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Abstract.

We study the rate-independent decohesion process for a chain linked to a substrate

through a series of breakable elements with a softening mechanism. Such an assumption

describes the realistic case when connecting links can undergo softening transitions

before breaking. For instance, this is a diffuse mechanism observed both in fracture

of soft materials and biological adhesion. The analysis of this model is developed in

the framework of equilibrium statistical mechanics. In order to describe mechanically
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induced detachment of the chain from the substrate both in the cases of hard devices

(prescribed extension) or soft devices (applied force), we consider both Helmholtz and

Gibbs ensembles. In any case, the model can be exactly solved and is characterized

by a phase transition at a given critical temperature, corresponding to the complete

detachment of the chain even without mechanical actions. Interestingly, according to

the ‘size’ of the softened region, we observe two different regimes. In one case (fragile

regime) during the decohesion the measure of the softened region is negligible, whereas

in the other case (ductile regime) we obtain a finite measure of the softened region that

is constant, giving a temperature dependent analytic measure of the process zone.

Submitted to: J. Phys. A: Math. Gen.

1. Introduction

Micro-instabilities play a very important role in several artificial and biological

mechanical systems. On one hand, concerning artificial systems, we can mention the

peeling of a film from a substrate [1–7], the waves propagation in bistabile lattices

[8–12], the energy harvesting through multistable chains [13–15], the plasticity and the

hysteresis in phase transitions and martensitic transformations of solids [16–26] and

the cracks and dislocations nucleation and propagation in materials and alloys [27–35].

On the other hand, micro-mechanical biological phenomena include the conformational

transitions in polymeric and biopolymeric chains [36–49], the attached and detached

states of fibrils in cell adhesion [50–55], the unzipping of macromolecular hairpins

[56–61], the sarcomeres behavior in skeletal muscles [62–68] and the denaturation or

degradation of nucleic acids, polypeptidic chains or other macromolecules of biological

origin [69–78].

In all these physical situations we eventually find a multi-basin energy landscape

and the state of the system can be in stable or meta-stable configurations, identified by

the wells of the energy function. As a matter of fact, these systems are constituted by

a large number of units characterized by two or more physical states. The transitions

between these states or, equivalently, the exploration of the energy landscape, govern

the macroscopic behavior of the whole system and, in particular, its static and dynamic

features.

In a first class of systems, the intrinsic micro-instabilities may describe bistable

units with transitions between one ground state and one metastable state (e.g. for the

conformational folded-to-unfolded transitions in macromolecules or martensitic phase

changes in metallic alloys). These types of transitions are typically reversible, which

means that upon unloading the system follows the same path. Alternatively, in a second

class of systems, investigated in this work, the micro-instabilities can model transitions

between unbroken (attached) and broken (detached) states of breakable links of a system

(e.g. in the unzipping of hairpins, denaturation of macromolecules, fibrillar biological

adhesion, peeling of films and cracks propagation). We underline that this kind of
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Figure 1. Scheme of the cohesion-decohesion process within both the Helmholtz (a)

and the Gibbs (b) ensembles. While in the first case we prescribe the position yN+1 and

we measure the average force 〈f〉, in the second case we apply a force f and we measure

the average position 〈yN+1〉. In both cases, we consider a linear elastic behavior for

the horizontal springs (c) and a breakable response with softening mechanism (d) for

the vertical elements. The energy potentials W and U correspond to the horizontal

and the vertical springs, respectively.

transitions can be reversible or irreversible depending on the considered physical system.

For example, DNA denaturation is typically reversible whereas crack propagation is

typically an irreversible process. In this work, as fully discussed below, since we do not

consider cyclic loading, this difference is not crucial. On the other hand, because we refer

to equilibrium statistical mechanics approach, we may fix our attention on reversible

processes. Of course, the extension to irreversibility could be schematically described

by introducing internal variables such as in [79] and assuming that each broken element

cannot participate to the subsequent process.

The transitions between the states in all previous systems may be strongly

influenced by thermal fluctuations, which can modify the probability of being in a given

state or the passage rate between the neighboring energy wells. In particular entropic

energy terms can be relevant in transition and fracture phenomena of soft materials,

such as biological and rubberlike materials [80,81], or in the case of very low dimensional

scales systems such as in shape memory nanowires [82]. In this context, the correct

framework is the classical statistical mechanics. In particular, the systems exhibiting

switching mechanisms between different energy basins can be studied by means of the

spin variables approach.
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The first theoretical approaches based on this method have been developed to

model the biomechanical response of skeletal muscles [62, 63]. Then, this technique

has been generalized to study different multi-stable systems [65–68], macromolecular

chains [83–89] and phase transformations in nanowires [82]. This approach is based

on the introduction of a series of discrete variables (similar to the spins used to deal

with magnetic systems), which are able to identify the state associated with a given

system unit. In other words, depending on the value of these discrete variables, the

system transits between distinct energy wells possibly characterized by different position,

shape, stiffness and depth. The introduction of the spin variables frequently simplifies

the calculation of the partition function and the analysis of the corresponding averaged

thermodynamic quantities. This technique has been largely exploited to investigate

bistable systems with transitions between ground and metastable states, with important

applications to nanomechanics [82–89]. Similarly, this approach has been considered for

breakable materials with the spin variable distinguishing broken and unbroken units

to study debonding processes in biological materials [27–29, 80]. In this paper, we

introduce an important generalization of the model presented in Ref. [80], by introducing

a softening mechanism in the breakable units of the system. More specifically, we

study a one-dimensional lattice of masses linked by harmonic springs and connected

to a substrate by breakable links subjected to a softening mechanism (see Fig.1). This

geometry has been previously introduced to describe a wide range of phenomena such as

peeling of tapes, adhesion of geckos and denaturation of macromolecules [4,5]. However,

the thermal fluctuations and the softening mechanism have been neglected in these

works, while in the physical systems recalled above they can play a crucial role that is

analyzed in detail in the following development.

From the mechanical point of view, we consider two different kind of loading, which

induce the decohesion of the system from the substrate. The decohesion process can

be induced by either prescribing a given extension of the last element of the chain

(Fig.1a), or by applying an external force to the last unit of the chain (Fig.1b). On

one hand, the first isometric condition corresponds to the Helmholtz ensemble of the

statistical mechanics and can be generated by hard devices. On the other hand, the

isotensional condition corresponds to the Gibbs ensemble of the statistical mechanics

and can be generated by soft devices. Indeed, these two boundary conditions can

be deduced as limiting cases of real loading experiments, when the stiffness of the

device is large (hard device) or is negligible (soft device) as compared with the loaded

system one, respectively [88,89]. From a theoretical point of view, an intriguing problem

concerns the equivalence of the two ensembles in the thermodynamic limit (i.e. for very

large systems) [90–96]. Interestingly, we will prove, in our case, the non-equivalence of

the ensembles in the thermodynamic limit. Moreover, we are able to study the force

necessary to detach the chain from the substrate as function of the temperature and of

the external mechanical action applied to the system. In this context, we obtain a critical

behavior described by specific phase transitions. Also the evolution of the number

of intact, softened and broken elements is thoroughly investigated in both isometric
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and isotensional conditions. To conclude, the aim of this work is to fully analyze the

cohesion-decohesion process with a softening mechanism in both the Helmholtz and

Gibbs ensembles, thus providing a complete picture of the effect of the temperature and

loading type on this prototypical physical system.

The paper is organized as it follows. In Section 2 we define the problem and we

simplify the spin variable methods through the zipper assumption. Then, in Section

3, we introduce the system behavior under isometric condition, and in Section 4, we

analyze its thermodynamic limit. Similarly, in Section 5, we introduce the system

behavior under isotensional condition, and in Section 6, we analyze its thermodynamic

limit. The conclusions (Section 7) and two mathematical Appendices close the paper.

2. Problem statement

Our prototypical system is represented in Fig.1. The horizontal springs of the lattice

are purely harmonic, characterized by the elastic constant k (Fig.1c), with a potential

energy

W (yi+1 − yi) =
1

2
k (yi+1 − yi)2 . (1)

On the other hand, the vertical ones can be in three different states, depending on

their extension yi (Fig.1d). When |yi| < yp, they are intact (elastic constant he), when

yp < |yi| < yb they are softened (elastic constant hp < he), and when |yi| > yb they are

broken (they do not support forces). This scheme represents the softening mechanism of

the breakable bonds. We describe such a behavior in a spin formalism by introducing a

discrete variable si associated to each vertical spring. Hence, we can write the potential

energy of the breakable bonds in the form

U(yi, si) =
si(1 + si)

2

1

2
hey

2
i + (1 + si)(1− si)

(
1

2
hpy

2
i + ∆E

)
− si(1− si)

2

(
1

2
hpy

2
b + ∆E

)
, (2)

where si = +1 corresponds to the intact state, si = 0 corresponds to the softened state,

and si = −1 corresponds to the broken state (i = 1, ..., N). With this assumptions

we have a phase space composed on the N continuous variables yi ∈ R and the N

discrete variables si ∈ {+1, 0,−1}. Therefore, when we calculate the partition function,

we have to integrate over all the continuous variables and to sum over all the discrete

ones. So doing, the switching of the variable si and their statistics at thermodynamic

equilibrium are directly controlled by the statistical ensemble (Helmholtz or Gibbs in

our case) imposed to the system.

The assumption of considering independent spins for all the breakable bonds is the

most rigorous approach to analyze the system behavior. However, on this assumption,

the statistical mechanics of the system under investigation cannot be analytically

developed and also its numerical implementation is quite expensive. Indeed, the

calculation of the partition function is rather prohibitive because of the sum over all the
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possible spins combinations. Nevertheless, since we are studying the cohesion-decohesion

process under an external mechanical action applied to one end point of the system,

suppose the right one, we can simplify the model by assuming to have N − η broken

elements on the right region of the chain, η−ξ softened elements on the central region of

the chain and ξ intact or unbroken elements on the left region of the chain (see Fig.1).

In other words we suppose to have two moving interfaces or domain walls between

the three regions of the chain. This hypothesis strongly reduces the mathematical

complexity of the problem and is reasonable if we work at sufficiently low temperature

and sufficiently large applied mechanical load (either extension or force). Indeed, the set

of the three-state spin variables si is substituted by the two variables η and ξ, assuming

values in the set {0, 1, 2, ..., N}. In this sense, η and ξ can be viewed as multi-valued

spin variables. Moreover, this hypothesis is similar to the one adopted in the so-called

zipper model, largely used to describe the helix-coil transitions in proteins, the gel-sol

transition of thermo-reversible gels, and the melting or denaturation of DNA [97–100].

By implementing this simplified scheme, we deduce a fully analytical solution of both

Helmholtz and Gibbs boundary problems for an arbitrary number N of elements of the

chain, and also in the thermodynamic limit (N →∞).

One of the most important result concerns the analytic expressions of the

temperature dependent debonding force (or system strength) in both cases of

isotensional and isometric loading. This temperature dependent behavior can be

interpreted by observing that the thermal fluctuations may foster the decohesion,

allowing the escape from the energy well shown in Fig.1d. More rigorously, we prove

that this behavior can be explained in terms of a phase transition occurring at a given

critical temperature. In particular, it means that the system can be completely detached

from the substrate for supercritical temperatures even without any external mechanical

action.

This behavior has been observed in several polymeric systems subjected to a

force [101–103]. In particular, several important results have been obtained for the

pulling processes of adsorbed polymers on a surface. They were found by means of

directed or partially directed walk models of lattice polymers adsorbed at a surface under

the influence of an applied force [104, 105]. In this context, a temperature-dependent

critical force has been derived for semi-flexible polymers [106], polymers subject to

an arbitrarily oriented force [107], heterogeneous adsorption surfaces [108], striped

adsorption surfaces [109], and self-avoiding chains [110–112]. From a theoretical point

of view, the main difference between these approaches and ours is that they use lattice

polymers techniques whereas we adopt continuous geometric variables. Interestingly,

the lattice methods can also describe bubbles with different physical states along the

chain, without needing the zipper simplifying assumption. In our case neglecting such

simplifying assumption would lead to a numerical treatment of the subject and we

preferred the analytical clearness of the results. Importantly, in our continuous model

we also introduced the softening mechanism, which is the main topic of this work and

represents, as we show in the following, an important ingredient to distinguish different
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observed regimes in the decohesion behavior.

In our system, although the decohesion force for subcritical temperatures is the

same for both statistical ensembles, they are not equivalent in the thermodynamic limit

since the force-extension curves are different under isometric and isotensional conditions.

Importantly, the softening mechanism in the breakable elements generates a strength-

temperature curve composed of two branches connected, with continuity, at a given

temperature T0. From the physical point of view, this is the temperature at which all

the elements are at least softened. The interesting point is that this transition has been

experimentally observed in the strength behavior of some systems including sapphire

whiskers [30] and a number of high-entropy and medium-entropy alloys [32, 35]. In

these cases, the softening mechanism is originated by the emergence of a population of

dislocations beyond a certain threshold of deformation.

Another fundamental effect induced by the bonds softening is the possibility of

describing a temperature dependent process zone that for enough high temperatures

anticipates the propagation front. As a result we may obtain a transition between

different regimes, experimentally observed for example in polymeric materials [113,114].

Summarizing, the proposed system is particularly important for the following

reasons: (i) once previous crucial assumptions are considered, the model can be

analytically solved in both isometric and isotensional statistical ensembles; (ii) the

solution shows a phase transition at a critical temperature that can be calculated in

closed form; (iii) the studied system manifestly shows the ensembles non-equivalence

in the thermodynamic limit, which is an unusual feature in statistical mechanics;

(iv) finally, the model describe the existence of a two-branch curve for the strength-

temperature behavior, observed in real materials, as a result of a softening anticipating

breaking effects.

3. Hard device: Helmholtz ensemble

We consider the cohesion-decohesion process in the system represented in Fig.1a, where

the detachment is generated by imposing the extension yN+1 of the last element of

the chain. This condition corresponds to the Helmholtz ensemble of the statistical

mechanics and it is obtained in the case of loading with hard devices (with a very

large, ideally infinity, intrinsic elastic constant). We identify the longitudinal springs

with the potential energy W (z) = 1
2
kz2 for any z ∈ R, and the transverse springs

with the potential energy U(y) = 1
2
hey

2 if |y| ≤ yp (intact), U(y) = 1
2
hpy

2 + ∆E if

yp < |y| ≤ yb (softened), and U(y) = 1
2
hpy

2
b +∆E if |y| > yb (broken). The values ±yp of

the extension correspond to the softening points A and B of the breakable spring, where

the elastic constant switch from he to hp < he. The force jump at y = ±yp is given by√
2∆E(he − hp) (see Fig.1d). We simply calculate that yp =

√
2∆E/(he − hp), and we

must always impose the inequality yb > yp, where ±yb are the extensions at the breaking

points C and D of the transverse elements. As anticipated, we assume that a first group

of ξ elements of the chain are intact (i = 1...ξ), a second group of η − ξ elements are
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softened (i = ξ+ 1...η), and a third group of N − η elements are broken (i = η+ 1...N).

These premises allow us to write the total potential energy of the system in the following

form

Φ =
N∑
i=0

W (yi+1 − yi) +
N∑
i=1

U (yi)

=
N∑
i=0

1

2
k (yi+1 − yi)2 +

ξ∑
i=1

1

2
hey

2
i +

η∑
i=1+ξ

[
1

2
hpy

2
i + ∆E

]
+

N∑
i=1+η

[
1

2
hpy

2
b + ∆E

]
, (3)

where the applied extension yN+1 is considered as a parameter and we fix y0 = 0.

The variables belonging to the phase space are the extensions y1,...,yN and the two

configurational numbers ξ and η, characterizing the state of the breakable elements.

For further convenience, the energy function Φ can be further arranged as follows

Φ (y, ξ, η; yN+1) =
1

2
kA(ξ, η)y · y − kyN+1v · y

+
1

2
ky2

N+1 + (N − ξ)∆E + (N − η)
1

2
hpy

2
b , (4)

where we defined the vector y = (y1, ..., yN) ∈ RN , where each component represents the

displacement of an element of the chain, the constant vector v = (0, 0, 0, ..., 0, 1) ∈ RN

and the tridiagonal (symmetric and positive definite) matrix

A(ξ, η) =



a1 −1 0 . . . 0

−1 a2 −1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . aN−1 −1

0 . . . 0 −1 aN


∈MN,N(R). (5)

We observe that ξ and η must fulfill the condition 0 ≤ ξ ≤ η ≤ N . Moreover, this

matrix has all the subdiagonal and superdiagonal elements equal to -1 and the diagonal

elements defined as follows
a1 = ... = aξ = 2 + α,

a1+ξ = ... = aη = 2 + β,

a1+η = ... = aN = 2,

(6)

where we introduced the rescaled elastic constants

α = he/k, β = hp/k. (7)

The algebraic properties of the matrix A(ξ, η) are studied in Appendix A, where we

evaluate the quantities needed to obtain the temperature dependent relations among

the observables during the cohesion-decohesion process.

It is well known that the equilibrium statistical mechanics of a system in contact

with a reservoir at temperature T is described by the canonical distribution. The

expectation values of physical observables can be obtained by evaluating the partition
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function that, within the Helmholtz ensemble, can be written as

ZH (yN+1) =
N∑
η=0

η∑
ξ=0

∫
RN
e
−Φ(y,ξ,η;yN+1)

KBT dy, (8)

where we have to integrate the continuous variables represented by the vector y, and to

sum over the discrete variables ξ and η, describing the state (intact, softened or broken)

of the elements of the chain (0 ≤ ξ ≤ η ≤ N). Using Eq.(4), ZH can be evaluated using

the property of Gaussian integrals∫
RN
e−

1
2
My·yeb·ydy =

√
(2π)N

detM
e

1
2
M−1b·b, (9)

holding for any symmetric and positive definite matrix M. In particular, we can

introduce M = k
KBT
A and b = kyN+1

KBT
v to obtain

ZH (yN+1) =

(
2πKBT

k

)N/2
e
−N ∆E

KBT e
−N kβy2

b
2KBT

N∑
η=0

η∑
ξ=0

Γξ,η(T, yN+1), (10)

where

Γξ,η(T, yN+1) =
e
ξ ∆E
KBT e

η
kβy2

b
2KBT√

detA(ξ, η)
e
−
ky2
N+1

2KBT
{1−A−1

NN (ξ,η)}, (11)

and A−1
NN(ξ, η) = A−1(ξ, η)v · v. We can thus determine the average force associated to

the vertical extension yN+1 of the last element of the chain as [90]

〈f〉 = −KBT
∂ logZH
∂yN+1

= −KBT

ZH

∂ZH
∂yN+1

. (12)

We obtain

〈f〉 =

∑N
η=0

∑η
ξ=0

{
1−A−1

NN(ξ, η)
}

Γξ,η(T, yN+1)∑N
η=0

∑η
ξ=0 Γξ,η(T, yN+1)

kyN+1. (13)

This expression represents the force-extension relation for the system within the

Helmholtz ensemble, or equivalently, under isometric condition. It is also important to

calculate the average value of the number of broken elements 〈N − η〉 and the average

number of softened elements 〈η − ξ〉. These quantities can be directly evaluated through

the expressions

〈N − η〉 =
1

ZH

N∑
η=0

η∑
ξ=0

∫
RN

(N − η)e
−Φ(y,ξ,η;yN+1)

KBT dy =

∑N
η=0

∑η
ξ=0(N − η)Γξ,η(T, yN+1)∑N

η=0

∑η
ξ=0 Γξ,η(T, yN+1)

,

(14)

〈η − ξ〉 =
1

ZH

N∑
η=0

η∑
ξ=0

∫
RN

(η − ξ)e−
Φ(y,ξ,η;yN+1)

KBT dy =

∑N
η=0

∑η
ξ=0(η − ξ)Γξ,η(T, yN+1)∑N

η=0

∑η
ξ=0 Γξ,η(T, yN+1)

.

(15)
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In order to simplify the analysis it is useful to rescale the applied extension yN+1 with

respect to yb (i.e. the extension corresponding to the breaking of the link) and define

the non-dimensional extension

Y = yN+1/yb. (16)

In order to further simplify the formula previously derived we can consider the rescaled

energies

δ =
k y2

b

2KBT
, ϕ =

∆E

KBT
. (17)

Thus, introducing Eqs.(16) and (17) into the expression of 〈f〉, 〈N − η〉 and 〈η − ξ〉, we

obtain

〈F〉 =
〈f〉
kyb

=
Y
ZH

N∑
η=0

η∑
ξ=0

1−A−1
NN(ξ, η)√

detA(ξ, η)
eϕξeβδηe−δY

2{1−A−1
NN (ξ,η)}, (18)

〈N − η〉 =
1

ZH

N∑
η=0

η∑
ξ=0

N − η√
detA(ξ, η)

eϕξeβδηe−δY
2{1−A−1

NN (ξ,η)}, (19)

〈η − ξ〉 =
1

ZH

N∑
η=0

η∑
ξ=0

η − ξ√
detA(ξ, η)

eϕξeβδηe−δY
2{1−A−1

NN (ξ,η)}, (20)

where we have used Eqs.(10) and (11) to define the (rescaled) partition function

ZH(Y) =
N∑
η=0

η∑
ξ=0

eϕξeβδη√
detA(ξ, η)

e−δY
2{1−A−1

NN (ξ,η)}. (21)

Using the properties of A(ξ, η) and the relations in Eqs.(A.18) and (A.19), it is possible

to find explicit expressions for detA(ξ, η) and A−1
NN(ξ, η) so to obtain the behavior of

the relevant physical quantities of the system.

Previous results are represented in Fig.2, where we study the dependence of the

relevant quantities on temperature and size of the system. In particular, we plotted

〈F〉, 〈ξ〉, 〈η − ξ〉 and 〈N − η〉 versus the applied rescaled extension Y (changing the

temperature) for two different cases: the first one concerns a short chain with N = 5

(panel a), and the second one a larger chain with N = 50 (panel b). For N = 5

(panel a), and for low values of the temperature, we easily identify the partial and

complete rupture occurrences (see the peaks and/or steps in the curves of 〈F〉, 〈ξ〉,
〈η − ξ〉 and 〈N − η〉). However, for larger values of the temperature, the curves are

smoother because of the increasing thermal fluctuations. We also observe that the

detachment of the elements of the chain occurs in a progressive way in response to the

increasing extension Y . This is a specific feature of the Helmholtz ensemble, typically

observed in the folding/unfolding process of bistable macromolecules stretched by hard

devices [83–86,88, 89]. For N = 50 (panel b), we can identify two important properties

of the detachment process in large systems: first, increasing Y the curve approximately

exhibits a temperature dependent plateau; second, during the decohesion process the
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Figure 2. From top to bottom: force-extension curve and distribution of intact,

softened and broken elements during the detachment of a film from a substrate for the

Helmholtz ensemble (hard device, applied extension to the last element of the chain).

Panel a): we considered N = 5, and 10 values of KBT from 0.5 to 5 (a.u.). Panel

b): we considered N = 50, and 10 values of KBT from 2 to 20 (a.u.). The adopted

parameters follows: he = 20, hp = 15, ∆E = 2, yb = 2yp and k = 5 (all in arbitrary

units).

number of softened elements is temperature dependent and approximately constant

for small values of temperature in a certain range of Y . Although these features can

be observed in the panel b) of Fig.2 only for low values of the temperature, we will

deduce in the thermodynamic limit (i.e., when N → ∞) that this behavior can be

explained in terms of a phase transition (see Section 4). The existence of a constant

finite softened domain shows the possibility of analytically describing the existence of

a process zone regulating the advancing of the decohesion front as observed in cohesive

fracture phenomena [113]. Interestingly, the size of the process zone increases with

temperature, so that in accordance with the experimental behavior the decohesion is

“fragile” at low temperature and “ductile” at higher values of the temperature [114].
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4. Thermodynamic limit within the Helmholtz ensemble

We study here the thermodynamic limit within the Helmholtz ensemble, defined by a

very large number of elements in the chain (macroscopic limit valid for large systems).

To this aim we have to study the behavior of Eqs.(18), (19), (20), and (21) for

N →∞. In order to perform the analysis in this limit, we formally substitute the sums

appearing in these expressions by integrals. In particular, we will use the approximation∑n
χ=0 φ(χ) '

∫ n
0
φ(χ)dχ for an generic function φ(χ). A better approximation could be

adopted by using the Euler-McLaurin formula [115]. However, this approach, discussed

in Ref. [80], is not necessary for the purposes of the present analysis. Moreover, due to

the fact that we are considering the case of N large, it is possible to use the simplified

expressions of detA(ξ, η) and A−1
NN(ξ, η), obtained in Eqs.(A.22) and (A.23).

From Eqs.(18) and (21) we get the following explicit result for the force-extension

relation

〈F〉 = Y

∫ N
0
e(βδ−

1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1

(
N − η + β0

β0−1

)−3/2

dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ∫ N

0
e(βδ−

1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1

(
N − η + β0

β0−1

)−1/2

dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

, (22)

where

α0 =
2 + α +

√
α2 + 4α

2
, β0 =

2 + β +
√
β2 + 4β

2
. (23)

To better understand the behavior of the force-extension response for large values

of N , we firstly perform the integration on the variable ξ, and then apply the change of

variable N − η + β0/(β0 − 1) = s, delivering the following result

〈F〉 = Y

∫ β0
β0−1

+N

β0
β0−1

[
e

(
ϕ+ 1

2
log

β0
α0

)(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s3/2∫ β0
β0−1

+N

β0
β0−1

[
e

(
ϕ+ 1

2
log

β0
α0

)(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s1/2

. (24)

The behavior of the previous expression depends on the sign of the quantity ϕ+ 1
2

log β0

α0
,

appearing in the exponential term within the square brackets in both numerator and

denominator. From Eq.(17) we have

Θ = ϕ+
1

2
log

β0

α0

≷ 0 ⇒ T ≶
2∆E

KB log α0

β0

:= T0, (25)

where we have defined the temperature T0, corresponding to a transition in the system

behavior (we will prove that all elements are at least softened for T > T0). If T < T0

and we consider large values of N (thermodynamic limit), the exponential term in the

square brackets of Eq.(24) is dominant. On the other hand, if T > T0 the exponential

term in the square brackets of Eq.(24) is negligible for large values of N . Thus, for

N →∞ we obtain

〈F〉 = Y

∫ +∞
β0
β0−1

e−(βδ− 1
2

logα0+ϕ)se−
1
s
δY2 ds

s3/2∫ +∞
β0
β0−1

e−(βδ− 1
2

logα0+ϕ)se−
1
s
δY2 ds

s1/2

, for T < T0 (26)
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and

〈F〉 = Y

∫ +∞
β0
β0−1

e−(βδ− 1
2

log β0)se−
1
s
δY2 ds

s3/2∫ +∞
β0
β0−1

e−(βδ− 1
2

log β0)se−
1
s
δY2 ds

s1/2

, for T > T0. (27)

In order to ensure the convergence of the integrals in Eqs.(26) and (27) it is necessary

that the following conditions hold

βδ − 1

2
logα0 + ϕ > 0 if T < T0, (28)

βδ − 1

2
log β0 > 0 if T > T0. (29)

These conditions have a physical interpretation that will discussed in the following.

The integrals appearing in Eqs.(26)-(27) can be evaluated in terms of error functions

as discussed in Appendix B. To simplify the form of the results, we define

λ1 = βδ − 1

2
logα0 + ϕ, λ2 = βδ − 1

2
log β0, c =

β0

β0 − 1
. (30)

We thus obtain

〈F〉 =

√
λ1

δ

 2

1 + e4Y
√
λ1δ

1−erf
(√

δ
c
Y+
√
λ1c
)

1+erf
(√

δ
c
Y−
√
λ1c
) − 1

 for T < T0, (31)

〈F〉 =

√
λ2

δ

 2

1 + e4Y
√
λ2δ

1−erf
(√

δ
c
Y+
√
λ2c
)

1+erf
(√

δ
c
Y−
√
λ2c
) − 1

 for T > T0. (32)

It is possible to see that the quantities in the brackets in Eqs.(31) and (32) converge to

1 when Y → ∞. Thus, the expectation value of the force 〈F〉 is characterized by an

asymptotic force 〈F〉as for large values of Y (coherently with Fig.2b). In particular, we

get the following asymptotic values

〈F〉as =

√
λ1

δ
=

√
βδ − 1

2
logα0 + ϕ

δ
=

√
2∆E

ky2
b

+
hp
k

√
1− T

Tb
for T < T0, (33)

where

Tb =
2∆E + hpy

2
b

KB logα0

=
2∆E + hpy

2
b

KB log 2+α+
√
α2+4α

2

, (34)

and

〈F〉as =

√
λ2

δ
=

√
βδ − 1

2
log β0

δ
=

√
hp
k

√
1− T

Tc
for T > T0, (35)

where

Tc =
hpy

2
b

KB log β0

=
hpy

2
b

KB log
2+β+
√
β2+4β

2

. (36)
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The parameters Tb and Tc represent two critical temperatures for the system with

〈F〉as = 0 in Eqs.(33) and (35), respectively. As we will discuss in detail, it means

that all the bonds are certainly broken for supercritical temperatures. These results

also show that the conditions in Eq.(28), introduced to ensure the convergence of the

integrals, correspond to requiring that the system is working at subcritical temperatures.

It is possible to observe the emergence of two different cases depending on the parameters

of the system. From Eq.(25) and (36), we find

hpy
2
b

2∆E

T0

Tc
=

log β0

logα0 − log β0

. (37)

As a consequence, we have

hpy
2
b

2∆E
≶

log β0

logα0 − log β0

⇒ Tc ≶ T0. (38)

We remark that this analysis is valid if yb > yp, i.e. if the softening region exists. It

is possible to verify the continuity of 〈F〉as for T = T0 from Eqs.(33) and (35). As a

matter of fact, from the definitions of T0, Tb and Tc in Eqs. (25), (34) and (36) one can

verify the equality√
2∆E

ky2
b

+
hp
k

√
1− T0

Tb
=

√
hp
k

√
1− T0

Tc
. (39)

Moreover, from this equality we obtain that

ky2
b

2∆E
=
Tc
T0

Tb − T0

Tc − Tb
. (40)

Thus, for the case with Tc > T0 (i.e. when T0 represent the crossover temperature for the

force-extension curves) in Eq.(38), the positivity of ky2
b/2∆E implies that Tc > Tb > T0.

This scenario is illustrated in Fig.3, where Eq.(18) is compared, for a large value

of N , with Eqs.(33) and (35), corresponding to the thermodynamic limit. In order to

show the effect of the condition in Eq.(38), we have fixed the values of the constitutive

parameters but different values of the breaking extension yb in the top and bottom panels

(smaller value in top panels). This choice is reflected by the different size of the softening

region of the potential energy U in panels b and e. In panel a and d we plotted the

force-extension curves from Eq.(18) for increasing temperatures and compared it with

the proper asymptotic values obtained from Eqs.(33) and (35). The good agreement

observed proves that the theoretical procedure adopted to analyze the thermodynamic

limit is correct and that the decreasing of the asymptotic force when the temperature

increases is explained by the presence of a phase transition. The critical point depends

on the constitutive parameters of the system. When
hpy2

b

2∆E
< log β0

logα0−log β0
, we have that

T0 > Tc and, thus, the force-extension curve follows Eq.(33). As a consequence, the

phase transition appears at the critical temperature Tb. On the other hand, when
hpy2

b

2∆E
> log β0

logα0−log β0
, we have T0 < Tc. In this case, the force-extension follows Eq.(33)

until the temperature reaches the value T0; when temperature is increased, the behavior

of the force is described by Eq.(35) and the phase transition occurs at the critical
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Figure 3. Behavior of the asymptotic force versus the temperature for a small

(panels a, b, and c) and a large (panels d, e, and f) value of the breaking extension

yb. Panels a and d: comparison between Eq.(18) with N = 300 (colored curves) and

Eqs.(33) (black straight lines) and (35) (red straight lines) at the thermodynamic limit

(in panel a, we used 8 values of T between 0 and Tb; in panel d, we used 10 values

of T between 0 and Tc). Panels b and e: potential energy of the adopted breakable

elements with different yb (yb = 1.5yp in panel b and yb = 3.5yp in panel e). Panels

c and f: asymptotic force versus temperature (the green lines corresponds to Eqs.(33)

and (35); the circles to the colored curves of panels a and d for Y = 10). The adopted

parameters follows: he = 20, hp = 1, ∆E = 2, k = 5, and KB = 1 (all in arbitrary

units).

temperature Tc. From panels c and f of Fig.3, we deduce that the force needed to obtain

the complete detachment of the system monotonically decreases to zero for increasing

values of the temperature. This process terminates at T = Tb in panel c, and at T = Tc
in panel f. It means that the thermal fluctuations are able to promote the fracture of

the breakable elements, and that the critical temperatures Tb and Tc are sufficient to

induce complete denaturation of the system even if the resulting force experienced by

the system is zero. This phenomenon can be better clarified by studying the behavior of

〈N − η〉 (average number of broken elements) and 〈η − ξ〉 (average number of softened

elements).

We will evaluate 〈N − η〉 and 〈η − ξ〉 in the limiting case of N →∞. By performing

the analysis used for the force-extension relation, starting from Eqs.(19), (20) and (21),
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we obtain

〈N − η〉 =

∫ N
0

(N − η)e(βδ−
1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1 dη(

N−η+
β0
β0−1

)1/2

∫ η
0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

∫ N
0
e(βδ−

1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1 dη(

N−η+
β0
β0−1

)1/2

∫ η
0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

, (41)

〈η − ξ〉 =

∫ N
0

∫ η
0

(η − ξ)e
(
ϕ+ 1

2
log

β0
α0

)
ξ
e(βδ−

1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1 dξdη(

N−η+
β0
β0−1

)1/2

∫ N
0

∫ η
0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
e(βδ−

1
2

log β0)ηe
−δY2 1

N−η+
β0
β0−1 dξdη(

N−η+
β0
β0−1

)1/2

. (42)

After the evaluation of the integral on ξ, we apply the change of variable N − η +

β0/(β0 − 1) = s. We get

〈N − η〉 =

∫ β0
β0−1

+N

β0
β0−1

(
s− β0

β0−1

)[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s1/2∫ β0
β0−1

+N

β0
β0−1

[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s1/2

, (43)

〈η − ξ〉 =

∫ β0
β0−1

+N

β0
β0−1

[
s−N − β0

β0−1
+ 1

Θ
e

Θ
(
N−s+ β0

β0−1

)
− 1

Θ

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s1/2∫ β0
β0−1

+N

β0
β0−1

[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)se−

1
s
δY2 ds

s1/2

, (44)

where we used Θ = ϕ+ 1
2

log β0

α0
defined in Eq.(25). As for the force-extension relation,

in the limit with N → ∞ we can consider separately the cases with Θ > 0 (T < T0,

exponential term in the brackets is dominant) and Θ < 0 (T > T0, exponential term in

the brackets is negligible). As a result, we get

T < T0 :


〈N − η〉 =

∫+∞
β0
β0−1

(
s− β0

β0−1

)
e
−(βδ− 1

2 logα0+ϕ)se− 1
s δY

2 ds

s1/2∫+∞
β0
β0−1

e
−(βδ− 1

2 logα0+ϕ)se− 1
s δY

2 ds

s1/2

,

〈η − ξ〉 = 1
Θ

= 1

ϕ+ 1
2

log
β0
α0

.

(45)

T > T0 :


〈N − η〉 =

∫+∞
β0
β0−1

(
s− β0

β0−1

)
e
−(βδ− 1

2 log β0)se− 1
s δY

2 ds

s1/2∫+∞
β0
β0−1

e
−(βδ− 1

2 log β0)se− 1
s δY

2 ds

s1/2

,

〈η − ξ〉 → +∞.

(46)

We observe that the average number of softened elements 〈η − ξ〉 is independent of

Y and is varying only with the temperature T for T < T0. It means that the two domain

walls between intact and softened elements, and between softened and broken elements,

move simultaneously with increasing Y conserving a constant distance between them

(which means a constant number of softened elements). On the other hand, the value

of 〈η − ξ〉 is divergent to infinity when T > T0. This divergence means that we have
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no intact elements and the vertical springs can be either softened or broken. Therefore,

the transition at the temperature T0 can be characterized by the partial breaking of all

the elements of the chain induced by the thermal fluctuations.

The two integrals appearing in Eqs.(45) and (46) can be calculated by using the

formulas given in Appendix B. Using the definitions of λ1, λ2 and c in Eq.(30), we obtain

〈N − η〉 =


Υ(λ1)
Ψ(λ1)

− c for T < T0,

Υ(λ2)
Ψ(λ2)

− c for T > T0,

(47)

where the functions Υ(λ) and Ψ(λ) are defined as follows

Υ(λ) =
1

2

√
π

λ

{
e2Y
√
λδ

[
1− erf

(√
δ

c
Y +
√
λc

)]

+e−2Y
√
λδ

[
1 + erf

(√
δ

c
Y −
√
λc

)]}
, (48)

Ψ(λ) =
1

4λ

√
π

λ

{
e2Y
√
λδ
(

1− 2Y
√
λδ
)[

1− erf

(√
δ

c
Y +
√
λc

)]

+e−2Y
√
λδ
(

1 + 2Y
√
λδ
)[

1 + erf

(√
δ

c
Y −
√
λc

)]}
+

√
c

λ
e−λce−

δ
c
Y2

.(49)

We can evaluate the asymptotic behavior of 〈N − η〉 for large values of Y for both

T < T0 and T > T0. By means of previous results, and using the asymptotic expression

1− erf(x) ∼ e−x
2
/(x
√
π) for x→∞, we easily get the asymptotic formulas for Y → ∞

〈N − η〉∼


Y
√

δ
λ1

for T < T0,

Y
√

δ
λ2

for T > T0.

(50)

The final asymptotic result can be therefore written as

T < T0 :


〈N − η〉 ∼ Y

√
δ

βδ− 1
2

logα0+ϕ
= Y√

2∆E

ky2
b

+
hp
k

√
1− T

Tb

for Y → ∞,

〈η − ξ〉 = 1

ϕ+ 1
2

log
β0
α0

= KBT
∆E

1
1− T

T0

,
(51)

T > T0 :

 〈N − η〉 ∼ Y
√

δ
βδ− 1

2
log β0

= Y√
hp
k

√
1− T

Tc

for Y → ∞,

〈η − ξ〉 → +∞.
(52)

This result shows that the increasing of the broken elements is linear with Y (for Y large),

confirming the progressive detachment process induced by the Helmholtz (isometric)

condition. We can combine Eqs.(33) and (35) with Eqs.(51) and (52) to obtain the

simple relation 〈N − η〉 〈F〉as = Y , which is valid for any temperature T , and for large

values of the extension Y . This relation, rewritten in terms of the real physical quantities

for large yN+1, reads

〈f〉as =
k

〈N − η〉
yN+1. (53)
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Figure 4. Behavior of the main quantities describing the system in the

thermodynamic limit versus the temperature for a small (panels a, where Tc < Tb < T0)

and a large (panels b, where T0 < Tb < Tc) value of the breaking extension yb
(yb = 1.5yp in panel a and yb = 3.5yp in panel b). In each case, we plotted the

asymptotic or critical force 〈F〉as given in Eqs.(33) and (35), the average number of

softened elements 〈η − ξ〉, and the average number of broken elements divided by the

applied extension 〈N − η〉 /Y. These plots correspond to the results given in Eqs.(51)

and (52). The shaded areas correspond to supercritical temperatures. The adopted

parameters follows: he = 20, hp = 1, ∆E = 2, k = 5, and KB = 1 (all in arbitrary

units).

The behavior of the system within the Helmholtz ensemble in the thermodynamic

limit is summarized in Fig.4, where we plot the most important quantities versus the

temperature by considering the two cases identified in Eq.(38). In particular, we fix

the values of the costitutive parameters of the system but consider two different values

of yb. For small values of yb (left panels) the temperature T0 is larger than Tb and Tc.

Therefore only the equations that are valid for T < T0 must be considered (panel a).

On the other hand, for larger values of yb (right panels), T0 is smaller that Tb and Tc:

thus, the force-extension exhibits different regimes for T < T0 and T > T0 (panel b).
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Figure 5. Phase diagrams for the system in the thermodynamic limit under

Helmholtz isometric condition for the case with Tc < Tb < T0 (panel a, where

yb = 1.5yp) and for the case with T0 < Tb < Tc (panel b, where yb = 3.5yp). We

can identify three possible phases for the system: L corresponds to a phase with all

the elements broken;M corresponds to a combination of softened and broken elements;

finally, N corresponds to a mix of intact, softened and broken elements. The adopted

parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all in arbitrary

units).

In panel a (Tc < Tb < T0), the asymptotic force 〈F〉as shows a monotone decreasing

behavior terminating at the critical temperature Tb corresponding to a phase transition.

The number of the softened elements 〈η − ξ〉 is constant with respect to Y but is an

increasing function of the temperature until the point A, corresponding to the phase

transition. It means that the region of softened elements exhibits a fixed length and

is gradually moved leftward by the increasing applied extension Y . The extension of

this region represents the temperature dependent analytic measure of the process zone.

Coherently, the number of broken elements 〈N − η〉 is linearly increasing with Y and

nonlinearly increasing with T (for this reason we plotted the ratio 〈N − η〉 /Y which

is only temperature dependent). We observe that 〈N − η〉 /Y diverges at the critical

temperature Tb. Therefore, 〈N − η〉 → ∞ for T → Tb for any value of the extension Y
(for large values of Y). It means that the phase transition can be explained through the

total detachment of the system induced by the strong thermal fluctuations. In panel b

(T0 < Tb < Tc), the asymptotic force 〈F〉as is a decreasing function of the temperature

with a first transition at the point B (temperature T0) and a second final transition at

temperature Tc, where we have the complete detachment. The transition at T0 can be
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explained by observing the behavior of the number of softened elements 〈η − ξ〉 versus

the temperature. We see that 〈η − ξ〉 → ∞ for T → T0, proving that all elements

are (at least) softened for temperatures larger than T0. Therefore, we have the first

transition at T0 where all the elements are softened, and a second transition at Tc where

all the elements are broken. This is coherent with the plot of 〈N − η〉 /Y versus the

temperature, from which we deduce that 〈N − η〉 → ∞ for T → Tc for any value of

the extension Y . The point C shows the slope transition in the evolution of the broken

elements at the temperature T0. To complete the description of Fig.4, we underline

that the vertical dashed lines in all panels are useful to easily identify the characteristic

temperatures Tc, Tb and T0. Moreover, the dashed curved lines correspond to solutions

that are not relevant to the behavior of the system. More specifically, they correspond

to Eqs.(35) and (52) in panel a and to Eqs.(33) and (51) in panel b.

To conclude, the behavior of the system under isometric condition can be usefully

described by analyzing the phase diagrams represented in Fig.5. Two cases are

described: Tc < Tb < T0 (panel a); T0 < Tb < Tc (panel b). Observe that, since the

system is symmetric (bilateral), in the figure we considered both positive and negative

values of Y . We can identify three possible phases for the system: L corresponds to all

the elements broken;M corresponds to a combination of softened and broken elements;

finally, N corresponds to a mix of intact, softened and broken elements. These phases

are separated by vertical lines corresponding to the phase transitions. Therefore, the

phase diagrams explain clearly that, for Helmholtz isometric condition, we have no finite

values of the prescribed extension Y able to induce the whole system detachment for

subcritical temperatures. We will see that the Gibbs isotensional condition leads to a

different behavior.

5. Soft device: Gibbs ensemble

In this Section we determine the properties of the detachment process realized within

the Gibbs ensemble, which corresponds to a soft device able to apply a force to the last

element of the chain. If we consider a force f applied to the last element with vertical

extension yN+1, the total potential energy of the system is given by Φ−fyN+1, where Φ

is the Helmholtz potential energy defined in Eq.(4). It follows that the Gibbs partition

function is given by the Laplace transform of the Helmholtz partition function [92].

Moreover, the knowledge of the Gibbs partition function allows the calculation of the

average extension of the last element of the chain by using classical thermodynamic

relations [90]. We can introduce the non-dimensional quantities (analogous the those

used in Section 3)

F =
f

kyb
, 〈Y〉 =

〈yN+1〉
yb

, (54)
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representing the rescaled applied force and average extension, respectively. Thus, we

can write the relations

ZG(F) =

∫ +∞

−∞
ZH(Y)e2δFYdY , (55)

〈Y〉 =
1

2δ

1

ZG(F)

∂ZG(F)

∂F
. (56)

We can easily determine the Gibbs partition function through Eqs.(21) and (55) as a

gaussian intregral. We obtain (up to a multiplicative constant)

ZG(F) =
N∑
η=0

η∑
ξ=0

eϕξeβδη√
detA(ξ, η)

{
1−A−1

NN(ξ, η)
}e δF2

1−A−1
NN

(ξ,η) , (57)

where δ and ϕ have been defined in Eq.(17). By applying Eq.(56), we directly obtain

the force-extension relation as

〈Y〉 =
F
ZG

N∑
η=0

η∑
ξ=0

eϕξeβδη√
detA(ξ, η)

{
1−A−1

NN(ξ, η)
}3/2

e
δF2

1−A−1
NN

(ξ,η) . (58)

We can finally calculate the average value of the number of broken elements 〈N − η〉
and the average number of softened elements 〈η − ξ〉, eventually obtaining

〈N − η〉 =
1

ZG

N∑
η=0

η∑
ξ=0

N − η√
detA(ξ, η)

{
1−A−1

NN(ξ, η)
}eϕξeβδηe δF2

1−A−1
NN

(ξ,η) , (59)

〈η − ξ〉 =
1

ZG

N∑
η=0

η∑
ξ=0

η − ξ√
detA(ξ, η)

{
1−A−1

NN(ξ, η)
}eϕξeβδηe δF2

1−A−1
NN

(ξ,η) . (60)

An example of application of these results can be found in Fig.6, where we plotted

〈Y〉, 〈ξ〉, 〈η − ξ〉 and 〈N − η〉 versus the applied force F (using the temperature as a

parameter) for two different cases: the first one concerns a short chain with N = 5

(panel a), and the second one a larger chain with N = 50 (panel b). Concerning the

case with N = 5, it is interesting to remark the differences between the Gibbs and

the Helmoltz ensemble. We therefore compare the panel a) of Fig.2 with the panel

a) of Fig.6. While the detachment of the elements is quite simultaneous within the

Gibbs ensemble (cooperative process occurring at a given threshold force), the same

phenomenon is sequential within the Helmhltz ensemble, where we observe a gradual

and progressive bonds breaking (non-cooperative response). This different behavior

is well known in the context of the stretching of macromolecules by means of force-

spectroscopy techniques [83–86, 88, 89]. Another differences concerns the fact that in

the Gibbs ensemble we are not able to identify peaks or steps in the curves of Fig.6,

corresponding to the single breaking occurrences. Also this point is clearly related to

the cooperative response characterizing the Gibbs ensemble. If we look at the case with

N = 50 (panel b of Fig.6), we can see a well identified force plateau corresponding

to the cooperative detachment of the elements. This force plateau is temperature
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Figure 6. Force-extension curve and distribution of intact, softened and broken

elements during the detachment of a film from a substrate for the Gibbs ensemble

(soft device, applied force to the last element of the chain). Panel a): we considered

N = 5, and 10 values of KBT from 0.5 to 5 (a.u.). Panel b): we considered N = 50,

and 10 values of KBT from 2 to 20 (a.u.). The adopted parameters follows: he = 20,

hp = 15, ∆E = 2, yb = 2yp and k = 5 (all in arbitrary units).

dependent, as already observed within the Helmholtz ensemble. Moreover, we also

deduce that the number of softened elements remains approximately constant and only

temperature dependent before the complete rupture of the elements. These properties of

the detachment process will be thoroughly analyzed in the next Section, by introducing

the thermodynamic limit of the Gibbs ensemble.

6. Thermodynamic limit within the Gibbs ensemble

In this Section, we analyze the thermodynamic limit within the Gibbs ensemble and

consider the behaviour of Eqs.(57), (58), (59), and (60) for N → ∞. Following the

procedure shown in Section 4 and using the formula in Appendix A, Eqs.(57) and (58),
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give the force-extension response of the system within the Gibbs ensemble as

〈Y〉 = F

∫ N
0

(
N − η + β0

β0−1

)
e(βδ−

1
2

log β0)ηe
δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ∫ N

0
e(βδ−

1
2

log β0)ηe
δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

, (61)

where α0 and β0 have been defined in Eq.(23). After the integration over ξ we can apply

the change of variable N − η + β0/(β0 − 1) = s thus obtaining

〈Y〉 = F

∫ β0
β0−1

+N

β0
β0−1

[
e

(
ϕ+ 1

2
log

β0
α0

)(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)seδF

2ss ds

∫ β0
β0−1

+N

β0
β0−1

[
e

(
ϕ+ 1

2
log

β0
α0

)(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0)seδF2sds

. (62)

As before, this expression depends on the sign of the quantity Θ = ϕ+ 1
2

log β0

α0
. In the

limit with N → ∞ we consider separately the cases with Θ > 0 (T < T0, exponential

term in the brackets is dominant) and Θ < 0 (T > T0, exponential term in the brackets

is negligible). We eventually get (for N →∞)

〈Y〉 = F

∫ +∞
β0
β0−1

e−(βδ− 1
2

logα0+ϕ)seδF
2ssds∫ +∞

β0
β0−1

e−(βδ− 1
2

logα0+ϕ)seδF2sds
for T < T0, (63)

〈Y〉 = F

∫ +∞
β0
β0−1

e−(βδ− 1
2

log β0)seδF
2ssds∫ +∞

β0
β0−1

e−(βδ− 1
2

log β0)seδF2sds
for T > T0. (64)

Finally, we obtain the force-extension formulas for N → ∞ under the same conditions

for the Helmholtz ensemble (see Eqs.(28) and (29)) as

〈Y〉 = F
(

β0

β0 − 1
+

1

βδ − 1
2

logα0 + ϕ− δF2

)
for T < T0, (65)

〈Y〉 = F
(

β0

β0 − 1
+

1

βδ − 1
2

log β0 − δF2

)
for T > T0. (66)

We remark that these expressions reveal an asymptotic behavior corresponding to a

force plateau, as already observed within the Helmholtz ensemble. In particular, the

values of the asymptotic force are the same for the two statistical ensembles. Indeed, for

T < T0, we deduce from Eq.(65) that the asymptotic force is solution of the quadratic

equation βδ − 1
2

logα0 + ϕ − δF2 = 0, which is exactly solved by the Helmholtz result

stated in Eq.(33). Similarly, for T > T0, we deduce from Eq.(66) that the asymptotic

force is solution of the quadratic equation βδ − 1
2

log β0 − δF2 = 0, which is exactly

solved by the Helmholtz result stated in Eq.(35). While the asymptotic forces are the

same for the Helmholtz and Gibbs ensembles, it is not difficult to verify that the shape

of the force-extension response is sensibly different for the two ensembles. This can be

done by comparing the analytical solutions for the force-extension response obtained

at the thermodynamic limit in Eqs.(31)-(32) (Helmholtz) and Eqs.(65)-(66) (Gibbs).

It means that the two statistical ensembles are nonequivalent in the thermodynamic
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limit. For instance, this point can be shown by calculating the slopes of the force-

extensions curves at the origin (for small forces and extensions) for both ensembles and

by observing that these quantities are different. More details, concerning the case of the

adhesion-decohesion process without the softening mechanism, can be found in [80].

To complete the analysis, we determine the average value of the number of broken

elements 〈N − η〉 and the average number of softened elements 〈η − ξ〉 in the limiting

case of N → ∞. To this aim, we apply the same procedure already used for the force-

extension relation. From Eqs.(59) and (60), combined with the partition function given

in Eq.(57), we obtain

〈N − η〉 =

∫ N
0

(N − η)e(βδ−
1
2

log β0)ηe
δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ∫ N

0
e(βδ−

1
2

log β0)ηe
δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

, (67)

〈η − ξ〉 =

∫ N
0
e(βδ−

1
2

log β0)ηe
−δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
(η − ξ)e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ∫ N

0
e(βδ−

1
2

log β0)ηe
−δF2

(
N−η+

β0
β0−1

)
dη
∫ η

0
e

(
ϕ+ 1

2
log

β0
α0

)
ξ
dξ

. (68)

After the integration over ξ and the change of variable N − η + β0/(β0 − 1) = s we

obtain

〈N − η〉 =

∫ β0
β0−1

+N

β0
β0−1

(
s− β0

β0−1

)[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0−δF2)sds

∫ β0
β0−1

+N

β0
β0−1

[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0−δF2)sds

, (69)

〈η − ξ〉 =

∫ β0
β0−1

+N

β0
β0−1

[
−N + s− β0

β0−1
+ 1

Θ
e

Θ
(
N−s+ β0

β0−1

)
− 1

Θ

]
e−(βδ− 1

2
log β0−δF2)sds

∫ β0
β0−1

+N

β0
β0−1

[
e

Θ
(
N−s+ β0

β0−1

)
− 1

]
e−(βδ− 1

2
log β0−δF2)sds

, (70)

where, as in Section 4, we considered Θ = ϕ + 1
2

log β0

α0
. To complete the analysis, we

consider the cases with Θ > 0 (T < T0, exponential term in the brackets is dominant)

and Θ < 0 (T > T0, exponential term in the brackets is negligible). We get

T < T0 :

 〈N − η〉 = 1
βδ− 1

2
logα0+ϕ−δF2 ,

〈η − ξ〉 = 1
Θ

= 1

ϕ+ 1
2

log
β0
α0

,
(71)

T > T0 :

{
〈N − η〉 = 1

βδ− 1
2

log β0−δF2 ,

〈η − ξ〉 → +∞.
(72)

These results can be used to understand the behavior of the detachment process

within the Gibbs ensemble in the thermodynamic limit as shown in Figs.7 and 8. In

both figures, we have fixed the costitutive parameters of the model but the values of

yb (small value in the left panel, larger value in the right panel). We recall that in the

Helmholtz ensemble we obtained two different responses depending on the parameters,

as stated in Eq.(38). In panel a of Fig. 7 and Fig.8 we show the results for the case
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Figure 7. Force-extension curve and distribution of softened and broken elements

during the detachment of a film from a substrate with a soft device (Gibbs ensemble)

in the thermodynamic limit. Panel a: comparison of Eqs.(57), (58), (59), and (60)

with N = 250 (green dashed curves) and Eqs.(65), (66), (71), and (72) obtained for

N →∞ (black solid curves) for the case with Tc < Tb < T0 (yb = 1.5yp). We adopted

6 values of T between 0.4 and 2.4. Panel b: comparison of Eqs.(57), (58), (59), and

(60) with N = 250 (green dashed curves) and Eqs.(65), (66), (71), and (72) obtained

for N → ∞ (black solid curves for T < T0 and red solid curves for T > T0) for the

case with T0 < Tb < Tc (yb = 3.5yp). We used 8 values of T between 0.9 and 5.1. The

adopted parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1, and k = 5 (all in

arbitrary units).

with Tc < Tb < T0 (yb = 1.5yp), and in panel b those of the case with T0 < Tb < Tc
(yb = 3.5yp). While in Fig.7 we show the behavior of the relevant quantities as function

of the applied force (using the temperature as a parameter), in Fig.8 we show the same

quantities as function of the temperature (now using the applied force as a parameter).

In Fig.7 we draw a comparison between Eqs.(57), (58), (59), and (60) with a large

value of N and Eqs.(65), (66), (71), and (72) obtained for N → ∞. This comparison

prove that the mathematical treatment of the thermodynamic limit here developed

is consistent with the model of detachment proposed. Indeed, we find a very good

agreement between the general results, applied to system with a large value of N , and

the theoretical ones obtained in the thermodynamic limit. Concerning panel a, the force

extension-curves exhibit the force plateau discussed above, which is very similar to the

behavior observed within the Helmholtz ensemble. The average number of softened
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Figure 8. Extension 〈Y〉, average number of softened elements 〈η − ξ〉, and average

number of broken elements 〈N − η〉 versus the temperature during the detachment of

a film from a substrate with a soft device (Gibbs ensemble) in the thermodynamic

limit. Panel a: plots of Eqs.(65), (66), (71), and (72) for different values of the applied

force F (8 values from 0.16 to 1.3) for the case with Tc < Tb < T0 (yb = 1.5yp).

Panel b: plots of Eqs.(65), (66), (71), and (72) for different values of the applied

force F (10 values from 0.058 to 0.58) for the case with T0 < Tb < Tc (yb = 3.5yp).

In both panels, shaded areas correspond to supercritical temperatures. The adopted

parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all in arbitrary

units).

elements remains constant with F and depends on the temperature T . Finally, the

number of broken elements diverges to infinity when the force approaches its critical

value. The situation is more complicated in panel b, where we have an intermediate

transition describing the partial breaking of all the element of the system. In this case,

when T < T0 (black solid curves), the behavior is very similar to the one described

in panel a. On the other hand, when T > T0 (red solid curves), all the elements are

softened due to the thermal fluctuations and therefore 〈η − ξ〉 → ∞ (for this reason no

red curves are shown in the plot of 〈η − ξ〉 versus F). It means that the detachment

process consists in the complete break of all the elements already softened.

Also in Fig.8, we separately show the behavior of the system with Tc < Tb < T0

(panel a with yb = 1.5yp), and the system with T0 < Tb < Tc (panel b with
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yb = 3.5yp). We used a logarithmic scale to better appreciate the shape of the plots.

The representation of the extension 〈Y〉, the average number of softened elements

〈η − ξ〉, and average number of broken elements 〈N − η〉 versus the temperature is

particularly useful to identify a crucial difference between the Helmholtz and the Gibbs

ensembles. For the isometric condition (Helmholtz ensemble), we have no finite values

of the prescribed extension Y able to completely detach the system for subcritical

temperatures. Indeed, since the detachment progress is gradual or progressive in

response to the prescribed extension, only an infinite value of extension can cause a

complete detachment of the chain (see Fig.4). Differently, for the isotensional condition

(Gibbs ensemble), for any subcritical temperature, we can identify a value of force

inducing the complete detachment of the chain. This can be seen by looking at the

force-extension curves in panel a and b of Fig.8. Here, we observe that for any value

of the temperature, we can identify a force producing an asymptotic behavior of 〈Y〉,
which corresponds to the total detachment of the system. The relationships between

force and temperature are given by βδ − 1
2

logα0 + ϕ − δF2 = 0 for T < T0, and by

βδ− 1
2

log β0−δF2 = 0 for T > T0, as stated in Eqs. (65) and (66) (we remember that δ

and ϕ, defined in Eq.(17), depend on T ). This is coherent with the fact that within the

Gibbs ensemble all the element break simultaneously or cooperatively, thus allowing the

force to completely detach the chain independently of the (subcritical) temperature of

the system. The average number of softened elements 〈η − ξ〉 is independent of the force

and therefore we find a single curve (∀F) in the corresponding plot. However, for any

applied force we have a different critical temperature of the system and then the curve

of 〈η − ξ〉 must be considered valid up to the red circle symbols shown in Fig.8. Indeed,

these symbols correspond to the critical temperature, which is, in turn, determined by

the applied force. Finally, the curves of the average number of broken elements 〈N − η〉
show a divergence at the critical temperature of the system, representing the complete

detachment of the chain from the substrate. The important difference between panel a

and panel b consists in the presence of the additional transition at the temperature T0

in the case with T0 < Tb < Tc (large breaking extension yb = 3.5yp). In this case, we

observe that for T → T0 we have 〈η − ξ〉 → ∞ even if 〈N − η〉 is finite. It means that

at the temperature T ≥ T0 all the vertical elements are spontaneously softened (due to

the thermal fluctuations), and the detachment process is realized by completing their

rupture thanks to the applied force.

To conclude the discussion concerning the thermodynamic limit in the Gibbs

ensemble, in Fig.9 we show the phase diagram of the system in the force-temperature

plane. We separately considered the two cases with Tc < Tb < T0 (panel a) and with

T0 < Tb < Tc (panel b). Again, due to symmetry, we considered both positive and

negative values of F (see the scheme in Fig.1 (panel b)). Moreover, we observe the

same three possible cases obtained in the hard device: the region L corresponds to a

phase with all broken elements; the regionM corresponds to a combination of softened

and broken elements; finally, the region N corresponds to a mixture of intact, softened

and broken elements. In Fig.9 we can identify the critical points (Cb in panel a, and Cc
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Figure 9. Phase diagrams for the system in the thermodynamic limit under Gibbs

isotensional condition for the case with Tc < Tb < T0 (panel a, where yb = 1.5yp)

and for the case with T0 < Tb < Tc (panel b, where yb = 3.5yp). We can identify

three possible phases for the system: L corresponds to a phase with all the elements

broken; M corresponds to a combination of softened and broken elements; finally, N
corresponds to a mix of intact, softened and broken elements. We can also identify

the critical points (Cb in panel a, and Cc in panel b) and the triple points P+ and

P− in panel b, where the three phases of the system coexist. The adopted parameters

follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all in arbitrary units).

in panel b), whose meaning is now quite clear: for temperatures larger than those of the

critical points, the chain is always completely detached from the substrate. In panel b

of Fig.9 we can see the triple points P+ and P−, where the three phases of the system

coexist. In any case, we observe that for a value of the applied force F (in a suitable

range), we have a value of the temperature able to detach the chain. When F = 0, such

a temperature corresponds to the critical temperature of the system. In other words,

for any subcritical temperature, we can identify a value of force inducing the complete

detachment of the chain. As previously discussed, the critical behavior of the Helmholtz

ensemble is different. In fact, for isometric condition, we have no finite values of the

prescribed extension able to detach the system for subcritical temperatures, as shown

in Fig.5. This difference between the Helmholtz and the Gibbs ensembles is consistent
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with their non-cooperative and cooperative interpretation, respectively.

7. Conclusions

We considered the cohesion/decohesion process under thermal fluctuations by means of a

paradigmatic system represented by a linear mass-spring chain, connected to a substrate

through breakable elements. These elements are described by a softening mechanism,

i.e., by three operating regions as follows: the first linear region corresponds to intact

elements (small deformation), the second region corresponds to softened elements with

a reduced stiffness (intermediate deformation), and finally, the third region corresponds

to broken elements (large deformation). This paradigmatic system has been studied

under the assumption to be embedded in a thermal bath at a given temperature and

to be loaded by an external mechanical action. This latter can be either a prescribed

extension (hard device) or an applied force (soft device) to the last element of the chain.

These two configurations correspond to the Helmholtz ensemble (isometric condition)

and the Gibbs ensemble (isotensional condition) of the equilibrium statistical mechanics,

respectively. In order to cope with the mathematical analysis of the problem, we adopted

the spin variable approach for defining the state of any breakable element [83–86,88,89],

we introduced the zipper model hypothesis with two domain walls for describing the

three operating regions of the bonds chain [97–100], and we finally exploited some

analytical properties of the tridiagonal matrices [116,117] to obtain closed form results

under isometric and isotensional conditions. In both cases we obtained the general

solution of the problem for a chain composed of a number N of elements. These

solutions, in both cases, lead to a constant decohesion force, which represent the strength

of the system. Importantly, this strength is temperature dependent, and its value is

decreasing with an increasing temperature. The physical interpretation of this behavior

can be done by observing that the thermal fluctuations foster the damaging of the

breakable elements, thus reducing the strength of the system. Also the number of broken

and softened elements have been determined as function of the temperature and of the

external mechanical action for both statistical ensembles. Interestingly, we proved that

the number of softened elements depends only on the temperature and it is independent

of the external mechanical action. The increasing size of the softened region with the

temperature gives a thorough interpretation of the fragile to ductile transition of several

materials. This analysis provides a complete picture of the system behavior with a finite

number N of elements. To better understand the meaning of these results, we analyzed

the system behavior under the hypothesis of thermodynamic limit, i.e. for N → ∞.

In this case, the sums appearing in the partition functions of both ensembles and in

the macroscopic averages of the relevant thermodynamic variables can be substituted

by integrals, eventually leading to useful closed form expressions. The analysis of these

results delivers a clear explanation of the temperature dependent strength in terms phase

transitions. Indeed, a first critical temperature exists for the system and corresponds to

the partial breaking of all the elements of the chain. Then, a second critical temperature
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describes the complete breaking of all the bonds. This complex critical scenario is able

to give a rigorous explanation of the relationship between strength and temperature

in system where a transition in the breaking mechanism occurs (here represented

by the bonds softening). In several experimental measurements, a two-branch curve

for the strength-temperature relation has been indeed observed [30, 32, 35]. Another

interesting result concerns the non-equivalence of the ensembles in the thermodynamic

limit. It means that the force-extension curves are different for the Helmholtz and

the Gibbs ensembles, also for N → ∞. It is well known that the equivalence of the

Gibbs and Helmholtz statistical ensemble has been proved for a large class of physical

systems including, e.g., single flexible polymer chains without confinement effects and

with a continuous pairing interaction potential between neighboring monomers [91–96].

However, it is difficult to prove the ensembles equivalence for more general systems or

structures. For instance, other problems, concerning for example the escape of a polymer

confined between two planes or the desorption of a polymer tethered on a surface, lead to

the non-equivalence between the defined statistical ensembles [118–123]. Interestingly,

these investigations are coherent with our results and definitively prove the possibility

to have ensembles non-equivalence between different statistical ensembles in relevant

physical systems. Generalizations of the theory may include the dynamic behavior of

cohesion/decohesion processes (where the barriers between the wells of the energetic

landscape play an important role [124–126]), or the multi-state softening i.e. composed

of several steps with different stiffness (described by several domain walls in the chain).
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Appendix A. Properties of A(ξ, η)

In this appendix we will recall some properties of tridiagonal matrices used in the text.

In particular, we consider the matrix A(ξ, η) defined in Eq.(5) and obtain the formulas

for det [A(ξ, η)] and 1−A−1
NN(ξ, η).
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For sake’s of generality, let us consider T defined as

T =



a1 b1 0 . . . 0

c1 a2 b2
. . .

...

0 c2
. . . . . . 0

...
. . . . . . aN−1 bN−1

0 . . . 0 cN−1 aN


∈MN,N(R), (A.1)

where the diagonal is composed by the elements (a1, ..., aN), the superdiagonal by

(b1, ..., bN−1) and the subdiagonal by (c1, ..., cN−1).

The elements of the inverse matrix T −1 can be written as [116,117]

T −1
ij =



1
ϑN

(−1)i+jbi × ...× bj−1ϑi−1ϕj+1, i < j

1
ϑN
ϑi−1ϕi+1, i = j

1
ϑN

(−1)i+jcj × ...× ci−1ϑj−1ϕi+1, i > j

(A.2)

where the sequences ϑi and ϕi are obtained using the recursive rules{
ϑi = aiϑi−1 − bi−1ci−1ϑi−2, i = 1, ..., N

ϑ−1 = 0, ϑ0 = 1,
(A.3)

and {
ϕi = aiϕi+1 − biciϕi+2, i = N, ..., 1

ϕN+1 = 1, ϕN+2 = 0.
(A.4)

Notice that while Eq.(A.3) is an increasing recursive rule going from i = 1 to i = N ,

Eq.(A.4) is a decreasing recursive rule for i = N to i = 1. It is possible to show [116,117]

that

det T = ϑN . (A.5)

These formulas can be specialized to the case where bi = ci = −1 ∀ i (such as for

matrix A(ξ, η) in Eq.(5)). The general result can thus be simplified as

T −1
ij =



1
ϑN
ϑi−1ϕj+1, i < j

1
ϑN
ϑi−1ϕi+1, i = j

1
ϑN
ϑj−1ϕi+1, i > j

(A.6)

where the sequences ϑi and ϕi are given by the reduced recursive laws{
ϑi = aiϑi−1 − ϑi−2, i = 1, ..., N,

ϑ−1 = 0, ϑ0 = 1,
(A.7)

and {
ϕi = aiϕi+1 − ϕi+2, i = N, ..., 1,

ϕN+2 = 0, ϕN+1 = 1.
(A.8)
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In order to evaluate the physical quantities in Section 3 and 5 we need to compute

det [A(ξ, η)] and A−1
NN(ξ, η). We have that

detA(ξ, η) = ϑN , A−1
NN(ξ, η) = ϑN−1ϕN+1/ϑN = ϑN−1/ϑN . (A.9)

Let us consider Eq.(A.7) with a1 = ... = aξ = 2 + α, aξ+1 = ... = aη = 2 + β,

and aη+1 = ... = aN = 2. Then, for i ≤ ξ we have the difference equation

ϑi = (2 + α)ϑi−1 − ϑi−2, whose general solution can be written as

ϑi = p

(
2 + α +

√
∆

2

)i

+ q

(
2 + α−

√
∆

2

)i

, (A.10)

with ∆ = α2 + 4α and where the coefficients p and q must be fixed using the conditions

ϑ−1 = 0 and ϑ0 = 1. A straightforward calculation leads to the explicit solution for

i ≤ ξ

ϑi =
1√
∆

(
2 + η +

√
∆

2

)i+1

− 1√
∆

(
2 + η −

√
∆

2

)i+1

. (A.11)

Let us define the function

G(γ, z) =
1√

γ2 + 4γ

[(
2 + γ +

√
γ2 + 4γ

2

)z

−

(
2 + γ −

√
γ2 + 4γ

2

)z]
, (A.12)

which satisfies the properties G(γ, 0) = 0, G(γ, 1) = 1, and G(γ,−1) = −1. We can

write the final result for i ≤ ξ as

ϑi = G(α, i+ 1). (A.13)

For ξ + 1 ≤ i ≤ η, we have the difference equation ϑi = (2 + β)ϑi−1 − ϑi−2, with the

general solution

ϑi = r

(
2 + β +

√
Σ

2

)i

+ s

(
2 + β −

√
Σ

2

)i

, (A.14)

where Σ = β2 + 4β. In this case, the coefficients r and s must be obtained by imposing

ϑξ−1 and ϑξ by means of Eq.(A.13). A long but straightforward calculation yields the

final solution for ξ + 1 ≤ i ≤ η in the form

ϑi = G(β, i− ξ + 1)G(α, ξ + 1)− G(β, i− ξ)G(α, ξ). (A.15)

For i ≥ η+1, we have the simpler difference equation ϑi = 2ϑi−1−ϑi−2, with the general

solution ϑi = v+wi. In this case, the coefficients v and w must be obtained by imposing

ϑη−1 and ϑη by means of Eq.(A.15). Hence, the result for i ≥ η + 1 can be eventually

found as

ϑi = (i− η + 1)ϑη − (i− η)ϑη−1, (A.16)

where ϑη−1 and ϑη are given by Eq.(A.15). The result for i ≥ η + 1 can be therefore

written in the following final form

ϑi = (i− η + 1) [G(β, η − ξ + 1)G(α, ξ + 1)− G(β, η − ξ)G(α, ξ)]

− (i− η) [G(β, η − ξ)G(α, ξ + 1)− G(β, η − ξ − 1)G(α, ξ)] . (A.17)
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From Eq.(A.9) we finally find

detA(ξ, η) = (N − η + 1) [G(β, η − ξ + 1)G(α, ξ + 1)− G(β, η − ξ)G(α, ξ)]

− (N − η) [G(β, η − ξ)G(α, ξ + 1)− G(β, η − ξ − 1)G(α, ξ)] , (A.18)

and

1−A−1
NN(ξ, η) =

G(α, ξ + 1)

detA(ξ, η)
[G(β, η − ξ + 1)− G(β, η − ξ)]

− G(α, ξ)

detA(ξ, η)
[G(β, η − ξ)− G(β, η − ξ − 1)] . (A.19)

These formulas are used in Section 3 and 5.

The function G(γ, z) defined in Eq.(A.12) can be simplified by observing that, the

second term is defined by a power with a base always strictly less than one. Thus, for

large values of z, the second term can be neglected with respect to the first one. More

specifically, we have two different cases:

G(α, z) ∼ 1√
∆
αz0 with α0 = (2 + α +

√
∆)/2, ∆ = α2 + 4α, (A.20)

G(β, z) ∼ 1√
Σ
βz0 with β0 = (2 + β +

√
Σ)/2, Σ = β2 + 4β. (A.21)

These results can be used to simplify Eq.(A.18)-(A.19) leading to

detA(ξ, η) =
α0β0 − 1√

∆Σ
βη−ξ−1

0 αξ0 [(N − η + 1)β0 − (N − η)] , (A.22)

1−A−1
NN(ξ, η) =

1

N − η + β0

β0−1

. (A.23)

These expressions are used to evaluate the formulas in Sections 4 and 6.

Appendix B. Calculation of useful integrals

In order to develop Eqs.(26) and (27) in closed form we have to consider the integrals

I1 =

∫
e−axe−

b
x
dx

x3/2
, I2 =

∫
e−axe−

b
x
dx

x1/2
, (B.1)

where a and b are two real and positive constants. For obtaining an explicit expression

for these integrals, we define the quantities

I+ =
√
bI1 +

√
aI2, I− =

√
bI1 −

√
aI2. (B.2)

We can therefore write

I∓ =

∫ (√
b

x3
∓
√
a

x

)
e−axe−

b
xdx. (B.3)

Now, we can observe that(√
b

x
±
√
ax

)2

=
b

x
+ ax± 2

√
ab, (B.4)
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and hence, we can write Eq.(B.3) in the form

I∓ =

∫ (√
b

x3
∓
√
a

x

)
e
−
(√

b
x
±
√
ax
)2
±2
√
ab
dx. (B.5)

To conclude, by remembering the definition of the error function [115]

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (B.6)

we can observe that

d

dx
erf

(√
b

x
±
√
ax

)
= − 1√

π
e
−
(√

b
x
±
√
ax
)2
(√

b

x3
∓
√
a

x

)
, (B.7)

and we directly obtain the first important result

I∓ = −
√
πe±2

√
aberf

(√
b

x
±
√
ax

)
. (B.8)

Since from Eq.(B.2) we have that I+ + I− = 2
√
bI1 and I+ − I− = 2

√
aI2, we get the

final results

I1 = − 1

2

√
π

b

[
e+2
√
aberf

(√
b

x
+
√
ax

)
+ e−2

√
aberf

(√
b

x
−
√
ax

)]
, (B.9)

I2 = +
1

2

√
π

a

[
e+2
√
aberf

(√
b

x
+
√
ax

)
− e−2

√
aberf

(√
b

x
−
√
ax

)]
. (B.10)

The two integrals appearing in Eqs.(45) and (46) can be developed by evaluating

I =

∫ √
xe−axe−

b
xdx. (B.11)

Since

d

dx

(√
xe−axe−

b
x

)
= e−axe−

b
x

(
−ax1/2 +

b

x3/2
+

1

2x1/2

)
, (B.12)

we get the relation

√
xe−axe−

b
x =

∫
e−axe−

b
x

(
−ax1/2 +

b

x3/2
+

1

2x1/2

)
dx. (B.13)

Therefore, we easily obtain

I +

√
x

a
e−axe−

b
x = I +

∫
e−axe−

b
x

(
−x1/2 +

b

ax3/2
+

1

2ax1/2

)
dx =

b

a
I1 +

1

2a
I2. (B.14)

This expression allows to write the final result in the form

I =

√
π

2a

[
e+2
√
ab

(
1

2
√
a
−
√
b

)
erf

(√
b

x
+
√
ax

)

−e−2
√
ab

(
1

2
√
a

+
√
b

)
erf

(√
b

x
−
√
ax

)]
−
√
x

a
e−axe−

b
x . (B.15)
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