Continuum mechanics and nonlinear elasticity

Stefano Giordano

Department of Physics - University of Cagliari
Cittadella Universitaria - 09042 Monserrato (Ca), Italy

E-mail: stefano.giordano@dsf.unica.it

Contents

1 Symbols

Lagrangian versus Eulerian formalism

2.1 Derivative of a volume integral . . . . . . . .. .. .. ..
2.2 Derivative of a surface integral . . . . . . . ... ... ..

Strain

Stress

Continuity equation

Balance equations: Euler description

Balance equations: Lagrange description

7.1 Novozhilov formulation. . . . . . . . .. ... ... ...

Nonlinear constitutive equations

The small-strain approximation

11

14

15

17
18

20

23



CONTENTS

1. Symbols

List of the most important tensor quantities used in the following sections

deformation gradient
inverse deformation gradient
velocity gradient

deformation Jacobian

and V left and right stretching tensors

F
G
L
J
B and C left and right Cauchy tensors
U
R
7
é
J

rotation tensor

Green-Lagrange tensor
Almansi-Eulero tensor
Lagrangian displacement gradient
Eulerian displacement gradient
rate of deformation tensor

spin tensor

Cauchy stress tensor

first Piola-Kirchhoff stress tensor
second Piola-Kirchhoff stress tensor
small-strain displacement gradient
small-strain tensor

local rotation tensor

stiffness tensor

2. Lagrangian versus Eulerian formalism

The motion of a body is typically referred to a reference configuration Qg C R3, which

is often chosen to be the undeformed configuration. After the deformation the body

occupies the current configuration Q; C %*. Thus, the current coordinates (7 € €;) are

expressed in terms of the reference coordinates ()Z' € Q):

X—Z=F ()Z') (2.1)

where F; is the transformation function at any time ¢ (see Fig. 1). More explicitely, it

means that

T1 =T (X1>X2>X3>t)
Ty = 9 (X1, X2, X3,1) (2.2)
xy = 3 (X1, X2, X3,1)
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Figure 1. Reference configuration and current configuration after a deformation.

We call the set ()Z and t) Lagrangian coordinates, named after Joseph Louis Lagrange
[1736-1813], or material coordinates, or reference coordinates. The application of these
coordinates is called Lagrangian description or reference description. We can obtain
also the inverse function of Eq.(2.1) in the form

i X =F1(2) (2.3)
or, in components

X; = Xj (21, 29, 23, 1)

Xy = Xy (w1, 79, 73, 1) (2.4)

X3 = X3 (x1, 29, 23, 1)

The set (Z and t) is called Eulerian coordinates, named after Leonhard Euler [1707-
1783], or space coordinates, and their application is said Eulerian description or spatial
description. The Lagrangian coordinates were introduced by Euler in 1762, while Jean
le Rond D’Alembert [1717-1783] was the first to use the Eulerian coordinates in 1752.
In general Continuum Mechanics Lagrangian coordinates and the reference description
are the most common. The same holds true in solid Mechanics. However, in Fluid
Mechanics, due to large displacements and complex deformations, it is usually necessary
and most practical to use Eulerian coordinates and spatial description.

One of the key quantities in deformation analysis is the deformation gradient of €,
relative to the reference configuration €2y, denoted F, which gives the relationship of a
material line dX before deformation to the line di (consisting of the same material as
dX) after deformation. It is defined as

7=F (X): F(X1) = VR (X) = di = F (X1) aX (2.5)
Its components are given by

013-

FZ-:
K 0X

V(i, K) € {1,2,3) (2.6)
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As before, we can define a deformation gradient G of the inverse function relating €2y to
the current configuration €,

X =F YD) : G(@t)=VaF (&)= dX = G (Z,1)dZ (2.7)
In components, it assumes the form
0X
Gri= a:f V(i, K) € {1,2,3)? (2.8)

Of course, the tensors F and G are related by the relationships
G (;Et ()Z) ,t) = f! ()Z t) (2.9)
F(F(@),t) =G (7t (2.10)
In fact, F' is a Lagrangian tensor while G is an Eulerian tensor. The velocity and

acceleration fields, related to the trajectory of the particle starting at X (Lagrangian
description) are given by

6<X't) gx ()_(’ t) (2.11)
a(f,t) ‘3; <X t) (2.12)

On the other hand, the velocity and acceleration fields in the Euler description are given
by

T(7,t) = g—f (F (@), 1) (2.13)
0%, .
a(zt) = v (F7H(@),t) (2.14)

Any time-dependent scalar, vector, or tensor field can be regarded as a function of
(X, t) (Lagrangian or material variables) or (Z, t) (Eulerian or spatial variables)

—

whenever the motion © = F; <)Z ) is given. For example, for a scalar field we can

write ¢ (Z,t) = ® <)Z', t) where

o (X' t) — ¢ (;Et (X') ,t) (2.15)
The time derivative of the field ® ()Z' , t) can be calculated as

o 9¢ O¢ 0r 0¢ 8@5 -

ot ot Tor ot ot of (2:16)
Instead of using different symbols for the quantities (i.e. ¢ and ®) in the Lagrangian
and Eulerian descriptions, we can use the dot for the Lagrangian or material derivative
(¢) and the partial differentiation symbol ( ) for the Eulerian or spatial derivative:

therefore, Eq.(2.16) assumes the simpler form

q'b_%_}_% 7

o T 97 (2.17)
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The Eulerian tensor

iaﬁ

= 2.18
97 (2.18)
with components
a@i
L= — 2.19
I (9xj ( )
satisfies the important relation
F=LF (2.20)
It can be proved as follows
0 0 > 0 0 =~ ov  o0vor . -
F:—fﬂ< >=ﬁ—f< >=—3:—3—”§=LF (2.21)
ot ox 0X Ot 0X 070X
It is also important an inverse relation given by
s —1 A
F =-GL (2.22)

~ A w1 A A s —1
Since 4 (F‘lF) =0wehave ' = —F 'FF~! (where I' represents the Lagrangian

time derivative of the inverse of F ) and, therefore, we obtain the proof of Eq.(2.22)

A A A A A A A

F o =—F'FPF'= F'LFF'= —F'L=-GL (2.23)

2.1. Derivative of a volume integral

We consider a subset P, C €2; which is the time deformed version of Py C €y. We search
a property giving the time derivative of an arbitrary volume integral. In this context,
the symbol d/dt can be used when it is applied to a quantity depending only on the
time t. In fact, in this case, there is no ambuguity. As before we consider a scalar field
¢ and, through a change of variables between Eulerian and Lagrangian coordinates, we

obtain
d d S
— dr = — JdX 2.24
where J is the determinant of the deformation gradient
or N
J =det 25 = det (2.25)
0X
Then, the time derivation can enter the integral written in the reference configuration
d d . . N
—/ ¢df:/ 2 (o) dX = (¢J+¢>J) dX (2.26)
dt P Po dt Po
The derivative of a determinant follows the rule
d ~ ~ N
— det " = <det F) tr (FF‘l) (2.27)

From Eq.(2.20) we obtain FE1— 1 and, therefore,we have
J = Jtr <L> = IV T (2.28)
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So

d . L o . N

= qbdx _ /P (¢ TS v v) JdX = A (¢ + V- v) 7 (2.29)
Since ¢ = 8¢ + % - U we obtain

d 9¢ .

pr qbd / (815 + Vi T+ Vg )d (2.30)
or, finally

d ¢ = N

pr qbd /Pt {E +V;z- (qbv)} dx (2.31)

This property has been called Reynolds theorem or transport theorem. It is the most
important result used to obtain the balance equations for continuum materials. If ¢ =1
we obtain

d -

— [ d¥ = Vz - vd¥ (2.32)

dt Pt Pt

which represent the rate of variation of the volume of the region P;.

2.2. Deriwative of a surface integral

We begin by describing the deformation of a given surface moving from the reference to
the current configuration. We therefore consider a surface X = X (o, B) in the reference
configuration described in parametric form by two parameters o and (3. The deformed
surface in the current configuration is given by 7 = F; <)? (v, ﬁ)) We define NdS and
7ids as the unit normal vector multiplied by the area element in the reference and in the

current configuration, respectively. From standard differential geometry we have
aX 0X

NdS = == LN ggdads (2.33)

The deformed version can be straightforwardly obtained as

. 89@ 89@ o 0X 89@ aX

0X 0X
_ <F%> (F%> dad (2.34)

The last expression can be written component by component

0X 0X.

nids = eijp Py = F 5 ﬁt dadf

and it can be multiplied by Fj,. on both sides
0X,0X

Fyrnids = eijn Fiy FjaFla— >~ ﬁt dadf3

Since €, Fjs Fie = det Fem we obtain
0X, 0X
Fynids = Jepg— ——Ldadf3

Oa 0p
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or
- X 0X o
FTiids = J— A —=—dadB = JNd 2.
nds Jaa/\aﬁozﬁ JNdS (2.35)
and finally we have obtained the relationship between NdS and fids
itds = JE-TNdS (2.36)

This property has been called Nanson theorem. Now, it is interesting to evaluate the
time derivative of the surface integral of a vector field a@. It can be brought back to the
reference configuration as

d d .
— | @-fAds=— [ a-JFTNdS
dt Js, dt Js,
. N A =T
:/ [6-JF‘T+&’-JF‘T+6-JF }NdS (2.37)
So

. ~ > =T ~ PR AN
Now J = Jtr <L> =JVz-vand ' = —F"TF [T and therefore

d . N o N A AN -
— | @-iids = / {a- JET+ G- V- oF T —a- JFTTE F—T] NdS
dt St So
- / [ma}ﬂ— ia] - JE-TNdS (2.38)
So
where the relation F = LF has been used. Finally, coming back to the current
configuration we obtain
d e - .
£ a-ﬁds:/ a+wf-a—w] . fids (2.39)
dt St Sy -
Since the material derivative is given by a= a—‘f + g—;: - U, we obtain
d [0a  0d - .
= St&-ﬁds:/& _a—‘z+a—;-6+wf-a—m].ﬁds (2.40)

It is simple to verify that Vi A (@ A7)+ 0Vz-@ = % . §+aVy - — Li and therefore

we can write

d a — —
- a-ﬁdSZ/ {@+v5A(aAa)+wf-a]-ﬁds (2.41)
dt Js, s Lot

The Nanson relation 7ids = JE-TNdS can be also applied in order to obtain the so-
called Piola identity. To this aim we use the standard divergence theorem

L
/ Un;ds = 0 dzx (2.42)
Py P, OT;
if ¥ = 1 identically, we obtain [, n;ds = 0 and, therefore
/ fds = / JETNAS = / Ve <JF‘1> dX =0 (2.43)
0Pt IPo Po
which means
- « 0 0X;
() = 9 i) — 2.44
Vx <J ) 0= 0X; (Jﬁxi) 0 (244)

This relation will be useful to obtain the balance equations of the continuum mechanics
in the Lagrangian description.
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x:x(X,t)

Undeformed
configuration

u(X+dX) = u(X)+du

Deformed
configuration

xl) Xl

Figure 2. Infinitesimal vector dX in Qo and its deformed version d in €.

3. Strain

The measure of the deformation between the reference and the current configuration is
an important topic in continuum mechanics and it can be performed in several ways.
The starting quantity is the deformation gradient ()? ) (in the Lagrangian formalism)
or its inverse G(Z) (in the Eulerian formalism). We consider two infinitesimal vectors
dX and dY in Qy and their deformed versions dZ and dy in Q; (see Fig. 2 for the
deformation of dX ). The changes of lengths and angles are controlled by the scalar
product of the vectors and, therefore, we define the right and the left Cauchy tensors C
and B in order to obtain dz-djj = dX - CdY or dX -dY = di- B~'dij (see Table 1). The
variations of the scalar product (moving from the reference to the current configuration)
are described by the Green-Lagrange tensor 7 and by the Almansi-Eulero tensor é as
summarized in Table 1.

Moreover, the gradients of the displacements field @(X) and @(Z) are defined by
jL = —@. and JE = a_* in the Lagrangian and Eulerian vision, respectively. In Table 2
we can ﬁnd. (i) the effective variation of length for the vector dX = N||dX|| deformed
into di = 7i||dZ|); (ii) the variation of the right angle between the unit vectors N and T
(]\7 T =0in Q) deformed into 7 and # (in €): 6, is the angle in Q, and, therefore,
YnT = § — Ot is the angle variation (with opposite sign); (iii) the variation of the right
angle between the unit vectors 7 and ' (7-£ = 0 in ;) originally placed at N and T (in
Q): Onr is the angle in €y and, therefore, v, = Oy — 7 is the angle variation (with
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Table 1. Strains definitions and properties in Lagrangian and Eulerian formalisms.

Lagrangian vision

Eulerian vision

nght Cauchy tensor
C=FTF

' =GaT

dz - dj = dX - CdY

Left Cauchy tensor
B F FT

= GG
d)? dY =dz- B~'dy

Green-Lagrange tensor

=1 1)

dZ - dij — dX - dY = 2dX - HdY

Almansi-Eulero tensor

~1(1-57)

dZ - dij — dX - dY = 247 - édy

Lagrange displacement gradient

+J+JT+ LT,
% (JL +JT JLTJL)

Eulero displacement gradient

F_IZI—JE
Bl'=I—Jg—JL+JLJg
¢ =4 (Ju+ JE - JEJp)

opposite sign); (iv) the variations of volume and surface measures.

Any non singular tensor (describing a deformation) can be decomposed in two

different ways

F=RU=VR

(3.1)

where R is a rotation matrix (RRT = RTR = I) while U and V are symmetric

and positive definite tensors.

In order to prove this polar decomposition theorem

due to Cauchy, we use the right Cauchy tensor C = FTE: it is symmetric since
A AN\T PN PN
<F TE ) = FTFTT = FPTE and it is positive definite as proved by the following relation

PN ~ T /. ~
T ET o = (Fw) (Fw) — | B >0V @ (3.2)

If FTF is symmetric and positive definite then it can be diagonalized in the field of real

numbers. Therefore, we can write FTF = Q7 'A(Q where () is non singular and A is

diagonal. We define

—VETE = V¢

(3.3)

The square root of the tensor can be defined (and calculated) as follows

—VETE = \/O'AQ = O \f@ (3.4)

in fact
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Table 2. Variations measure in Lagrangian and Eulerian formalisms.

Lagrangian vision Eulerian vision
Lagrangian length variation Eulerian length variation
Y, dX = di
= n=
lldx| [E& B
Iz -11dX 1| _ /N . AN lld]| —[|dX]| = R-17
€ =t N-CN -1 €pn = =t =1—Vn-B~ln
NN ax nn Iz
1 7 ~ 1 2 = A=
enn + 3¢y = N - 0N €nn — 5€pp = T+ €N
Lagrangian angle variation Eulerian angle variation
N-T=0 n-t=20
I _ s
’YNT—g—ent ’Ynt—QNT—g
. _ 2N-AT : _ 276t
sin(ynr) = —=t—— sin(vyn) = A —
V/N-CNN/T-CT Vi B-1a\/TB-17
Lagrangian volume variation Eulerian volume variation
J = det(F) J~t = det(G)
dv—dV dv—dV _
Oy = av =J -1 0, = dv _7
Lagrangian surface variation Eulerian surface variation
NdS = J 1 FTids fids = JF~TNdS
ds||—||NdS|| l17ids|| | NdS||
Oy =17 0, = Itk
| NdS| n [I7ids]|

Oy =JVN-C-IN —1 0,=1-J"i- Bi

where \/Z = diag(v/\;) if A = diag()\;) (the symbol diag explicitely indicates the entries
of a diagonal matrix). Finally, we define R=FU"! and we verify its ortogonality
Ri= (07) FTRO = (07) (P00 = 0000 =1 (36)
This concludes the proof of the first polar decomposition. We have to prove the unicity
of the rlght decomposmon F=RU. We can suppose the two different decomposmons
F =RU = RU* exist. It follows that FTEF = U? = U*? from which U = U* and,
therefore, R=FR" It proves the unicity of the right decomposition. Similarly we can
obtain the left decomposition by defining V = VEFFT = \/E . it is possible to prove
that it is symmetric and positive definite and we define R =V-1F , which is orthogonal.
To conclude we must verify that R’ = R. Since R’ <R’ )T =] we have F = VR =

~ ANT ~ & A A A
R <R’ ) VR'. The unicity of the right decomposition (F' = R U) allows us to affirm

that R = R and that U = RTV R. This completes the proof of the polar decomposition
Cauchy theorem.

This decomposition implies that the deformation of a line element dX in the
undeformed configuration onto d7 in the deformed configuration, i.e. d = F dx may
be obtained either by first stretching the element by Uie. dif = UdX , followed by
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Figure 3. Polar decomposition applied to a given deformation.

Deformed
configuration

=

a rotation R, i.e. di = RdZ or, equivalently, by applying a rigid rotation R first, i.e.
d¥" = RdX followed later by a stretching V', i.e. d¥ = Vdz" (seeFig. 3).

4. Stress

In continuum mechanics we must consider two systems of forces acting on a given region
of a material body:

e the body forces. They are dependent on the external fields acting on the elastic
body and they are described by the vector field l;(f) representing their density on
the volume in the current configuration. The physical meaning of such a density of
forces can be summed up stating that the total force dﬁv applied to a small volume
di centered on the point 7 is given by dF, = l;(f)df A typical example is given by
the gravitational forces proportional to the mass of the region under consideration.
In this case we can write dﬁv = gdm where ¢ is the gravitational acceleration and
dm is the mass ofﬁthe volume dz. If we define p = Ccll—g as the density of the body,
we simply obtain b(¥) = pg.

e the surface forces. In continuum mechanics we are additionally concerned with the
interaction between neighbouring portions of the interiors of deformable bodies. In
reality such an interaction consists of complex interatomic forces, but we make the
simplifying assumption that the effect of all such forces across any given surface
may be adequately represented by a single vector field defined over the surface. It
is important to observe that the nature of the forces exerted between two bodies

in contact is identical to the nature of the actions applied between two portions of
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Figure 4. Cauchy tetrahedron on a generic point P.

the same body, separated by an ideal surface.

In order to begin the mathematical descriptions of the forces, it is useful to introduce
the following notation for the surface force dFy applied to the area element ds (with unit
normal vector 77) of the deformed configuration

dF, = f(Z,7,t) ds (4.1)

where f assumes the meaning of a density of forces distributed over the surface. By
definition, the force dF is applied by the region where the unit vector 7 is directed to
the other region beyond the ideal surface (or interface). We can now recall the Cauchy
theorem on the existence of the stress tensor describing the distribution of the surface
forces in a given elastic body. More precisely, we can say that a tensor T exists such
that

(@t =Tz t)i (4.2)
where 77 is the external normal unit vector to the surface delimiting the portion of body
subjected to the force field f The quantity T has been called Cauchy stress tensor or
simply stress tensor. This very important result has been firstly published by Cauchy in
1827 in the text “Exercices de mathématique”. The forces applied to the area element
can be therefore written in the following form

dF, = T(Z)itds (4.3)

or, consjdering the different components dg:*i = Tijn;. So, we may identify the stress

tensor 7" with a sort of vector pressure. Its physical unit is therefore the Pa (typical
values in solid mechanics range from MPa to GPa). The proof of the Cauchy theorem
can be performed as follows.

We consider a generic point P in the deformed configuration and a small tetrahedron
as described in Fig. 4. The oblique plane is defined by a unit vector 77 and by the distance
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dh from P. The faces of the tetrahedron have areas dA;, dA,, dA; and dA, and the
outgoing normal unit vectors are —El, _EQ, —Eg and 77 (where the vectors EZ belong
to the reference base). We define ﬁ, fé, f;, and ﬁ; as the surface forces acting on each
face and b as the body force distributed over the volume. The motion equation is

fodA, 4+ fidA; + f2dAs + f3dAs + b dv = padv (4.4)

where @ is the acceleration of the tetrahedron with mass pdv. From Eq.(4.1) we
can identify f,; = f(ﬁ,f,t) and fk = f(—ﬁk,f,t) ,V k = 1,2,3. Moreover,
dA; = ndA, Vi =1,2,3 and dv = édAndh, so we can write Eq. (4.4) as follows

(sum over j)

f(ﬁ,f,t)+f(—ﬁj,f,t)nj+%Edh:%padh (4.5)
In the limit of dh — 0 we obtain (sum over j)

F@ 1) = = (=B, @.t) n; (4.6)
Now we can use the previous result with 7 = E; (for any i = 1,2, 3), by obtaining

F(Bat) = -F(~E.it) (4.7)

This is a sort of third law of the dynamics written in term of surface forces. Now,
Eq.(4.6) can be simply rewritten as (sum over j)

Fiat) =1 (Ej, z, t) n (4.8)

This result shows that the surface force f on a given plane is determined by the three
surface forces on the three coordinate planes; in components

fi (ﬁ, f, t) = f(ﬁ, f, t) . Ez = f(Ej, f, t) . Emj = T‘ijn]’ (49)

where the Cauchy stress T is represented by Ti; = f (Ej, z, t) . E;. To better understand
the physical meaning of the stress tensor we consider the cubic element of volume shown
in Fig.5, corresponding to an infinitesimal portion dV = (d)? taken in an arbitrary solid
body. The six faces of the cube have been numbered as shown in Fig.5. We suppose
that a stress 7 is applied to that region: the T;; component represents the pressure
applied on the j-th face along the i-th direction.

The Cauchy stress tensor is the most natural and physical measure of the state
of stress at a point in the deformed configuration and measured per unit area of the
deformed configuration. It is the quantity most commonly used in spatial or Eulerian
description of problems in continuum mechanics. Some other stress measures must
be introduced in order to describe continuum mechanics in the Lagrangian formalism.
From Cauchy formula, we have dF, = T7ids, where T is the Cauchy stress tensor. In a
similar fashion, we introduce a stress tensor T””C, called the first Piola-Kirchhoff stress
tensor, such that dF, = T'"PENJS. By using the Nanson formula nds = J F-TNAS we
obtain

dF, =TJF"NdS = T'P*NdS (4.10)
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1)

Figure 5. Geometrical representation of the stress tensor T: the T;; component
represents the pressure applied on the j-th face of the cubic volume along the i-th
direction.

and therefore

TPK — JTE=T (4.11)
Sometimes it is useful to introduce z}nothgr staj:e of itress T 2PK called the second Piola-
Kirchhoff stress tensor, defined as F~'dF, = T?? X NdS. We simply obtain

FYF, = F'TJF-TNdS = T*"*NdS (4.12)
and therefore

TPk = JE-\TF-T = poiT'PR (4.13)

The stress tensors 77X and 727K will be very useful for the finite elasticity theory
described within the Lagrangian formalism.

5. Continuity equation

The first balance equation of the continuum mechanics concerns the mass distribution.

—

We define the mass density: we will use po(X) in the Lagrangian formalism and p (Z, t)
in the Eulerian description. The total mass of the region P, is given by

m(Py) = /P p(7,1)dT (5.1)

The consevation of the mass gives
— — d
/ p(7, 1) — / po(X)dX or L / p(F,1)dF = 0 (5.2)
Pt Po dt P

The first equality in Eq.(5.2) can be also written

/deX': podX (5.3)
Po Po
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and we simply obtain

pJ = po (5.4)

On the other hand, from the second equality in Eq.(5.2) we have
. op

/ (p+pvf.z7) df:/ {—va-(pﬁ)] d7 =0 (5.5)

Py Pi ot
and therefore we obtain two forms of the continuity equation

p+pVz-T=0 (5.6)

dp =

- = (p¥) =0 5.7

Ve (o) 5.7

It is important for the following applications to evaluate expressions of this kind:
4 Jp, P(Z, 1)U (Z, )dT; to this aim we use the Reynolds theorem with ¢ = pW¥

L / <p\If + U+ pUV - 17) 47 — / pirdz (5.8)
dt Pt Pt Pt

It means that, when there is the density in the integrand, the time derivative must be
applied directly to the function W.

6. Balance equations: Euler description

The other two important balance equations can be derived by the principles of linear
and angular momentum. When dealing with a system of particles, we can deduce from
Newton’s laws of motion that the resultant of the external forces is equal to the rate of
change of the total linear momentum of the system. By taking moments about a fixed
point, we can also show that the resultant moment of the external forces is equal to the
rate of change of the total moment of momentum. Here we define the linear and angular
momentum density for a continuum and we introduce balance laws for these quantities.
We consider a portion P, in a material body and we define P as its linear momentum,
F as the resultant of the applied forces, L as the total angular momentum and, finally,
M as the resultant moment of the applied forces. The standard principles for a system
of particles can be written as follows

aP = dL -

a =" wM
We start with the first principle, applied to the portion of body contained to the region
P;, limited by the closed surface 9P

a4 pUdT = / Tiids + / bdz (6.2)
dt Jp, oP P

where we have utilized the decomposition of the forces (body forces and surface forces)

(6.1)

as described in the previous section. The previous equation can be simplified by means
of Eq.(5.8) and the divergence theorem, by obtaining

/ pidi = | Vz-TdE+ / bdz (6.3)
Pt Pt Pt
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Since the volume P; is arbitrary, we easily obtain the first balance equation for the
elasticty theory (Eulerian description)

Vz-T+b=pv (6.4)
This is the basic linear momentum equation of continuum mechanics. We remark that
the divergence of a tensor is applied on the second index; in fact, in components, we
simply obtain

aT; .

893]- +b; = pi; (6.5)

Further, we observe that

g:%+%.g:%+%ﬁf(ﬁ-ﬁ)+(%AU)A& (6.6)
and, therefore Eq.(6.4) is equivalent to

Vf-T—l-b:p %—F%ﬁ] (67)
or

. [ov 15 ., A

Ve - T+b=p E+§vf(u-u)+<vfm)m} (6.8)

Now, we consider the principle of the angular momentum. For the region P; such
a balance equation can be written in the following form
d ~ —
2 prﬁdf:/ f/\(Tﬁ) ds+/ FAD di (6.9)
dt Jp, oP Pi

As before, the surface integral can be simplified with the application of the divergence
theorem, by obtaining, after some straightforward calculations

. o7,
/ 7 (Tﬁ) ds = / [Tkh+xh ’””] P, (6.10)
OP: Pt axp
So, the second balance equation assumes the form
o7,
/ {xh |:p1}k — a kp — bk:| — Tkh} nhkjgjdf: 0 (611)
Pt Lp

The term in bracket is zero because of the first balance equation. Therefore, we obtain
fPt Tinnni;€;dx = 0 or, equivalently, Ty,nn,; = 0. Finally, the second principle leads to

Tij = Tji (6.12)

In other words, we may state that the principle of the angular momentum assures the
symmetry of the Cauchy stress tensor.
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7. Balance equations: Lagrange description

In finite elasticity theory the Lagrangian description is the most important point of
view since it allows to determine the exact transformation ¥ = F; ()Z ) between the
reference and the actual configurations. In the case of finite deformations (arbitrarily
large), the Piola-Kirchhoff stress tensors above defined are used to express the stress
relative to the reference configuration. This is in contrast to the Cauchy stress tensor
which expresses the stress relative to the current configuration. In order to obtain the
Lagrangian equations of motion it is useful to introduce the so-called Piola transform
W (X,t) (which is a Lagrangian vector field) of a given Eulerian vector field @(Z,t)

BT, 1) = WX, 1) = JE\6(F, ()Z) 1) (7.1)

An important relation gives the relationship between the divergence of the two fields: of
course, the divergence of W (X, t) is calculated with respect to the Lagrangian variables
X while that of w/(Z,t) is calculated with respect to the Eulerian variables #

T ow; 0 0X;
Ve WX =55 = ox, <‘]ax “’8)
=% <J (9xs) we + Jaxs X, (7.2)

The first term is zero for the Piola identity given in Eq.(2.44), and therefore
0X; Ow, Ow,

=J 7.3
ors 0X; A (73)

It means that we have obtained the important relation

Ve W(X,t)=JVs (1) (7.4)

Ve WX, t)=J

We can also make a Piola transformation on a given index of a tensor. For example,
if T;; the Cauchy stress tensor, we may use the above tranformation on the last index.
We apply this procedure to transform the motion equation from the Eulerian to the
Lagrangian coordinates

%Zi +b; = pv; = % a?g <J%ZI}S) +b; = pu; (7.5)
or, identifying the deformation gradient

af(i T T + by = pa (7.6)
By using the relation py = Jp we obtain

o [T Ea] + 220, = pur &

Since we have defined the first Piola-Kirchhoff stress tensor as 7P = JTE~T we obtain

Ve TPE 4 %5: po (7.8)
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TYPEET and

Now, we consider the principle of the angular momentum: since T = %

T =TT we obtain
TI'PICFT — FTIP/CT (79)

These two important results can be also expressed in terms of the second Piola-Kirchhoff
stress tensor 1%PX = F~1TPK_ We simply obtain the linear momentum balance

-

Ve <FT27”C) + %5 = poil (7.10)
and the angular momentum balance
TQP]C _ TQP]CT (711)

Of course, Eqs.(7.10) and (7.11) must be completed by the constitutive equations and
by the boundary conditions.

7.1. Novozhilov formulation.

We consider the standard base of unit vectors El, E, and 53 in the point X of
the reference configuration. Since the motion is controlled by the tranformation
F=F (X , the unit vectors €; in the deformed configuration are given by the direction

of the deformed coordinate lines

oF:(X) PE

g =—2%_ — — (7.12)
A FE
x|l

We remark that they do not form an orthogonal base. First of all, we simply obtain the
norm of F'E;

IFEN = (PE) - (FE) = VEFa = \[(i7F), =vEi (719

(2

where €' is the right Cauchy tensor. We define the unit vectors 7, s and 7
perpendicular to the planes (€3, €3), (€1, €3) and (€7, €). It means that we can write

1 ang 1 (FE)A(FE) (7.14)
Ne = SNMkij 7> = — alkij S S .
200 le Gl 2T (PE) A (PE;)

Now, we start with the calculation of || <FEZ) A <FEJ) I

[ (FEZ> A (FE]> | = /Mkst Fsi FrjMkan Fui Fyj
== \/(58a5tb - 58b5ta) FsithFainj

= \/Oiinj — 0223 (715)
We can also write

ds
d—i =/CaCyj — C2 (7.16)
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where the indices 7 and j are complementary to k and dSi; and ds; are the surface
elements in the reference and current configuration having unit normal vector 77;. Since
<FE:) A (FE]) = nqstFmFtﬂE we therefore obtain
S 1 nqsthithE
ng = énkij
CiiCj5 — 02

(7.17)

Since Nyst FsiFijFya = JNeij we can simply write 1y Fsi Fyy = Jnm-j(F_l)aq; this result
can be used in Eq.(7.17) to yield

.1 }}Jﬁaz’j(p_l)aqﬁq
CuCyi— C2

(7.18)

When £ is fixed the indices i and j can assume two couples of values [if £k =1 we have
(i,7)=(2,3) or (3,2), if k =2 we have (7, j)=(1,3) or (3,2) and if £ =3 we have (7, j)=(2,1)
or (1,2)] and the index a must assume the value k. At the end we evetually obtain
JFYE,  dSk -y =
ip = T kg = - EJ(F Y B, (7.19)
CiiCjj — CF Sk

where the indices ¢ and j are complementary to k (there is not the sum on k). We may
consider the forces acting on the three deformed coordinate planes (€3, €3), (€1, €3) and
(€1, €>) (having normal unit vectors iy, 773 and i3, respectively) through the expressions

A
T JE T TE flSk
CuCjy — C% 45

J(F Y, TE, (7.20)

These vectors can be represented on both the base EZ and €; as follows

Tity, = o= E, (7.21)
Tty = 0., (7.22)
where, since El, E} and E}, is an orthonormal base, we have
— — dS ~ = — dS
of =Ty By = =2 J(E VT Ey - By = —= J(F ™) Tsq (7.23)
dSk dsk
Moreover, we have the following relation between o and o¢,
FE E, 1

ol =Thy, - E; = 05,8 - Es = = Fy;05, (7.24)

ik
% V OJJ V Ojj

The representations % and ¢, have been introduced by Novozhilov in his pioneering
book on nonlinear elasticity. The Lagrangian equation of motion can be written as (see

Eq.(7.6))

e (g T| + 0, = T3, (7.25)
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and then it can be expressed in terms of of,

a -d k E .
Jbs = pJu 7.26
9X, | 45y } T J0s = pJY (7.26)
or in terms of o¢,

0 dSk 1
0X, dSk VCjj

Finally, since it is evident that /C}; = dl;/dL;, we can state the Lagrangian equations

+ Jby = pJu, (7.27)

stajk

of motion in the Novozhilov form

a dsy

dSk .
— | = Fs0 Jbs = pJus 7.28
an dL J ]k’ + pJIU ( )

8. Nonlinear constitutive equations

The constitutive equations represent the relation between the stress and the strain and,
therefore, they depend on the material under consideration. Here we prove that there
is a strong conceptual connection between the constitutive equations and the energy
balance for a continuum body. We start from the motion equation in the Eulerian
formalism and we multiply both sides to the velocity component v,

oTy;

Vj oz,

This expression can also be written as

9 (v;T5:) aUJ

+v,;b; = pv;v; (8.1)

Oz - a + 'U]b pUjUj (82)
The Eulerian velocity gradient L;; = g—;i can be decomposed in the symmetric and
skew-symmetric parts
ov; 1 (0v;  Ov; v; v
Li=2=z2+—= + / ~ | =Dj; + Wy 8.3
T Ony 2 <6:Ei Oz, Ox; 01’] ! ! (8:3)
sym:n’etm’c skew— symmetmc

where D is the rate of deformation tensor and W is the spin tensor. Therefore, the
energy balance equation assumes the local form form

0 (v;Ty; :

%#?) — T5iDji + v;bj = pu;v; (8.4)
By using the property in Eq. (5.8) we also obtain the global version on the region P,

d 1

% - épvjvjdf"i_/?) CTJZD]ZdZI_J’: /m) Tﬂnzvjdf%—/P Ujbjdf (85)

The second side of this balance represents the power input (product between force and
velocity) consisting of the rate of work done by external surface tractions 7j;n; per unit
area and body forces b; per unit volume of the region P, bounded by dP,. Since the
time-rate of change of the total energy is equal to the the rate of work done by the
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external forces (first principle of thermodynamics without thermal effects), we identify
the first side as d€/dt where £ is the total energy contained in P;. Moreover, the total
energy can be written as & = K +U where K is the kinetic energy and U is the potential
energy. Since K = fPt % pv;v;dT is the standard kinetic energy, we identify

a;_Z;{ = /Pt T;;Djdx (8.6)
We define the energy density U per unit volume in the reference configuration and
therefore p—poU is the energy density per unit volume in the current configuration. We
obtain
U= | Luaz (8.7)
P, PO
By drawing a comparison between Eqs.(8.6) and (8.7) we obtain

d
/ T:D;di = = [ Ludz (8.8)
Pi dt Jp, po
By using the property in Eq. (5.8) we obtain
LU =1,D;, (8.9)
Po

We introduce now a general statement affirming that the strain energy function U
depends upon the deformation gradient E: therefore, we have U = U (F ). This relation
can be simplified by means of the principle of material objectivity (or material frame
indifference), which says that the energy (and the stress) in the body should be the same
regardless of the reference frame from which it is measured. If we consider a motion
= .7-}()? ) we obtain a corresponding deformation gradient F: on the other hand, if we
consider a roto-translated motion Z = Q(t)F,(X) + &(t) (where Q(t) is an orthogonal
matrix and t) is an arbitrary vector), then the deformation gradient is QF. In both
cases we must have the same energy and therefore

UF)=UQF)VQ: QQ" =1 (8.10)
Now, the deformation gradient F can be decomposed through F=RU by obtaining
UF)=UQRU)VQ: QQ" =1 (8.11)

By imposing Q = R” we have U(F) = U(U) and, since U2 = C, we finally obtain the
dependance

UF)=U(C) (8.12)

where C' is the right Cauchy tensor. The choice of C as an independent variable
is convenient because, from its definition, C = FTF is a rational function of the
deformation gradient F'. Now we can calculate U as follows

ou . ou : :

U= aC;;
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We remember that EFy; = Li.Fy; (see Eq.(2.20)) and we obtain

ou
801-]-

U= (FriLpsFsj + LisFyiFyj)

i {5’[{ FTLE a—({FTzTF] . {25’[{ prﬁ} (8.14)
oC oC oC

where D is the rate of deformation tensor defined as the symmetric part of the velocity
gradient L. Through the comparison of Eqs.(8.9) and (8.14) we obtain

br {@m} —tr {23({ FDF} (8.15)
p ocC
Further, from the commutation rule tr(AB) = tr(BA) of the trace operation we arrive

at the following relationships, which must be satisfied for any possible D

A ~OU ~p
tr {@TD} = tr [QF AFTD] (8.16)
p oC

Therefore, we obtain the formal connection between the constitutive equation (giving

the Cauchy stress tensor) and the strain energy function in the form

7ol PO pr (8.17)
pPo  OC
Similarly for the first Piola-Kirchhoff stress tensor we obtain
P1P% = g7pT = 200 (8.18)
oC
and finally for the second Piola-Kirchhoff stress tensor
7Pk = poigiee — 9% (8.19)
oC

We have proved that an arbitrarily nonlinear constitutive equation can be always written
by means of derivations of the strain energy function: it means that the strain energy
function contains the complete information about the nonlinear elastic response of a
given material. For the particular case of nonlinear isotropic material the strain energy
function U must depend only upon the invariants of the right Cauchy tensor C. We
observe that they are defined as

Io = tr [0} (8.20)
te =5 | (€)= (¢2) (5.21)
Il =det C (8.22)

and therefore we have U = U(I¢, 1o, 111c). We remember that the three invariants
define the characteristic polynomial of the tensor C

det (0 . )\f) — N+ N2p— Mo+ 11 (8.23)
and satisfy the so-called Cayley-Hamilton theorem
0=—C3+1oC*—11.C + 1111 (8.24)
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It is possible to prove that

s — I olle _ Il - C; Ol _ = I1I.C"; (8.25)
aC aC aC

and therefore we obtain
oU(Ie, I, I11c) _ 00U 9l¢ oUu 0llx ou 0IIllx

¢ = 4 <+ .
oC olc 9C  0llc pC  Olllc 9C
ou . U [ . - U -
=or ! * ar (Ic[—c) o TeC ™ (8.26)

This expression can be used in the Cauchy and Piola-Kirchhoff tensors given in
Eqgs.(8.17), (8.18) and (8.19) in order to obtain their final form in terms of the invariants
of the right Cauchy tensor C'. Sometime the stress tensors can also be expressed in term
of the Green-Lagrange strain tensor 1 = % <é —1 ); since 2dn = dcC , we have

. . U . . OU ou
7= LR pr, Pk Z pOU Pk (8.27)

a77 on )
In this case the strain energy function U (for unit volume of the reference configuration)
may be developed in power series with respect to the components of 7. This leads to

the expression
. 1 1
U (1) = SCi5ntis en + GCoikhmmis MenTlm + - (8:28)

Here the C~ “ky, and the CU ehnm denote the second order elastic constants (SEOC) and the
third order elastic constants (TOEC), respectively (within the Lagrangian formalism).

9. The small-strain approximation

In the infinitesimal elasticity theory the extent of the deformations is assumed small.
While this notion is rather intuitive, it can be formalized by imposing that for small
deformations F is very similar to I or, equivalently, that G is very very similar to I.
It means that both J, and Jp are very small. Therefore, we adopt as an operative
definition of small deformation the relations

Tr(J,JI) < 1 and Tr(JgJE) < 1 (9.1)

i.e., a deformation will be hereafter regarded to as small provided that the trace of the
product JLJL or JEJE is negligible. It means that we can assume J. = Jg = J and
that we can interchange the Eulerian and the Lagrangian variables without problems.
Here, we write all the equations with the Eulerian variables #. We observe that J can
be written as the sum of a symmetric and a skew-symmetric (antisymmetric) part as

1 (0u;  Ou Ou;  Ouj\
Jii = 2 <0:1:j * 81’2-) T3 (01’] 81’2) i g (9:2)

v
symmetric skew— symmetmc

follows
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Figure 6. Two-dimensional geometric deformation of an infinitesimal material
element.

The meaning of the displacement gradient can be found in Fig. 6 for a two-dimensional
configuration. Accordingly, we define the (symmetric) infinitesimal strain tensor (or
small strain tensor) as

1 (9uz an
=1 9.3
“ 2(axj+axi> (9:3)
and the (antisymmetric) local rotation tensor as
1 (Ou; Ouy
O == (249U 4

Such a decomposition is useful to obtain three very important properties of the small
strain tensor, which is the key quantity to determine the state of deformation of an
elastic body:

e for a pure local rotation (a volume element is rotated, but not changed in shape

and size) we have J = Q and therefore ¢ = 0. This means that the small strain
tensor does not take into account any local rotation, but only the changes of shape
and size (dilatations or compression) of that element of volume.
Let us clarify this fundamental result. We consider a point ¥ inside a volume
element which is transformed to & + @(Z) in the current configuration. Under a
pure local rotation we have: 7+ (%) = RZ, where R is a given orthogonal rotation
matrix (satisfying RRT = I). We simply obtain @(Z) = (R — I)Z or, equivalently,
J = R— 1. Since the applied deformation (i.e., the local rotation) is small by
hypothesis, we observe that the difference R—1is very small too. The product
JJT will be therefore negligible, leading to the following expression

0 JJj' = (R—f) (}?T—f> =RR" -R-R"+1
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=I-R-R'+I=-J-J" (9.5)

Therefore J = —J7 or, equivalently, Jis a skew-symmetric tensor. It follows that
J = and ¢ = 0. We have verified that a pure rotation corresponds to zero strain.
In addition, we remark that the local rotation of a volume element within a body
cannot be correlated with any arbitrary force exerted in that region (the forces are
correlated with € and not with Q) for this reason the infinitesimal strain tensor is
the only relevant object for the analysis of the deformation due to applied loads in
elasticity theory.

e the infinitesimal strain tensor allows for the determination of the length variation
of any vector from the reference to the current configuration. By defining €,, as
the relative length variation in direction 7, we have from Table 2

€on = 71+ €71 (9.6)

If @ is actually any unit vector of the reference frame, it is straightforward to
attribute a geometrical meaning to the components €11, €29, €33 of the strain tensor.
Since €,, = €; - (€ €;) = €, they describe the relative length variations along the
three axes of the reference frame.

e the infinitesimal strain tensor allows for the determination of the angle variation
between any two vectors from the reference to the current configuration. The
variation of the angle defined by the two orthogonal directions 7 and ¢ can be
obtained from Table 2

Vot = 271 - €t (9.7)

The present result is also useful for giving a direct geometrical interpretation of the
components €1, €23 and €13 of the infinitesimal strain tensor. As an example, we
take into consideration the component €;, and we assume that 7 = &; and ¢ = &.

The quantity 7, represents the variation of a right angle lying on the plane (xy, z5).

Quy
Ox1

other words, €15 is half the variation of the right angle formed by the axis x; and

Since €12 = €7 - (€ €), we easily obtain the relationship v,; = 2€15 = g—z; + . In

xo. Of course, the same interpretation is valid for the other components €3 and
€13.

The result of the application of the small strain approximation on the main
quantities of the continuum mechanics is summarized in Table 3.

Knowing the € tensor field within a strained (i.e., deformed) elastic body allows us
to calculate the volume change AV of a given region. We get AV = [, Tr(€)d@, where
V' is the volume of the unstrained region.

The above discussion states that, given a displacement field (), the components of
the infinitesimal strain tensor are easily calculated by direct differentiation. The inverse
problem is much more complicated. Given an arbitrary infinitesimal strain tensor é(Z)
we could search for that displacement field #(Z) generating the imposed deformation. In
general, such a displacement field may not exist. There are, however, suitable conditions
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Table 3. The small strain approximation.

Lagrangian vision Eulerian vision
Jp=J Jp=1J
PGzl Frl=G=i-J
n=¢ e=¢
C=B=1+2% Cl'=B"'=]-2
U=V=1+¢ Ul=v-'=1-¢
R=1+Q R'=1-0Q

TIPK _ T2PK _ %(g] T — %(g]

under which the solution of this inverse problem is actually found. These conditions are
written in the very compact form
o3y
nqkinphjm =

where 7’s are the Levi-Civita permutation symbols. Egs.(9.8) are known as infinitesimal

0 (9.8)

strain compatibility equations or Beltrami Saint-Venant equations. The balance
equations assume the standard form

(%rj» +b;=p 8t2] (9.9)
T, = T (9.10)

The principles of linear and angular momentum, the definition of strain and its
compatibility conditions need to be supplemented by a further set of equations, known
as constitutive equations, which characterize the constitution of the elastic solid body.
In the case of small deformation we can write

ou
0é

where the strain energy function is expressed as U = U(€). Such a strain energy function

T =Tk = T7?PKk = (9.11)

U may be developed in power series with respect to the components of €. This leads to
the expression

. 1 1
U(’f]) = icijthijEkh + gcijkhnmeijethnm + ... (912)

Here the C;ji, and the Cijkpnm denote the second order elastic constant (SEOC) and
the third order elastic constant (TOEC), respectively, with reference to the small strain
tensor. We can determine the relations with the elastic constants defined in Eq.(8.28):
to this aim, we consider an homogeneous deformation with F=1+¢ (i.e. with Q=0
or J = €) and we obtain 7 = é + 562; so, by imposing U(€é) = U(n) we eventually obtain

Cijkh = Ci?k:h (9'13)

3 r 3 r

L
Cijkhnm - Cijkhnm + éczmkhgjn + éczjkm

S (9.14)
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The linear law for the relation between stress and strain is called the generalized Hooke’s
law. The general form of writing Hooke’s law is as follows

Ti; = Cijkn€rn (9.15)

where C;jp, are constants (for homogeneous materials). Eq.(9.15) is of general validity,
including all the possible crystalline symmetry or, in other words, any kind of anisotropy.
The tensor of the elastic constants satisfies the following symmetry rules: 1) symmetry
in the first pair of indices: since T;; = T}; we have Cijrn, = Cjikn: 2) symmetry in the
last pair of indices: since €y, = €5, we may take Cyjrn = Cijnk; 3) symmetry between the
first pair and the last pair of indices: energetic considerations leads to Cijrn, = Cipij. At
the end Cyji, has at most 21 independent components rather than the 3* = 81 which,
as a general fourth-rank tensor, it might have had. In the case of a linear and isotropic

material we have

FE vE -
: [T (e 9.16
T T e (9.16)

where FE and v are the Young modulus and the Poisson ratio, respectively. We can also

T =

introduce the Lamé coefficients p and A as follows
E vE

— )= 9.17
o0+ ) (I +v)(1—2) (6-17)
Therefore, Eq.(9.16) assumes the standard form
T = 2pé + M Tr(€) (9.18)

When we are dealing with a linear, isotropic and homogeneous material the governing

equations of the elasticity theory can be summed up as follows
0%

P or

This is an equation of motion where the displacement field is the single unknown, which

(Aw)ﬁ(ﬁa) NP4 b = (9.19)

have been called Lamé or Navier equation. Such a motion equation for a isotropic
elastic body can be also written in a different form by utilizing the general property
V x <ﬁ X ﬁ) =V (ﬁ . ﬁ) — 626, which holds for the differential operators. The result
is

0%
o
Both Eq. (9.19) and Eq. (9.20) are linear partial differential equations of the second

(A1) V x (6 x a‘) F N+ 20 V24 b= (9.20)

order with a vector field @ (7) as unknown. In order to find a solution of Eq. (9.19)
or Eq. (9.20) we must impose some boundary conditions depending on the physical
problem under consideration. If we consider a body with an external surface S, a first
type of boundary condition fixes the values of the displacement field on this surface at
any time. It means that @ = @(Z,t) for any ¥ € S and for any ¢ in a given interval. When
the entire external surface is described by these conditions we say that we are solving
an elastic problem of the first kind (Dirichlet). A second kind of boundary conditions
fixes the stress applied on the external surface. It means that T;;n; = f;(Z,t) for any
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Z € S and for any t in a given interval. When the entire external surface is described
by these conditions we say that we are solving an elastic problem of the second kind
(Neumann). Finally, a third case can be defined by dividing the surface S in two parts
and by applying the Dirichlet conditions to the first part and the Neumann conditions
to the second part. In this case we say that we are solving an elastic problem of the
third kind, subjected to mixed boundary conditions.



