (ξ)

kBT

]
exp

[
−�Eξ

kBT

]
exp

{
1

kBT

[
n f 2

2k0

(
1 − ξ

n
+ ξ

αn

)
+ n f l

(
1 + (χ − 1)

ξ

n

)]}
. (89)

The Gibbs free energy and the force-elongation relation can be evaluated as

G (α) = −kBT ln Z (α)
G , 〈xn〉α = −∂G (α)

∂ f
, (90)

where we defined the (α dependent) expectation value

〈•〉α =
∑n

ξ=0 • �
(α)
G (ξ)

∑n
ξ=0 �

(α)
G (ξ)

. (91)

We thus obtain the generalized expression for the force-elongation relation in the Gibbs ensemble as

〈xn〉α
n

= f

k0

(
1 + 1 − α

α

〈ξ〉α
n

)
+ l

(
1 − 〈ξ〉α

n

)
+ χl

〈ξ〉α
n

, (92)
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which, having in mind the idea of analyzing the continuum limit, can be rewritten as

〈xn〉α
L

= σ

E

(
1 + 1 − α

α
〈ρ〉α

)
+ (1 − 〈ρ〉α) + χ〈ρ〉α, (93)

where, as before, we defined ρ = ξ/n, σ = f/A, and we recall that k0 = nAE/L .
In the Helmholtz ensemble (where the value of the extension xn is assigned) we can generalize the expression

of the partition function obtained for α = 1 as

Z (α)
H (xn) = 1

2πkBT

√
h2

2πmkBT

∫ +∞

−∞
Z (α)
G (iη) exp

(
−i

ηxn
kBT

)
dη =

(
2πkBT

h

√
m

)n−1

e
J (n−1)
kB T

n∑

ξ=0

�
(α)
H (ξ),

(94)

where

�
(α)
H (ξ) =

exp
[
− 2J

kBT
I (ξ)

]
exp

[
− �E

kBT
ξ
]

√(
n−ξ
k0

+ ξ
αk0

)
kn−ξ

0 (αk0)
ξ

exp

{
− 1

2kBT

(
n − ξ

k0
+ ξ

αk0

)−1

[xn − l (n + (χ − 1)ξ)]2

}
.

(95)
The Helmholtz free energy and the force-elongation relation in this ensemble read

F (α) = −kBT ln Z (α)
H , 〈 f 〉α = ∂F (α)

∂xn
. (96)

We obtain

〈 f 〉α
k0

=
〈

1

1 − ξ
n + ξ

αn

〉

α

xn
n

− l

〈
1 − ξ

n

1 − ξ
n + ξ

αn

〉

α

− χl

〈
ξ
n

1 − ξ
n + ξ

αn

〉

α

, (97)

where, from now on, we consider

〈•〉α =
∑n

ξ=0 • �
(α)
H (ξ)

∑n
ξ=0 �

(α)
H (ξ)

. (98)

Having in mind the continuum limit, we can rewrite Eq.(97) as

〈σ 〉α
E

=
〈

1

1 − ρ + ρ
α

〉

α

λ − l

〈
1 − ρ

1 − ρ + ρ
α

〉

α

− χl

〈
ρ

1 − ρ + ρ
α

〉

α

. (99)

As in the case with α = 1, we can evaluate the continuum limit by using the saddle point approximation
in the limit n → +∞ with L fixed. We find the asymptotic expectation value of σ as

〈σ 〉α as

E
∼ Cn

[
(λ − 1)eng1 + (λ − χ)α3/2engχ

]+ f ∗
E AL

Cn
[
eng1 + α1/2engχ

]+ 1
, (100)

where
f ∗

AEL
= 1

1 − ρ∗ + ρ∗/α
[
(1 − ρ∗)(λ − 1) + ρ∗(λ − χ)

]
, (101)

and ρ∗ is the solution of the saddle point equation ∂g
∂ρ

= 0, with

g(ρ) = β̃qρ + β̃

2

AEL

1 − ρ + ρ/α
[λ − 1 − (χ − 1)λ]2 + ρ

2
ln α, β̃ = 1

nkBT
. (102)



Continuum vs thermodynamical... Page 21 of 28    75 

Fig. 8 Panel (a): expectation value 〈σ 〉as/E versus λ for increasing values of β̃. We fixed E = A = L = 1, q = 0.5,
χ = 5, J = 0.01, n = 320 and β̃ = 10, 7, 4. Panel (b ): asymptotic expectation value 〈σ 〉/E (solid line) versus λ. We fixed
E = A = L = 1, q = 0.5, χ = 5, J = 0.01, n = 3000 and β̃ = 10, 7, 4. Inset: comparison of the expectation value 〈σ 〉/E
(solid line) and the asymptotic limit (dashed line) versus λ. We fixed E = A = L = 1, q = 0.5, χ = 5, J = 0.01, n = 320 and
β̃ = 10

In these equations, we defined

Cn =
√

β̃AEL

2πn

(
e2β̃ Jn − 1

)
√[(

1 + f ∗
AEL

)
−
(

χ + f ∗
αAEL

)]2

, (103)

g1 = − β̃

2
AEL

[
λ −

(
1 + f ∗

AEL

)]2

, (104)

gχ = − β̃

2
αAEL

[
λ −

(
χ + f ∗

αAEL

)]2

. (105)

Focussing on the nucleation peak as in the case α = 1, we can use again the Lambert function so to obtain
in the continuum limit

〈σ 〉α P

E
∼ f ∗

E AL
+ 2

√
J

AEL
. (106)

This result is analogous to the case with α = 1. In particular, the force gap with respect to the plateau is
the same and, again, temperature independent. In Figure 8 we plot the relation between σ and λ in the case
with α 
= 1. In particular, in panel (a) we consider the case with α < 1 where we observe that the stress
plateau decreases by increasing the temperature (determined by the rescaled inverse temperature β̃), the case
with α > 1 being analogous but with an increasing plateau for increasing temperature. In panel (b) we plot
the asymptotic value of the expectation value of σ for a larger value of n. In this case we observe that, even
considering larger values of temperature, the stress peak does not disappear. In the inset we show that the
asymptotic formula of the stress perfectly matches the non approximated expression.

The important point is that the difference between the elastic constants of the two energy wells of the
bistable unit generates a temperature-dependent plateau, a fact that is experimentally observed in systems that
exhibit phase transformations. This is the novelty with respect to the case with α = 1. In several experimentally
observed cases, however, the nucleation peak has also been seen to be temperature dependent. This phenomenon
cannot be reproduced from the model under consideration studied with the zipper approximation. It would be
interesting to study whether the Ising-type interaction model, studied without the zipper approximation, i.e.,
with an arbitrary number of domain walls induced by thermal fluctuations, is able to provide a temperature-
dependent nucleation peak (always in the continuous limit). Although this seems to us to be true from the
analysis of some numerical results, we do not currently have a rigorous demonstration of this fact. We therefore
leave as a future perspective the study of the continuum limit of the exact Ising model i.e., without zipper
approximation.
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5 Conclusions

In this paper, we dealt with the problem of moving from discrete to continuous models, including the effects
of temperature and entropy. By considering systems made of an increasing number of elements n, we studied
two different limits, i.e. the thermodynamical and the continuum limits. We analyzed two types of bound-
ary conditions, representing two different statistical ensembles. The isotensional conditions correspond to the
Gibbs ensemble whereas the isometric conditions correspond to the Helmholtz ensemble. As a matter of fact,
the analysis of the behavior of discrete systems for increasing number of elements represents a fundamental
topic in several theoretical and applied fields. From one side system with a large number of elements represent
the standard case in several artificial and biological systems. Second the analysis of these limits are crucial
to obtain analytical expressions especially in the field of multiscale phenomena (see e.g. [66]). Two different
approaches have been considered in the literature. From one side the so-called thermodynamic limit corre-
sponds to increasing the number of elements, with the costitutive parameters of the system independent on the
rescaling. As a result all the extensive quantities (volume, entropy, energy, etc) grow to infinity keeping finite
the corresponding densities. The main drawback of this approach is the difficulty of considering the competi-
tion between the local energy terms (such as the interface energy as considered in this work) and the role of
boundary conditions. It is exactly this last aspect that leads to the classical results of statistical equivalence in
the large n limit of the Gibbs and Helmholtz statistical ensemble in the thermodynamical limit. The second
approach is to consider the so-called continuum limit, when the rescaling corresponds to increasing n while
keeping finite both the densities and the total amount of the extensive energetic components. As we show in this
work a non careful rescaling of this type can induce an overestimation of entropic and kinetic terms. Indeed,
when we consider the continuum limit we have to introduce a rescaling of the two most important physical
constants, namely the Boltzmann and Planck constants, to obtain the convergence of all the energetic functions.
This result is consistent with the fact that as n increases the internal energy of the system grows indefinitely
because of the equipartition theorem that associates a constant amount of energy to each degree of freedom.
This is the ultimate reason that requires us to rescale the fundamental constants to regain convergence of the
energy functions. As already stated this result is fully consistent with the framework of classical equilibrium
Statistical Mechanics.

Specifically, by explicitly scrutinizing three distinct models of growing complexity, we revealed the inter-
play between these limits and the ensembles. Starting with a one-dimensional gas of non-interacting particles,
we found that energy, enthalpy, free energy, and entropy densities converge in the thermodynamic limit. On
the other hand, the convergence in the continuum limit requires the rescaling of the key constants due to the
infinite energy growth predicted by the equipartition theorem.Thus, we observed that the densities of energy,
enthalpy, free energy, and entropy converge in the thermodynamic and (constant rescaled) continuum limit. In
this first example, the forces are purely entropic (there are no elastic forces in the system) and the two statistical
ensembles are equivalent.

Adding elastic forces in a second model, we observed similar convergence criteria, with both Gibbs and
Helmholtz ensembles yielding equivalent results.

To introduce greater complexity, in the third case, we introduced a chain of bistable units and considered
an Ising-type interaction between them. By adopting the terminology used to describe macromolecules, par-
ticularly proteins, the two states of each unit of the system units mimic folded and unfolded configurations.
We assume a positive constant J in the coupling constant of the units to represent ferromagnetic behavior,
meaning that adjacent elements prefer to be in the same state (folded or unfolded). In this model, the general
solution is not straightforward in terms of transparency of the results and, therefore, we used the so-called zip-
per assumption which introduces a single domain wall between the folded and unfolded regions. This approach
largely simplifies the analysis of the problem. The results remain valid in the case of a strongly ferromagnetic
system, i.e., with a large value of J . This system immediately exhibits more complex departing behavior
with the Helmholtz ensemble showing a response with nucleation and coalescence force peaks. Notably, the
thermodynamic limit eliminates these peaks while they remain in the continuum limit with rescaled Planck
and Boltzmann constants due to the finite total energy of the system. Specifically, in the Helmholtz ensemble,
the force peak is due to the nucleation of a domain wall, while in the Gibbs ensemble, this peak is always
absent due to force control. We therefore focused on the isometric Helmholtz ensemble, which effectively
describes this nucleation peak (as well as the opposed final coalescence peak). Other important differences
emerge when observing the thermodynamic and continuum limits. Let us begin by discussing the case describ-
ing the two energy wells of the bistable units with two equal elastic constants. In this case, the nucleation (and
coalescence) peak disappears in the thermodynamic limit as n tends to infinity. This can be understood by
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observing that the domain wall energy is finite and localized, while the total energy of the system diverges in
this limit. Therefore, the competition between the domain wall energy and other extensive energy components
cannot manifest. However, in the continuum limit, the total energy of the system remains finite, and, thus,
the nucleation peak also remains finite as n tends to infinity. As a result, we are able to keep the important
difference between the nucleation and propagation observed in the Helmholtz ensemble when the continuum
limit is considered. For this system, the height of the nucleation peak does not depend on temperature in the
continuum limit. Furthermore, in this configuration, we observe that the plateau force – that is, the force that
propagates the domain wall along the chain (also known as the Maxwell force) – also remains constant with
respect to the system temperature.

We then considered the case of two energy wells with different elastic constants. In this case the situation
changes partially. Indeed, we find a plateau that depends on temperature, while the nucleation peak remains
constant and equal to the previously found value. It is interesting to note that in numerous experiments
concerning phase transformations, it has been observed that both the Maxwell force and the nucleation peak
depend on temperature. This fact leads us to the following reasoning. In studying this system, we introduced
the zipper assumption to simplify the analytical treatment. This may have slightly altered the evaluation of the
system’s entropy because we reduced the number of domain walls to one. It is possible that by considering the
exact complete model with an arbitrary number of domain walls induced by thermal fluctuations, a temperature-
dependent nucleation peak would be found. Although some numerical evidence presented, we currently lack
a theoretical proof on this point, which we leave as a future perspective for further exploration.

Our results show that the choice of the ensemble and the model assumptions, such as the zipper approxima-
tion, are essential in capturing realistic thermo-mechanical behaviors. Ultimately, this study highlights that both
continuum and thermodynamic limits, alongside ensemble selection, shape the emergent physical behaviors
of discrete models. These factors are fundamental when modeling systems that bridge microscopic and macro-
scopic scales, offering insights for theoretical approaches for modelling complex physical and mechanical
phenomena.

We believe that the important theoretical differences of the thermodynamic and continuum limits (with
non rescaled constants or with rescaled constants) represent different approximations that should be analyzed
carefully. Indeed, the recalled rescaling properties of the different limits can induce several important conceptual
drawbacks, leading to overestimation or underestimation of important physical quantities characterizing the
phenomena with a resulting non effectiveness of the deduced limits. Since the analysis of these important
aspects is in many case not well exploited in the scientific literature, we think that the results discussed in the
analyzed examples can shed light onto this field.
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Appendix A Complete model without the zipper approximation

In this Appendix we consider the complete model beyond the zipper approximation used in Section 4. Having
in mind the continuum limit of the discrete model, we define, in accordance with the choice made in Section
4.1

l0(Si ) =
{
l, if Si = −1

χl, if Si = +1
, k(Si ) = k0α(Si ) =

{
k0, if Si = −1

αk0, if Si = +1
, Q(Si ) =

{
0, if Si = −1

�E, if Si = +1
(A1)

where χ > 1, l > 0, k0 > 0, α > 0, �E > 0 and the relation between the Young modulus E and the elastic
constant k0 is obtained by introducing the total length of the chain L = nl and the section of the sample A as

k0 = E An

L
. (A2)

Thus, we consider the rescaled energy obtained from the Hamiltonian in Eq.(38)

�̄ = nH

kL2 = H

EAL
= n

2MEAL

n∑

i=1

p2
i +

n∑

i=1

{
1

2

α(Si )

n
[λi − λ0(Si )]

2 + 1

n

nQ(Si )

E AL

}
− J̄

n−1∑

i=1

Si Si+1, (A3)

where λi = (xi − xi−1)/ l, λ0(Si ) = l0(Si )/ l and we defined J̄ = J
E AL .

We notice that if we apply a fixed force f to the right end of the chain, we have to include the work performed
by the force. Thus, it would be necessary to include an energy term of the form

H f = f
L

n

n∑

i=1

λi . (A4)

By a rescaling analogous to the one used for �̃ we obtain

�̄ f = H f

E AL
= f

nE A

n∑

i=1

λi = f

E A
λ. (A5)

Appendix A.1 Fixed force: Gibbs ensemble

In order to introduce the temperature effects, we have to compute the canonical partition in the case of assigned
force f , within the Gibbs ensemble function:

Z̄G( f ) = 1

hn

(
L

n

)n ∑

{Si }

∫

R2n
e−β̄(�̄−�̄ f )dλ1 . . . dλndp1 . . . dpn . (A6)

where we have defined the non dimensional rescaled inverse temperature

β̄ = E AL

kBT
, (A7)

with h the Planck constant, kB the Boltzmann constant and T the absolute temperature.
Following the approach described in [21] we find that

Z̄G( f ) = 1

2 cosh β̄ J̄

(
2πL

√
MEAL

nhβ̄

)n [
λn+ + λn− + e−2β̄ J̄ (λn+ − λn−

) λ+ + λ−
λ+ − λ−

]
, (A8)

http://creativecommons.org/licenses/by/4.0/
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where λ± are the eigenvalues of the transfer matrix T defined as

T =
[

eβ̄ J̄ c− e−β̄ J̄√c+c−

e−β̄ J̄√c+c− eβ̄ J̄ c+

]
, (A9)

and coefficients
c± = c(±1), (A10)

obtained from

c(Si ) =
√

1

α(Si )
e

β̄
n

[
1

2α(Si )

(
f

E A

)2+λ0(Si )
f

E A− nq(Si )
E AL

]

. (A11)

The rescaled Gibbs free energy is

Ḡ = G

EAL
= − 1

β̄
ln Z̄G . (A12)

It is thus possible to obtain the relation between the expectation value of the average stretch and the rescaled
force as

〈λ〉 = −E A
∂Ḡ

∂ f
. (A13)

Appendix A.2 A special case

Let us consider the case where J = 0 and α = 1. Thus, we are neglecting the interface energy and considering
equal stiffness for the two phases. Adapting the general expression of the partition function and Gibbs free
energy, form Eq.(A13) we find that

〈λ〉 = f

E A
+ 1 + χe

β̄
n

f
E A (χ−1)e− β̄

n
q

E AL

1 + e
β̄
n

f
E A (χ−1)e− β̄

n
q

E AL

, (A14)

where we defined q = n�E . We can rephrase this result in terms of the strain 〈ε〉 = (〈xn〉 − L)/L and stress
σ = f/A as

〈ε〉 = σ

E
+ χ − 1

1 + e− β̄
nE

[
σ(χ−1)− q

AL

] . (A15)

We notice that the trivial limit n → ∞ corresponds to a shift of the usual relation with a correction given by
(χ − 1)/2. On the other hand, the same limit, keeping β̄/n as a constant when n → ∞, allows to show the
temperature effects. This behavior will be even more evident in the general case of applied fixed stretch.
It is interesting to rephrase Eq.(A14) to show that it is possible to capture the behaviour of the thermodynamical
limit. By a proper rescaling we see that

〈xn〉
n

= f

k0
+ l + l

χ − 1

1 + e
− 1

kB T [ f l(χ−1)−�E]
. (A16)

Appendix A.3 Fixed extension: Helmholtz ensemble

We consider the case of fixed total elongation of the chain obtained by assigning δ = xn/ l = ∑
i λi = nλ

thus considering the Helmholtz ensemble. As already presented in the main text, the connection between the
ensembles is given by the Fourier transform allowing to obtain the canonical partition function in the Helmholtz
ensemble, starting from Z̄G( f ). We have

Z̄H (δ) = Bn

2π

∫ +∞

−∞
Z̄g(iω)e−i β̄

n
δ
E Aωdω, (A17)
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Fig. 9 (a): applied average stretch versus expectation value of rescaled force for β̄ = 30 and n = {10, 30, 40, 50, 60}. (b): applied
average stretch versus expectation value of rescaled force for n = 30 and β̄ = {30, 50, 80, 100}. In both figures the parameters
are M = 1, E = 1, A = 1, L = 1, α = 1, χ = 5, J = 0.2, q = 3

Fig. 10 Applied average stretch versus expectation value of rescaled force for a constant value of β̄/n = 3 and β̄ =
{30, 90, 120, 150}. The parameters are M = 1, E = 1, A = 1, L = 1, α = 1, χ = 5, J = 0.2, q = 3

where Bn is a constant and we considered the change of variable f → iω. A direct calculation, following
[21], gives

Z̄H (δ) = An

cosh β̄ J̄

⎧
⎪⎪⎨

⎪⎪⎩

[ n
2

]
∑

k=0

(
n

2k

)
Wk + e−2β̄ J̄

[
n−1

2

]

∑

k=0

(
n

2k + 1

)
Wk

⎫
⎪⎪⎬

⎪⎪⎭
, (A18)

where An is a constant, non relevant for the subsequent results, and

Wk =
k∑

j=0

n−2 j∑

s=0

(
k

j

)(
n − 2 j

s

)
e−(s+ j) β̄

n
q

E AL

√
1

αs+ j

√
1

n − s − j + s+ j
α

(−1) j4 j
(

1 − e−4β̄ J̄
) j

× exp

⎧
⎨

⎩− β̄

2n

[δ − (n − s − j) − χ(s + j)]2
(
n − s − j + s+ j

α

)

⎫
⎬

⎭ .

(A19)

The rescaled Helmholtz free energy is

F̄ = F

E AL
= − 1

β̄
ln Z̄H . (A20)

Thus, the relation between the expectation value of the rescaled force and the average stretch is

〈 f 〉
E A

= ∂ F̄

∂λ
= n

∂ F̄

∂δ
. (A21)
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In Figure 9, we show two examples of the force-stretch relation for different values of n for constant β (a)
and the case of n constant for different values of β̄ (b). In Figure 10, we show the force-stretch relation for
increasing values of n with β̄/n kept constant. We observe that the oscillations are suppressed but the initial
peak is still present.
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