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1. Symbols

List of the most important tensor quantities used in the following sections

F̂ deformation gradient

Ĝ inverse deformation gradient

L̂ velocity gradient

J deformation Jacobian

B̂ and Ĉ left and right Cauchy tensors

Û and V̂ left and right stretching tensors

R̂ rotation tensor

η̂ Green-Lagrange tensor

ê Almansi-Eulero tensor

ĴL Lagrangian displacement gradient

ĴE Eulerian displacement gradient

D̂ rate of deformation tensor

Ŵ spin tensor

T̂ Cauchy stress tensor

T̂ 1PK first Piola-Kirchhoff stress tensor

T̂ 2PK second Piola-Kirchhoff stress tensor

Ĵ small-strain displacement gradient

ε̂ small-strain tensor

Ω̂ local rotation tensor

Ĉ stiffness tensor

2. Lagrangian versus Eulerian formalism

The motion of a body is typically referred to a reference configuration Ω0 ⊂ �3, which

is often chosen to be the undeformed configuration. After the deformation the body

occupies the current configuration Ωt ⊂ �3. Thus, the current coordinates (�x ∈ Ωt) are

expressed in terms of the reference coordinates ( �X ∈ Ω0):

�X �→ �x = Ft

(
�X
)

(2.1)

where Ft is the transformation function at any time t (see Fig. 1). More explicitely, it

means that

x1 = x1 (X1, X2, X3, t)

x2 = x2 (X1, X2, X3, t) (2.2)

x3 = x3 (X1, X2, X3, t)
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Figure 1. Reference configuration and current configuration after a deformation.

We call the set ( �X and t) Lagrangian coordinates, named after Joseph Louis Lagrange

[1736-1813], or material coordinates, or reference coordinates. The application of these

coordinates is called Lagrangian description or reference description. We can obtain

also the inverse function of Eq.(2.1) in the form

�x �→ �X = F−1
t (�x) (2.3)

or, in components

X1 = X1 (x1, x2, x3, t)

X2 = X2 (x1, x2, x3, t) (2.4)

X3 = X3 (x1, x2, x3, t)

The set (�x and t) is called Eulerian coordinates, named after Leonhard Euler [1707-

1783], or space coordinates, and their application is said Eulerian description or spatial

description. The Lagrangian coordinates were introduced by Euler in 1762, while Jean

le Rond D’Alembert [1717-1783] was the first to use the Eulerian coordinates in 1752.

In general Continuum Mechanics Lagrangian coordinates and the reference description

are the most common. The same holds true in solid Mechanics. However, in Fluid

Mechanics, due to large displacements and complex deformations, it is usually necessary

and most practical to use Eulerian coordinates and spatial description.

One of the key quantities in deformation analysis is the deformation gradient of Ωt

relative to the reference configuration Ω0, denoted F̂ , which gives the relationship of a

material line d �X before deformation to the line d�x (consisting of the same material as

d �X) after deformation. It is defined as

�x = Ft

(
�X
)

: F̂
(

�X, t
)

= �∇ �XFt

(
�X
)
⇒ d�x = F̂

(
�X, t
)

d �X (2.5)

Its components are given by

FiK =
∂xi

∂XK

∀(i, K) ∈ {1, 2, 3}2 (2.6)
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As before, we can define a deformation gradient Ĝ of the inverse function relating Ω0 to

the current configuration Ωt

�X = F−1
t (�x) : Ĝ (�x, t) = �∇�xF−1

t (�x) ⇒ d �X = Ĝ (�x, t) d�x (2.7)

In components, it assumes the form

GKi =
∂Xk

∂xi
∀(i, K) ∈ {1, 2, 3}2 (2.8)

Of course, the tensors F̂ and Ĝ are related by the relationships

Ĝ
(
Ft

(
�X
)

, t
)

= F̂−1
(

�X, t
)

(2.9)

F̂
(F−1

t (�x) , t
)

= Ĝ−1 (�x, t) (2.10)

In fact, F̂ is a Lagrangian tensor while Ĝ is an Eulerian tensor. The velocity and

acceleration fields, related to the trajectory of the particle starting at �X (Lagrangian

description) are given by

�v
(

�X, t
)

=
∂�x

∂t

(
�X, t
)

(2.11)

�a
(

�X, t
)

=
∂2�x

∂t2

(
�X, t
)

(2.12)

On the other hand, the velocity and acceleration fields in the Euler description are given

by

�v (�x, t) =
∂�x

∂t

(F−1
t (�x) , t

)
(2.13)

�a (�x, t) =
∂2�x

∂t2
(F−1

t (�x) , t
)

(2.14)

Any time-dependent scalar, vector, or tensor field can be regarded as a function of

( �X, t) (Lagrangian or material variables) or (�x, t) (Eulerian or spatial variables)

whenever the motion �x = Ft

(
�X
)

is given. For example, for a scalar field we can

write φ (�x, t) = Φ
(

�X, t
)

where

Φ
(

�X, t
)

= φ
(
Ft

(
�X
)

, t
)

(2.15)

The time derivative of the field Φ
(

�X, t
)

can be calculated as

∂Φ

∂t
=

∂φ

∂t
+

∂φ

∂�x
· ∂�x

∂t
=

∂φ

∂t
+

∂φ

∂�x
· �v (2.16)

Instead of using different symbols for the quantities (i.e. φ and Φ) in the Lagrangian

and Eulerian descriptions, we can use the dot for the Lagrangian or material derivative

(φ̇) and the partial differentiation symbol (∂φ
∂t

) for the Eulerian or spatial derivative:

therefore, Eq.(2.16) assumes the simpler form

φ̇ =
∂φ

∂t
+

∂φ

∂�x
· �v (2.17)
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The Eulerian tensor

L̂ =
∂�v

∂�x
(2.18)

with components

Lij =
∂vi

∂xj
(2.19)

satisfies the important relation

˙̂
F = L̂F̂ (2.20)

It can be proved as follows

˙̂
F =

∂

∂t

∂

∂ �X
Ft

(
�X
)

=
∂

∂ �X

∂

∂t
Ft

(
�X
)

=
∂�v

∂ �X
=

∂�v

∂�x

∂�x

∂ �X
= L̂F̂ (2.21)

It is also important an inverse relation given by

˙̂
F

−1

= −ĜL̂ (2.22)

Since d
dt

(
F̂−1F̂

)
= 0 we have

˙̂
F

−1

= −F̂−1 ˙̂
FF̂−1 (where

˙̂
F

−1

represents the Lagrangian

time derivative of the inverse of F̂ ) and, therefore, we obtain the proof of Eq.(2.22)

˙̂
F

−1

= −F̂−1 ˙̂
FF̂−1 = −F̂−1L̂F̂ F̂−1 = −F̂−1L̂ = −ĜL̂ (2.23)

2.1. Derivative of a volume integral

We consider a subset Pt ⊂ Ωt which is the time deformed version of P0 ⊂ Ω0. We search

a property giving the time derivative of an arbitrary volume integral. In this context,

the symbol d/dt can be used when it is applied to a quantity depending only on the

time t. In fact, in this case, there is no ambuguity. As before we consider a scalar field

φ and, through a change of variables between Eulerian and Lagrangian coordinates, we

obtain

d

dt

∫
Pt

φd�x =
d

dt

∫
P0

φJd �X (2.24)

where J is the determinant of the deformation gradient

J = det
∂�x

∂ �X
= det F̂ (2.25)

Then, the time derivation can enter the integral written in the reference configuration

d

dt

∫
Pt

φd�x =

∫
P0

d

dt
(φJ) d �X =

∫
P0

(
φ̇J + φJ̇

)
d �X (2.26)

The derivative of a determinant follows the rule

d

dt
det F̂ =

(
det F̂

)
tr
(

˙̂
FF̂−1

)
(2.27)

From Eq.(2.20) we obtain
˙̂
FF̂−1 = L̂ and, therefore,we have

J̇ = Jtr
(
L̂
)

= J �∇�x · �v (2.28)
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So
d

dt

∫
Pt

φd�x =

∫
P0

(
φ̇ + φ�∇�x · �v

)
Jd �X =

∫
Pt

(
φ̇ + φ�∇�x · �v

)
d�x (2.29)

Since φ̇ = ∂φ
∂t

+ ∂φ
∂�x

· �v we obtain

d

dt

∫
Pt

φd�x =

∫
Pt

(
∂φ

∂t
+ �∇�xφ · �v + φ�∇�x · �v

)
d�x (2.30)

or, finally

d

dt

∫
Pt

φd�x =

∫
Pt

[
∂φ

∂t
+ �∇�x · (φ�v)

]
d�x (2.31)

This property has been called Reynolds theorem or transport theorem. It is the most

important result used to obtain the balance equations for continuum materials. If φ = 1

we obtain
d

dt

∫
Pt

d�x =

∫
Pt

�∇�x · �vd�x (2.32)

which represent the rate of variation of the volume of the region Pt.

2.2. Derivative of a surface integral

We begin by describing the deformation of a given surface moving from the reference to

the current configuration. We therefore consider a surface �X = �X (α, β) in the reference

configuration described in parametric form by two parameters α and β. The deformed

surface in the current configuration is given by �x = Ft

(
�X (α, β)

)
. We define �NdS and

�nds as the unit normal vector multiplied by the area element in the reference and in the

current configuration, respectively. From standard differential geometry we have

�NdS =
∂ �X

∂α
∧ ∂ �X

∂β
dαdβ (2.33)

The deformed version can be straightforwardly obtained as

�nds =
∂�x

∂α
∧ ∂�x

∂β
dαdβ =

(
∂�x

∂ �X

∂ �X

∂α

)
∧
(

∂�x

∂ �X

∂ �X

∂β

)
dαdβ

=

(
F̂

∂ �X

∂α

)
∧
(

F̂
∂ �X

∂β

)
dαdβ (2.34)

The last expression can be written component by component

nids = εijkFjs
∂Xs

∂α
Fkt

∂Xt

∂β
dαdβ

and it can be multiplied by Fir on both sides

Firnids = εijkFirFjsFkt
∂Xs

∂α

∂Xt

∂β
dαdβ

Since εijkFirFjsFkt = det F̂ εrst we obtain

Firnids = Jεrst
∂Xs

∂α

∂Xt

∂β
dαdβ
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or

F̂ T�nds = J
∂ �X

∂α
∧ ∂ �X

∂β
dαdβ = J �NdS (2.35)

and finally we have obtained the relationship between �NdS and �nds

�nds = JF̂−T �NdS (2.36)

This property has been called Nanson theorem. Now, it is interesting to evaluate the

time derivative of the surface integral of a vector field �a. It can be brought back to the

reference configuration as
d

dt

∫
St

�a · �nds =
d

dt

∫
S0

�a · JF̂−T �NdS

=

∫
S0

[
�̇a · JF̂−T + �a · J̇ F̂−T + �a · J ˙̂

F
−T
]

�NdS (2.37)

Now J̇ = Jtr
(
L̂
)

= J �∇�x · �v and
˙̂
F

−T

= −F̂−T ˙̂
F

T

F̂−T and therefore

d

dt

∫
St

�a · �nds =

∫
S0

[
�̇a · JF̂−T + �a · J �∇�x · �vF̂−T − �a · JF̂−T ˙̂

F
T

F̂−T

]
�NdS

=

∫
S0

[
�̇a + �a�∇�x · �v − L̂�a

]
· JF̂−T �NdS (2.38)

where the relation
˙̂
F = L̂F̂ has been used. Finally, coming back to the current

configuration we obtain
d

dt

∫
St

�a · �nds =

∫
St

[
�̇a + �a�∇�x · �v − L̂�a

]
· �nds (2.39)

Since the material derivative is given by �̇a = ∂�a
∂t

+ ∂�a
∂�x

· �v, we obtain

d

dt

∫
St

�a · �nds =

∫
St

[
∂�a

∂t
+

∂�a

∂�x
· �v + �a�∇�x · �v − L̂�a

]
· �nds (2.40)

It is simple to verify that �∇�x ∧ (�a ∧ �v) + �v�∇�x · �a = ∂�a
∂�x

· �v + �a�∇�x · �v − L̂�a and therefore

we can write
d

dt

∫
St

�a · �nds =

∫
St

[
∂�a

∂t
+ �∇�x ∧ (�a ∧ �v) + �v�∇�x · �a

]
· �nds (2.41)

The Nanson relation �nds = JF̂−T �NdS can be also applied in order to obtain the so-

called Piola identity. To this aim we use the standard divergence theorem∫
∂Pt

Ψnids =

∫
Pt

∂Ψ

∂xi
d�x (2.42)

if Ψ = 1 identically, we obtain
∫

∂Pt
nids = 0 and, therefore∫

∂Pt

�nds =

∫
∂P0

JF̂−T �NdS =

∫
P0

�∇ �X ·
(
JF̂−1

)
d �X = 0 (2.43)

which means

�∇ �X ·
(
JF̂−1

)
= 0 ⇒ ∂

∂Xj

(
J

∂Xj

∂xi

)
= 0 (2.44)

This relation will be useful to obtain the balance equations of the continuum mechanics

in the Lagrangian description.
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Figure 2. Infinitesimal vector d �X in Ω0 and its deformed version d�x in Ωt.

3. Strain

The measure of the deformation between the reference and the current configuration is

an important topic in continuum mechanics and it can be performed in several ways.

The starting quantity is the deformation gradient F̂ ( �X) (in the Lagrangian formalism)

or its inverse Ĝ(�x) (in the Eulerian formalism). We consider two infinitesimal vectors

d �X and d�Y in Ω0 and their deformed versions d�x and d�y in Ωt (see Fig. 2 for the

deformation of d �X). The changes of lengths and angles are controlled by the scalar

product of the vectors and, therefore, we define the right and the left Cauchy tensors Ĉ

and B̂ in order to obtain d�x ·d�y = d �X · Ĉd�Y or d �X ·d�Y = d�x · B̂−1d�y (see Table 1). The

variations of the scalar product (moving from the reference to the current configuration)

are described by the Green-Lagrange tensor η̂ and by the Almansi-Eulero tensor ê as

summarized in Table 1.

Moreover, the gradients of the displacements field �u( �X) and �u(�x) are defined by

ĴL = ∂�u

∂ �X
and ĴE = ∂�u

∂�x
in the Lagrangian and Eulerian vision, respectively. In Table 2

we can find: (i) the effective variation of length for the vector d �X = �N‖d �X‖ deformed

into d�x = �n‖d�x‖; (ii) the variation of the right angle between the unit vectors �N and �T

( �N · �T = 0 in Ω0) deformed into �n and �t (in Ωt): θnt is the angle in Ωt and, therefore,

γNT = π
2
− θnt is the angle variation (with opposite sign); (iii) the variation of the right

angle between the unit vectors �n and �t (�n ·�t = 0 in Ωt) originally placed at �N and �T (in

Ω0): θNT is the angle in Ω0 and, therefore, γnt = θNT − π
2

is the angle variation (with
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Table 1. Strains definitions and properties in Lagrangian and Eulerian formalisms.

Lagrangian vision Eulerian vision

Right Cauchy tensor Left Cauchy tensor

Ĉ = F̂ T F̂ B̂ = F̂ F̂ T

Ĉ−1 = ĜĜT B̂−1 = ĜT Ĝ

d�x · d�y = d �X · Ĉd�Y d �X · d�Y = d�x · B̂−1d�y

Green-Lagrange tensor Almansi-Eulero tensor

η̂ = 1
2

(
Ĉ − Î

)
ê = 1

2

(
Î − B̂−1

)
d�x · d�y − d �X · d�Y = 2d �X · η̂d�Y d�x · d�y − d �X · d�Y = 2d�x · êd�y

Lagrange displacement gradient Eulero displacement gradient

ĴL = ∂�u

∂ �X
ĴE = ∂�u

∂�x

F̂ = Î + ĴL F̂−1 = Î − ĴE

Ĉ = Î + ĴL + ĴT
L + ĴT

L ĴL B̂−1 = Î − ĴE − ĴT
E + ĴT

E ĴE

η̂ = 1
2

(
ĴL + ĴT

L + ĴT
L ĴL

)
ê = 1

2

(
ĴE + ĴT

E − ĴT
E ĴE

)

opposite sign); (iv) the variations of volume and surface measures.

Any non singular tensor (describing a deformation) can be decomposed in two

different ways

F̂ = R̂ Û = V̂ R̂ (3.1)

where R̂ is a rotation matrix (R̂R̂T = R̂T R̂ = Î) while Û and V̂ are symmetric

and positive definite tensors. In order to prove this polar decomposition theorem

due to Cauchy, we use the right Cauchy tensor Ĉ = F̂ T F̂ : it is symmetric since(
F̂ T F̂

)T

= F̂ T F̂ TT = F̂ T F̂ and it is positive definite as proved by the following relation

�wT F̂ T F̂ �w =
(
F̂ �w
)T (

F̂ �w
)

= ‖F̂ �w‖ ≥ 0 ∀ �w (3.2)

If F̂ T F̂ is symmetric and positive definite then it can be diagonalized in the field of real

numbers. Therefore, we can write F̂ T F̂ = Q̂−1�̂Q̂ where Q̂ is non singular and �̂ is

diagonal. We define

Û =
√

F̂ T F̂ =
√

Ĉ (3.3)

The square root of the tensor can be defined (and calculated) as follows

Û =
√

F̂ T F̂ =

√
Q̂−1�̂Q̂ = Q̂−1

√
�̂Q̂ (3.4)

in fact (
Q̂−1

√
�̂Q̂

)2

= Q̂−1

√
�̂Q̂Q̂−1

√
�̂Q̂ = Q̂−1

√
�̂
√

�̂Q̂ = Q̂−1�̂Q̂ (3.5)
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Table 2. Variations measure in Lagrangian and Eulerian formalisms.

Lagrangian vision Eulerian vision

Lagrangian length variation Eulerian length variation
�N = d �X

‖d �X‖ �n = d�x
‖d�x‖

εNN = ‖d�x‖−‖d �X‖
‖d �X‖ =

√
�N · Ĉ �N − 1 εnn = ‖d�x‖−‖d �X‖

‖d�x‖ = 1 −
√

�n · B̂−1�n

εNN + 1
2
ε2
NN = �N · η̂ �N εnn − 1

2
ε2
nn = �n · ê�n

Lagrangian angle variation Eulerian angle variation
�N · �T = 0 �n · �t = 0

γNT = π
2
− θnt γnt = θNT − π

2

sin(γNT ) = 2 �N ·η̂ �T√
�N ·Ĉ �N

√
�T ·Ĉ �T

sin(γnt) = 2�n·ê�t√
�n·B̂−1�n

√
�t·B̂−1�t

Lagrangian volume variation Eulerian volume variation

J = det(F̂ ) J−1 = det(Ĝ)

ΘV = dv−dV
dV

= J − 1 Θv = dv−dV
dv

= 1 − 1
J

Lagrangian surface variation Eulerian surface variation
�NdS = J−1F̂ T�nds �nds = JF̂−T �NdS

ΘN = ‖�nds‖−‖ �NdS‖
‖ �NdS‖ Θn = ‖�nds‖−‖ �NdS‖

‖�nds‖

ΘN = J
√

�N · Ĉ−1 �N − 1 Θn = 1 − J−1
√

�n · B̂�n

where

√
�̂ = diag(

√
λi) if �̂ = diag(λi) (the symbol diag explicitely indicates the entries

of a diagonal matrix). Finally, we define R̂ = F̂ Û−1 and we verify its ortogonality

R̂T R̂ =
(
Û−1

)T

F̂ T F̂ Û−1 =
(
Û−1

)T

Û2Û−1 = Û−1Û Û Û−1 = Î (3.6)

This concludes the proof of the first polar decomposition. We have to prove the unicity

of the right decomposition F̂ = R̂ Û . We can suppose the two different decompositions

F̂ = R̂ Û = R̂∗Û∗ exist. It follows that F̂ T F̂ = Û2 = Û∗2 from which Û = Û∗ and,

therefore, R̂ = R̂∗. It proves the unicity of the right decomposition. Similarly we can

obtain the left decomposition by defining V̂ =
√

F̂ F̂ T =
√

B̂: it is possible to prove

that it is symmetric and positive definite and we define R̂′ = V̂ −1F̂ , which is orthogonal.

To conclude we must verify that R̂′ = R̂. Since R̂′
(
R̂′
)T

= Î we have F̂ = V̂ R̂′ =

R̂′
(
R̂′
)T

V̂ R̂′. The unicity of the right decomposition (F̂ = R̂ Û) allows us to affirm

that R̂′ = R̂ and that Û = R̂T V̂ R̂. This completes the proof of the polar decomposition

Cauchy theorem.

This decomposition implies that the deformation of a line element d �X in the

undeformed configuration onto d�x in the deformed configuration, i.e. d�x = F̂ d �X may

be obtained either by first stretching the element by Û i.e. d�x′ = Ûd �X, followed by
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Figure 3. Polar decomposition applied to a given deformation.

a rotation R̂, i.e. d�x = R̂d�x′ or, equivalently, by applying a rigid rotation R̂ first, i.e.

d�x′′ = R̂d �X followed later by a stretching V̂ , i.e. d�x = V̂ d�x′′ (seeFig. 3).

4. Stress

In continuum mechanics we must consider two systems of forces acting on a given region

of a material body:

• the body forces. They are dependent on the external fields acting on the elastic

body and they are described by the vector field �b(�x) representing their density on

the volume in the current configuration. The physical meaning of such a density of

forces can be summed up stating that the total force d�Fv applied to a small volume

d�x centered on the point �x is given by d�Fv = �b(�x)d�x. A typical example is given by

the gravitational forces proportional to the mass of the region under consideration.

In this case we can write d�Fv = �gdm where �g is the gravitational acceleration and

dm is the mass of the volume d�x. If we define ρ = dm
d�x

as the density of the body,

we simply obtain �b(�x) = ρ�g.

• the surface forces. In continuum mechanics we are additionally concerned with the

interaction between neighbouring portions of the interiors of deformable bodies. In

reality such an interaction consists of complex interatomic forces, but we make the

simplifying assumption that the effect of all such forces across any given surface

may be adequately represented by a single vector field defined over the surface. It

is important to observe that the nature of the forces exerted between two bodies

in contact is identical to the nature of the actions applied between two portions of
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Figure 4. Cauchy tetrahedron on a generic point P.

the same body, separated by an ideal surface.

In order to begin the mathematical descriptions of the forces, it is useful to introduce

the following notation for the surface force d�Fs applied to the area element ds (with unit

normal vector �n) of the deformed configuration

d�Fs = �f (�x, �n, t) ds (4.1)

where �f assumes the meaning of a density of forces distributed over the surface. By

definition, the force d�Fs is applied by the region where the unit vector �n is directed to

the other region beyond the ideal surface (or interface). We can now recall the Cauchy

theorem on the existence of the stress tensor describing the distribution of the surface

forces in a given elastic body. More precisely, we can say that a tensor T̂ exists such

that

�f (�x, �n, t) = T̂ (�x, t)�n (4.2)

where �n is the external normal unit vector to the surface delimiting the portion of body

subjected to the force field �f . The quantity T̂ has been called Cauchy stress tensor or

simply stress tensor. This very important result has been firstly published by Cauchy in

1827 in the text “Exercices de mathématique”. The forces applied to the area element

can be therefore written in the following form

d�Fs = T̂ (�x)�nds (4.3)

or, considering the different components
dFs,i

ds
= Tijnj . So, we may identify the stress

tensor T̂ with a sort of vector pressure. Its physical unit is therefore the Pa (typical

values in solid mechanics range from MPa to GPa). The proof of the Cauchy theorem

can be performed as follows.

We consider a generic point P in the deformed configuration and a small tetrahedron

as described in Fig. 4. The oblique plane is defined by a unit vector �n and by the distance
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dh from P. The faces of the tetrahedron have areas dA1, dA2, dA3 and dAn and the

outgoing normal unit vectors are −�E1, −�E2, −�E3 and �n (where the vectors �Ei belong

to the reference base). We define �f1, �f2, �f3 and �fn as the surface forces acting on each

face and �b as the body force distributed over the volume. The motion equation is

�fndAn + �f1dA1 + �f2dA2 + �f3dA3 +�b dv = ρ�adv (4.4)

where �a is the acceleration of the tetrahedron with mass ρdv. From Eq.(4.1) we

can identify �fn = �f (�n, �x, t) and �fk = �f
(
−�Ek, �x, t

)
, ∀ k = 1, 2, 3. Moreover,

dAi = nidAn , ∀ i = 1, 2, 3 and dv = 1
3
dAndh, so we can write Eq. (4.4) as follows

(sum over j)

�f (�n, �x, t) + �f
(
−�Ej , �x, t

)
nj +

1

3
�b dh =

1

3
ρ �a dh (4.5)

In the limit of dh → 0 we obtain (sum over j)

�f (�n, �x, t) = −�f
(
−�Ej , �x, t

)
nj (4.6)

Now we can use the previous result with �n = �Ei (for any i = 1, 2, 3), by obtaining

�f
(

�Ei, �x, t
)

= −�f
(
−�Ei, �x, t

)
(4.7)

This is a sort of third law of the dynamics written in term of surface forces. Now,

Eq.(4.6) can be simply rewritten as (sum over j)

�f (�n, �x, t) = �f
(

�Ej , �x, t
)

nj (4.8)

This result shows that the surface force �f on a given plane is determined by the three

surface forces on the three coordinate planes; in components

fi (�n, �x, t) = �f (�n, �x, t) · �Ei = �f
(

�Ej , �x, t
)
· �Einj = Tijnj (4.9)

where the Cauchy stress T̂ is represented by Tij = �f
(

�Ej , �x, t
)
· �Ei. To better understand

the physical meaning of the stress tensor we consider the cubic element of volume shown

in Fig.5, corresponding to an infinitesimal portion dV = (dl)3 taken in an arbitrary solid

body. The six faces of the cube have been numbered as shown in Fig.5. We suppose

that a stress T̂ is applied to that region: the Tij component represents the pressure

applied on the j-th face along the i-th direction.

The Cauchy stress tensor is the most natural and physical measure of the state

of stress at a point in the deformed configuration and measured per unit area of the

deformed configuration. It is the quantity most commonly used in spatial or Eulerian

description of problems in continuum mechanics. Some other stress measures must

be introduced in order to describe continuum mechanics in the Lagrangian formalism.

From Cauchy formula, we have d�Fs = T̂�nds, where T̂ is the Cauchy stress tensor. In a

similar fashion, we introduce a stress tensor T̂ 1PK, called the first Piola-Kirchhoff stress

tensor, such that d�Fs = T̂ 1PK �NdS. By using the Nanson formula �nds = JF̂−T �NdS we

obtain

d�Fs = T̂ JF̂−T �NdS = T̂ 1PK �NdS (4.10)
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Figure 5. Geometrical representation of the stress tensor T̂ : the Tij component
represents the pressure applied on the j-th face of the cubic volume along the i-th
direction.

and therefore

T̂ 1PK = JT̂ F̂−T (4.11)

Sometimes it is useful to introduce another state of stress T̂ 2PK, called the second Piola-

Kirchhoff stress tensor, defined as F̂−1d�Fs = T̂ 2PK �NdS. We simply obtain

F̂−1d�Fs = F̂−1T̂ JF̂−T �NdS = T̂ 2PK �NdS (4.12)

and therefore

T̂ 2PK = JF̂−1T̂ F̂−T = F̂−1T̂ 1PK (4.13)

The stress tensors T̂ 1PK and T̂ 2PK will be very useful for the finite elasticity theory

described within the Lagrangian formalism.

5. Continuity equation

The first balance equation of the continuum mechanics concerns the mass distribution.

We define the mass density: we will use ρ0( �X) in the Lagrangian formalism and ρ (�x, t)

in the Eulerian description. The total mass of the region Pt is given by

m (Pt) =

∫
Pt

ρ(�x, t)d�x (5.1)

The consevation of the mass gives∫
Pt

ρ(�x, t)d�x =

∫
P0

ρ0( �X)d �X or
d

dt

∫
Pt

ρ(�x, t)d�x = 0 (5.2)

The first equality in Eq.(5.2) can be also written∫
P0

ρJd �X =

∫
P0

ρ0d �X (5.3)



CONTENTS 15

and we simply obtain

ρJ = ρ0 (5.4)

On the other hand, from the second equality in Eq.(5.2) we have∫
Pt

(
ρ̇ + ρ�∇�x · �v

)
d�x =

∫
Pt

[
∂ρ

∂t
+ �∇�x · (ρ�v)

]
d�x = 0 (5.5)

and therefore we obtain two forms of the continuity equation

ρ̇ + ρ�∇�x · �v = 0 (5.6)

∂ρ

∂t
+ �∇�x · (ρ�v) = 0 (5.7)

It is important for the following applications to evaluate expressions of this kind:
d
dt

∫
Pt

ρ(�x, t)Ψ(�x, t)d�x; to this aim we use the Reynolds theorem with φ = ρΨ

d

dt

∫
Pt

ρΨd�x =

∫
Pt

(
ρ̇Ψ + ρΨ̇ + ρΨ�∇�x · �v

)
d�x =

∫
Pt

ρΨ̇d�x (5.8)

It means that, when there is the density in the integrand, the time derivative must be

applied directly to the function Ψ.

6. Balance equations: Euler description

The other two important balance equations can be derived by the principles of linear

and angular momentum. When dealing with a system of particles, we can deduce from

Newton’s laws of motion that the resultant of the external forces is equal to the rate of

change of the total linear momentum of the system. By taking moments about a fixed

point, we can also show that the resultant moment of the external forces is equal to the

rate of change of the total moment of momentum. Here we define the linear and angular

momentum density for a continuum and we introduce balance laws for these quantities.

We consider a portion Pt in a material body and we define �P as its linear momentum,
�F as the resultant of the applied forces, �L as the total angular momentum and, finally,
�M as the resultant moment of the applied forces. The standard principles for a system

of particles can be written as follows

d�P

dt
= �F

d�L

dt
= �M (6.1)

We start with the first principle, applied to the portion of body contained to the region

Pt, limited by the closed surface ∂Pt

d

dt

∫
Pt

ρ�vd�x =

∫
∂Pt

T̂�nds +

∫
Pt

�bd�x (6.2)

where we have utilized the decomposition of the forces (body forces and surface forces)

as described in the previous section. The previous equation can be simplified by means

of Eq.(5.8) and the divergence theorem, by obtaining∫
Pt

ρ�̇vd�x =

∫
Pt

�∇�x · T̂ d�x +

∫
Pt

�bd�x (6.3)
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Since the volume Pt is arbitrary, we easily obtain the first balance equation for the

elasticty theory (Eulerian description)

�∇�x · T̂ +�b = ρ�̇v (6.4)

This is the basic linear momentum equation of continuum mechanics. We remark that

the divergence of a tensor is applied on the second index; in fact, in components, we

simply obtain

∂Tji

∂xi

+ bj = ρv̇j (6.5)

Further, we observe that

�̇v =
∂�v

∂t
+

∂�v

∂�x
· �v =

∂�v

∂t
+

1

2
�∇�x (�v · �v) +

(
�∇�x ∧ �v

)
∧ �v (6.6)

and, therefore Eq.(6.4) is equivalent to

�∇�x · T̂ +�b = ρ

[
∂�v

∂t
+

∂�v

∂�x
· �v
]

(6.7)

or

�∇�x · T̂ +�b = ρ

[
∂�v

∂t
+

1

2
�∇�x (�v · �v) +

(
�∇�x ∧ �v

)
∧ �v

]
(6.8)

Now, we consider the principle of the angular momentum. For the region Pt such

a balance equation can be written in the following form

d

dt

∫
Pt

�x ∧ ρ�vd�x =

∫
∂Pt

�x ∧
(
T̂�n
)

ds +

∫
Pt

�x ∧�b d�x (6.9)

As before, the surface integral can be simplified with the application of the divergence

theorem, by obtaining, after some straightforward calculations∫
∂Pt

�x ×
(
T̂�n
)

ds =

∫
Pt

[
Tkh + xh

∂Tkp

∂xp

]
ηhkj�ejd�x (6.10)

So, the second balance equation assumes the form∫
Pt

{
xh

[
ρv̇k − ∂Tkp

∂xp

− bk

]
− Tkh

}
ηhkj�ejd�x = 0 (6.11)

The term in bracket is zero because of the first balance equation. Therefore, we obtain∫
Pt

Tkhηhkj�ejd�x = 0 or, equivalently, Tkhηhkj = 0. Finally, the second principle leads to

Tij = Tji (6.12)

In other words, we may state that the principle of the angular momentum assures the

symmetry of the Cauchy stress tensor.
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7. Balance equations: Lagrange description

In finite elasticity theory the Lagrangian description is the most important point of

view since it allows to determine the exact transformation �x = Ft

(
�X
)

between the

reference and the actual configurations. In the case of finite deformations (arbitrarily

large), the Piola-Kirchhoff stress tensors above defined are used to express the stress

relative to the reference configuration. This is in contrast to the Cauchy stress tensor

which expresses the stress relative to the current configuration. In order to obtain the

Lagrangian equations of motion it is useful to introduce the so-called Piola transform
�W ( �X, t) (which is a Lagrangian vector field) of a given Eulerian vector field �w(�x, t)

�w(�x, t) ⇒ �W ( �X, t) = JF̂−1 �w(Ft

(
�X
)

, t) (7.1)

An important relation gives the relationship between the divergence of the two fields: of

course, the divergence of �W ( �X, t) is calculated with respect to the Lagrangian variables
�X while that of �w(�x, t) is calculated with respect to the Eulerian variables �x

�∇ �X · �W ( �X, t) =
∂Wi

∂Xi
=

∂

∂Xi

(
J

∂Xi

∂xs
ws

)

=
∂

∂Xi

(
J

∂Xi

∂xs

)
ws + J

∂Xi

∂xs

∂ws

∂Xi

(7.2)

The first term is zero for the Piola identity given in Eq.(2.44), and therefore

�∇ �X · �W ( �X, t) = J
∂Xi

∂xs

∂ws

∂Xi

= J
∂ws

∂xs

(7.3)

It means that we have obtained the important relation

�∇ �X · �W ( �X, t) = J �∇�x · �w(�x, t) (7.4)

We can also make a Piola transformation on a given index of a tensor. For example,

if Tji the Cauchy stress tensor, we may use the above tranformation on the last index.

We apply this procedure to transform the motion equation from the Eulerian to the

Lagrangian coordinates

∂Tji

∂xi
+ bj = ρv̇j ⇒ 1

J

∂

∂Xi

(
J

∂Xi

∂xs
Tjs

)
+ bj = ρv̇j (7.5)

or, identifying the deformation gradient

∂

∂Xi

[
J(F̂−1)isTjs

]
+ Jbj = ρJv̇j (7.6)

By using the relation ρ0 = Jρ we obtain

∂

∂Xi

[
JTjs(F̂

−T )si

]
+

ρ0

ρ
bj = ρ0v̇j (7.7)

Since we have defined the first Piola-Kirchhoff stress tensor as T̂ 1PK = JT̂ F̂−T we obtain

�∇ �X · T̂ 1PK +
ρ0

ρ
�b = ρ0�̇v (7.8)
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Now, we consider the principle of the angular momentum: since T̂ = 1
J
T̂ 1PKF̂ T and

T̂ = T̂ T we obtain

T̂ 1PKF̂ T = F̂ T̂ 1PKT (7.9)

These two important results can be also expressed in terms of the second Piola-Kirchhoff

stress tensor T̂ 2PK = F̂−1T̂ 1PK. We simply obtain the linear momentum balance

�∇ �X ·
(
F̂ T̂ 2PK

)
+

ρ0

ρ
�b = ρ0�̇v (7.10)

and the angular momentum balance

T̂ 2PK = T̂ 2PKT (7.11)

Of course, Eqs.(7.10) and (7.11) must be completed by the constitutive equations and

by the boundary conditions.

7.1. Novozhilov formulation.

We consider the standard base of unit vectors �E1, �E2 and �E3 in the point �X of

the reference configuration. Since the motion is controlled by the tranformation

�x = Ft

(
�X
)
, the unit vectors �ei in the deformed configuration are given by the direction

of the deformed coordinate lines

�ei =

∂Ft( �X)
∂Xi

‖∂Ft( �X)
∂Xi

‖
=

F̂ �Ei

‖F̂ �Ei‖
(7.12)

We remark that they do not form an orthogonal base. First of all, we simply obtain the

norm of F̂ �Ei

‖F̂ �Ei‖ =

√(
F̂ �Ei

)
·
(
F̂ �Ei

)
=
√

FkiFki =

√(
F̂ T F̂

)
ii

=
√

Cii (7.13)

where Ĉ is the right Cauchy tensor. We define the unit vectors �n1, �n2 and �n3

perpendicular to the planes (�e2, �e3), (�e1, �e3) and (�e1, �e2). It means that we can write

�nk =
1

2
ηkij

�ei ∧ �ej

‖�ei ∧ �ej‖ =
1

2
ηkij

(
F̂ �Ei

)
∧
(
F̂ �Ej

)
‖
(
F̂ �Ei

)
∧
(
F̂ �Ej

)
‖

(7.14)

Now, we start with the calculation of ‖
(
F̂ �Ei

)
∧
(
F̂ �Ej

)
‖

‖
(
F̂ �Ei

)
∧
(
F̂ �Ej

)
‖ =

√
ηkstFsiFtjηkabFaiFbj

=
√

(δsaδtb − δsbδta) FsiFtjFaiFbj

=
√

CiiCjj − C2
ij (7.15)

We can also write

dsk

dSk
=
√

CiiCjj − C2
ij (7.16)
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where the indices i and j are complementary to k and dSk and dsk are the surface

elements in the reference and current configuration having unit normal vector �nk. Since(
F̂ �Ei

)
∧
(
F̂ �Ej

)
= ηqstFsiFtj

�Eq, we therefore obtain

�nk =
1

2
ηkij

ηqstFsiFtj
�Eq√

CiiCjj − C2
ij

(7.17)

Since ηqstFsiFtjFqa = Jηaij we can simply write ηqstFsiFtj = Jηaij(F̂
−1)aq; this result

can be used in Eq.(7.17) to yield

�nk =
1

2
ηkij

Jηaij(F̂
−1)aq

�Eq√
CiiCjj − C2

ij

(7.18)

When k is fixed the indices i and j can assume two couples of values [if k =1 we have

(i, j)=(2,3) or (3,2), if k =2 we have (i, j)=(1,3) or (3,2) and if k =3 we have (i, j)=(2,1)

or (1,2)] and the index a must assume the value k. At the end we evetually obtain

�nk =
J(F̂−1)kq

�Eq√
CiiCjj − C2

ij

=
dSk

dsk
J(F̂−1)kq

�Eq (7.19)

where the indices i and j are complementary to k (there is not the sum on k). We may

consider the forces acting on the three deformed coordinate planes (�e2, �e3), (�e1, �e3) and

(�e1, �e2) (having normal unit vectors �n1, �n2 and �n3, respectively) through the expressions

�T�nk =
J(F̂−1)kq

�T �Eq√
CiiCjj − C2

ij

=
dSk

dsk

J(F̂−1)kq
�T �Eq (7.20)

These vectors can be represented on both the base �Ei and �ei as follows

�T�nk = σE
sk

�Es (7.21)

�T�nk = σe
sk�es (7.22)

where, since �E1, �E2 and �E3 is an orthonormal base, we have

σE
sk = �T�nk · �Es =

dSk

dsk
J(F̂−1)kq

�T �Eq · �Es =
dSk

dsk
J(F̂−1)kqTsq (7.23)

Moreover, we have the following relation between σE
sk and σe

sk

σE
sk = �T�nk · �Es = σe

jk�ej · �Es = σe
jk

F̂ �Ej · �Es√
Cjj

=
1√
Cjj

Fsjσ
e
jk (7.24)

The representations σE
sk and σe

sk have been introduced by Novozhilov in his pioneering

book on nonlinear elasticity. The Lagrangian equation of motion can be written as (see

Eq.(7.6))

∂

∂Xk

[
J(F̂−1)kqTsq

]
+ Jbs = ρJv̇s (7.25)
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and then it can be expressed in terms of σE
sk

∂

∂Xk

[
dsk

dSk

σE
sk

]
+ Jbs = ρJv̇s (7.26)

or in terms of σe
sk

∂

∂Xk

[
dsk

dSk

1√
Cjj

Fsjσ
e
jk

]
+ Jbs = ρJv̇s (7.27)

Finally, since it is evident that
√

Cjj = dlj/dLj, we can state the Lagrangian equations

of motion in the Novozhilov form

∂

∂Xk

[
dsk

dSk

dlj
dLj

Fsjσ
e
jk

]
+ Jbs = ρJv̇s (7.28)

8. Nonlinear constitutive equations

The constitutive equations represent the relation between the stress and the strain and,

therefore, they depend on the material under consideration. Here we prove that there

is a strong conceptual connection between the constitutive equations and the energy

balance for a continuum body. We start from the motion equation in the Eulerian

formalism and we multiply both sides to the velocity component vj

vj
∂Tji

∂xi
+ vjbj = ρvj v̇j (8.1)

This expression can also be written as

∂ (vjTji)

∂xi
− Tji

∂vj

∂xi
+ vjbj = ρvj v̇j (8.2)

The Eulerian velocity gradient Lji =
∂vj

∂xi
can be decomposed in the symmetric and

skew-symmetric parts

Lji =
∂vj

∂xi

=
1

2

(
∂vj

∂xi

+
∂vi

∂xj

)
︸ ︷︷ ︸

symmetric

+
1

2

(
∂vj

∂xi

− ∂vi

∂xj

)
︸ ︷︷ ︸

skew−symmetric

= Dji + Wji (8.3)

where D̂ is the rate of deformation tensor and Ŵ is the spin tensor. Therefore, the

energy balance equation assumes the local form form

∂ (vjTji)

∂xi

− TjiDji + vjbj = ρvj v̇j (8.4)

By using the property in Eq. (5.8) we also obtain the global version on the region Pt

d

dt

∫
Pt

1

2
ρvjvjd�x +

∫
Pt

TjiDjid�x =

∫
∂Pt

Tjinivjd�x +

∫
Pt

vjbjd�x (8.5)

The second side of this balance represents the power input (product between force and

velocity) consisting of the rate of work done by external surface tractions Tjini per unit

area and body forces bj per unit volume of the region Pt bounded by ∂Pt. Since the

time-rate of change of the total energy is equal to the the rate of work done by the
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external forces (first principle of thermodynamics without thermal effects), we identify

the first side as dE/dt where E is the total energy contained in Pt. Moreover, the total

energy can be written as E = K+U where K is the kinetic energy and U is the potential

energy. Since K =
∫
Pt

1
2
ρvjvjd�x is the standard kinetic energy, we identify

dU
dt

=

∫
Pt

TjiDjid�x (8.6)

We define the energy density U per unit volume in the reference configuration and

therefore ρ
ρ0

U is the energy density per unit volume in the current configuration. We

obtain

U =

∫
Pt

ρ

ρ0

Ud�x (8.7)

By drawing a comparison between Eqs.(8.6) and (8.7) we obtain∫
Pt

TjiDjid�x =
d

dt

∫
Pt

ρ

ρ0

Ud�x (8.8)

By using the property in Eq. (5.8) we obtain

ρ

ρ0
U̇ = TjiDji (8.9)

We introduce now a general statement affirming that the strain energy function U

depends upon the deformation gradient F̂ : therefore, we have U = U(F̂ ). This relation

can be simplified by means of the principle of material objectivity (or material frame

indifference), which says that the energy (and the stress) in the body should be the same

regardless of the reference frame from which it is measured. If we consider a motion

�x = Ft( �X) we obtain a corresponding deformation gradient F̂ ; on the other hand, if we

consider a roto-translated motion �x = Q̂(t)Ft( �X) + �c(t) (where Q̂(t) is an orthogonal

matrix and �c(t) is an arbitrary vector), then the deformation gradient is Q̂F̂ . In both

cases we must have the same energy and therefore

U(F̂ ) = U(Q̂F̂ ) ∀Q̂ : Q̂Q̂T = Î (8.10)

Now, the deformation gradient F̂ can be decomposed through F̂ = R̂Û by obtaining

U(F̂ ) = U(Q̂R̂Û) ∀Q̂ : Q̂Q̂T = Î (8.11)

By imposing Q̂ = R̂T we have U(F̂ ) = U(Û) and, since Û2 = Ĉ, we finally obtain the

dependance

U(F̂ ) = U(Ĉ) (8.12)

where Ĉ is the right Cauchy tensor. The choice of Ĉ as an independent variable

is convenient because, from its definition, Ĉ = F̂ T F̂ is a rational function of the

deformation gradient F̂ . Now we can calculate U̇ as follows

U̇ =
∂U

∂Cij
Ċij =

∂U

∂Cij

(
FkiḞkj + ḞkiFkj

)
(8.13)
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We remember that Ḟkj = LksFsj (see Eq.(2.20)) and we obtain

U̇ =
∂U

∂Cij
(FkiLksFsj + LksFsiFkj)

= tr

[
∂U

∂Ĉ
F̂ T L̂F̂ +

∂U

∂Ĉ
F̂ T L̂T F̂

]
= tr

[
2
∂U

∂Ĉ
F̂ T D̂F̂

]
(8.14)

where D̂ is the rate of deformation tensor defined as the symmetric part of the velocity

gradient L̂. Through the comparison of Eqs.(8.9) and (8.14) we obtain

tr

[
ρ0

ρ
T̂ D̂

]
= tr

[
2
∂U

∂Ĉ
F̂ T D̂F̂

]
(8.15)

Further, from the commutation rule tr(ÂB̂) = tr(B̂Â) of the trace operation we arrive

at the following relationships, which must be satisfied for any possible D̂

tr

[
ρ0

ρ
T̂ D̂

]
= tr

[
2F̂

∂U

∂Ĉ
F̂ T D̂

]
(8.16)

Therefore, we obtain the formal connection between the constitutive equation (giving

the Cauchy stress tensor) and the strain energy function in the form

T̂ = 2
ρ

ρ0
F̂

∂U

∂Ĉ
F̂ T (8.17)

Similarly for the first Piola-Kirchhoff stress tensor we obtain

T̂ 1PK = JT̂ F̂−T = 2F̂
∂U

∂Ĉ
(8.18)

and finally for the second Piola-Kirchhoff stress tensor

T̂ 2PK = F̂−1T̂ 1PK = 2
∂U

∂Ĉ
(8.19)

We have proved that an arbitrarily nonlinear constitutive equation can be always written

by means of derivations of the strain energy function: it means that the strain energy

function contains the complete information about the nonlinear elastic response of a

given material. For the particular case of nonlinear isotropic material the strain energy

function U must depend only upon the invariants of the right Cauchy tensor Ĉ. We

observe that they are defined as

IC = tr
[
Ĉ
]

(8.20)

IIC =
1

2

[(
trĈ
)2

− tr
(
Ĉ2
)]

(8.21)

IIIC = det Ĉ (8.22)

and therefore we have U = U(IC , IIC , IIIC). We remember that the three invariants

define the characteristic polynomial of the tensor Ĉ

det
(
Ĉ − λÎ

)
= −λ3 + λ2IC − λIIC + IIIC (8.23)

and satisfy the so-called Cayley-Hamilton theorem

0̂ = −Ĉ3 + ICĈ2 − IICĈ + IIIC Î (8.24)
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It is possible to prove that

∂IC

∂Ĉ
= Î;

∂IIC

∂Ĉ
= IC Î − Ĉ;

∂IIIC

∂Ĉ
= IIICĈ−1; (8.25)

and therefore we obtain

∂U(IC , IIC , IIIC)

∂Ĉ
=

∂U

∂IC

∂IC

∂Ĉ
+

∂U

∂IIC

∂IIC

∂Ĉ
+

∂U

∂IIIC

∂IIIC

∂Ĉ

=
∂U

∂IC
Î +

∂U

∂IIC

(
IC Î − Ĉ

)
+

∂U

∂IIIC
IIICĈ−1 (8.26)

This expression can be used in the Cauchy and Piola-Kirchhoff tensors given in

Eqs.(8.17), (8.18) and (8.19) in order to obtain their final form in terms of the invariants

of the right Cauchy tensor Ĉ. Sometime the stress tensors can also be expressed in term

of the Green-Lagrange strain tensor η̂ = 1
2

(
Ĉ − Î

)
; since 2dη̂ = dĈ, we have

T̂ =
ρ

ρ0
F̂

∂U

∂η̂
F̂ T ; T̂ 1PK = F̂

∂U

∂η̂
; T̂ 2PK =

∂U

∂η̂
(8.27)

In this case the strain energy function U (for unit volume of the reference configuration)

may be developed in power series with respect to the components of η̂. This leads to

the expression

U(η̂) =
1

2
CL

ijkhηijηkh +
1

6
CL

ijkhnmηijηkhηnm + ... (8.28)

Here the CL
ijkh and the CL

ijkhnm denote the second order elastic constants (SEOC) and the

third order elastic constants (TOEC), respectively (within the Lagrangian formalism).

9. The small-strain approximation

In the infinitesimal elasticity theory the extent of the deformations is assumed small.

While this notion is rather intuitive, it can be formalized by imposing that for small

deformations F̂ is very similar to Î or, equivalently, that Ĝ is very very similar to Î.

It means that both ĴL and ĴE are very small. Therefore, we adopt as an operative

definition of small deformation the relations

Tr(ĴLĴT
L ) � 1 and Tr(ĴEĴT

E ) � 1 (9.1)

i.e., a deformation will be hereafter regarded to as small provided that the trace of the

product ĴLĴT
L or ĴE ĴT

E is negligible. It means that we can assume ĴL = ĴE = Ĵ and

that we can interchange the Eulerian and the Lagrangian variables without problems.

Here, we write all the equations with the Eulerian variables �x. We observe that Ĵ can

be written as the sum of a symmetric and a skew-symmetric (antisymmetric) part as

follows

Jij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
︸ ︷︷ ︸

symmetric

+
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
︸ ︷︷ ︸

skew−symmetric

= εij + Ωij (9.2)
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Figure 6. Two-dimensional geometric deformation of an infinitesimal material
element.

The meaning of the displacement gradient can be found in Fig. 6 for a two-dimensional

configuration. Accordingly, we define the (symmetric) infinitesimal strain tensor (or

small strain tensor) as

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(9.3)

and the (antisymmetric) local rotation tensor as

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
(9.4)

Such a decomposition is useful to obtain three very important properties of the small

strain tensor, which is the key quantity to determine the state of deformation of an

elastic body:

• for a pure local rotation (a volume element is rotated, but not changed in shape

and size) we have Ĵ = Ω̂ and therefore ε̂ = 0. This means that the small strain

tensor does not take into account any local rotation, but only the changes of shape

and size (dilatations or compression) of that element of volume.

Let us clarify this fundamental result. We consider a point �x inside a volume

element which is transformed to �x + �u(�x) in the current configuration. Under a

pure local rotation we have: �x+�u(�x) = R̂�x, where R̂ is a given orthogonal rotation

matrix (satisfying R̂R̂T = Î). We simply obtain �u(�x) = (R̂ − Î)�x or, equivalently,

Ĵ = R̂ − Î. Since the applied deformation (i.e., the local rotation) is small by

hypothesis, we observe that the difference R̂ − Î is very small too. The product

Ĵ ĴT will be therefore negligible, leading to the following expression

0 ∼= Ĵ ĴT =
(
R̂ − Î

)(
R̂T − Î

)
= R̂R̂T − R̂ − R̂T + Î
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= Î − R̂ − R̂T + Î = −Ĵ − ĴT (9.5)

Therefore Ĵ = −ĴT or, equivalently, Ĵ is a skew-symmetric tensor. It follows that

Ĵ = Ω̂ and ε̂ = 0. We have verified that a pure rotation corresponds to zero strain.

In addition, we remark that the local rotation of a volume element within a body

cannot be correlated with any arbitrary force exerted in that region (the forces are

correlated with ε̂ and not with Ω̂): for this reason the infinitesimal strain tensor is

the only relevant object for the analysis of the deformation due to applied loads in

elasticity theory.

• the infinitesimal strain tensor allows for the determination of the length variation

of any vector from the reference to the current configuration. By defining εnn as

the relative length variation in direction �n, we have from Table 2

εnn = �n · ε̂�n (9.6)

If �n is actually any unit vector of the reference frame, it is straightforward to

attribute a geometrical meaning to the components ε11, ε22, ε33 of the strain tensor.

Since εnn = �ei · (ε̂ �ei) = εii, they describe the relative length variations along the

three axes of the reference frame.

• the infinitesimal strain tensor allows for the determination of the angle variation

between any two vectors from the reference to the current configuration. The

variation of the angle defined by the two orthogonal directions �n and �t can be

obtained from Table 2

γnt = 2�n · ε̂�t (9.7)

The present result is also useful for giving a direct geometrical interpretation of the

components ε12, ε23 and ε13 of the infinitesimal strain tensor. As an example, we

take into consideration the component ε12 and we assume that �n = �e1 and �t = �e2.

The quantity γnt represents the variation of a right angle lying on the plane (x1, x2).

Since ε12 = �e1 · (ε̂ �e2), we easily obtain the relationship γnt = 2ε12 = ∂u1

∂x2
+ ∂u2

∂x1
. In

other words, ε12 is half the variation of the right angle formed by the axis x1 and

x2. Of course, the same interpretation is valid for the other components ε23 and

ε13.

The result of the application of the small strain approximation on the main

quantities of the continuum mechanics is summarized in Table 3.

Knowing the ε̂ tensor field within a strained (i.e., deformed) elastic body allows us

to calculate the volume change ∆V of a given region. We get ∆V =
∫

V
Tr(ε̂)d�x, where

V is the volume of the unstrained region.

The above discussion states that, given a displacement field �u(�x), the components of

the infinitesimal strain tensor are easily calculated by direct differentiation. The inverse

problem is much more complicated. Given an arbitrary infinitesimal strain tensor ε̂(�x)

we could search for that displacement field �u(�x) generating the imposed deformation. In

general, such a displacement field may not exist. There are, however, suitable conditions
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Table 3. The small strain approximation.

Lagrangian vision Eulerian vision

ĴL = Ĵ ĴE = Ĵ

F̂ = Ĝ−1 = Î + Ĵ F̂−1 = Ĝ = Î − Ĵ

η̂ = ε̂ ê = ε̂

Ĉ = B̂ = Î + 2ε̂ Ĉ−1 = B̂−1 = Î − 2ε̂

Û = V̂ = Î + ε̂ Û−1 = V̂ −1 = Î − ε̂

R̂ = Î + Ω̂ R̂−1 = Î − Ω̂

T̂ 1PK = T̂ 2PK = ∂U
∂ε̂

T̂ = ∂U
∂ε̂

under which the solution of this inverse problem is actually found. These conditions are

written in the very compact form

ηqkiηphj
∂2εij

∂xk∂xh
= 0 (9.8)

where η’s are the Levi-Civita permutation symbols. Eqs.(9.8) are known as infinitesimal

strain compatibility equations or Beltrami Saint-Venant equations. The balance

equations assume the standard form

∂Tji

∂xi
+ bj = ρ

∂2uj

∂t2
(9.9)

Tij = Tji (9.10)

The principles of linear and angular momentum, the definition of strain and its

compatibility conditions need to be supplemented by a further set of equations, known

as constitutive equations, which characterize the constitution of the elastic solid body.

In the case of small deformation we can write

T̂ = T̂ 1PK = T̂ 2PK =
∂U

∂ε̂
(9.11)

where the strain energy function is expressed as U = U(ε̂). Such a strain energy function

U may be developed in power series with respect to the components of ε̂. This leads to

the expression

U(η̂) =
1

2
Cijkhεijεkh +

1

6
Cijkhnmεijεkhεnm + ... (9.12)

Here the Cijkh and the Cijkhnm denote the second order elastic constant (SEOC) and

the third order elastic constant (TOEC), respectively, with reference to the small strain

tensor. We can determine the relations with the elastic constants defined in Eq.(8.28):

to this aim, we consider an homogeneous deformation with F̂ = Î + ε̂ (i.e. with Ω = 0

or Ĵ = ε̂) and we obtain η̂ = ε̂ + 1
2
ε̂2; so, by imposing U(ε̂) = U(η̂) we eventually obtain

Cijkh = CL
ijkh (9.13)

Cijkhnm = CL
ijkhnm +

3

2
CL

imkhδjn +
3

2
CL

ijkmδhn (9.14)



CONTENTS 27

The linear law for the relation between stress and strain is called the generalized Hooke’s

law. The general form of writing Hooke’s law is as follows

Tij = Cijkhεkh (9.15)

where Cijkh are constants (for homogeneous materials). Eq.(9.15) is of general validity,

including all the possible crystalline symmetry or, in other words, any kind of anisotropy.

The tensor of the elastic constants satisfies the following symmetry rules: 1) symmetry

in the first pair of indices: since Tij = Tji we have Cijkh = Cjikh: 2) symmetry in the

last pair of indices: since εkh = εhk we may take Cijkh = Cijhk; 3) symmetry between the

first pair and the last pair of indices: energetic considerations leads to Cijkh = Ckhij . At

the end Cijkh has at most 21 independent components rather than the 34 = 81 which,

as a general fourth-rank tensor, it might have had. In the case of a linear and isotropic

material we have

T̂ =
E

1 + ν
ε̂ +

νE

(1 + ν)(1 − 2ν)
Î Tr (ε̂) (9.16)

where E and ν are the Young modulus and the Poisson ratio, respectively. We can also

introduce the Lamé coefficients µ and λ as follows

µ =
E

2(1 + ν)
λ =

νE

(1 + ν)(1 − 2ν)
(9.17)

Therefore, Eq.(9.16) assumes the standard form

T̂ = 2µε̂ + λÎTr(ε̂) (9.18)

When we are dealing with a linear, isotropic and homogeneous material the governing

equations of the elasticity theory can be summed up as follows

(λ + µ) �∇
(

�∇ · �u
)

+ µ�∇2�u +�b = ρ
∂2�u

∂t2
(9.19)

This is an equation of motion where the displacement field is the single unknown, which

have been called Lamé or Navier equation. Such a motion equation for a isotropic

elastic body can be also written in a different form by utilizing the general property
�∇×

(
�∇× �u

)
= �∇

(
�∇ · �u

)
− �∇2�u, which holds for the differential operators. The result

is

(λ + µ) �∇×
(

�∇× �u
)

+ (λ + 2µ)�∇2�u +�b = ρ
∂2�u

∂t2
(9.20)

Both Eq. (9.19) and Eq. (9.20) are linear partial differential equations of the second

order with a vector field �u (�r) as unknown. In order to find a solution of Eq. (9.19)

or Eq. (9.20) we must impose some boundary conditions depending on the physical

problem under consideration. If we consider a body with an external surface S, a first

type of boundary condition fixes the values of the displacement field on this surface at

any time. It means that �u = �u(�x, t) for any �x ∈ S and for any t in a given interval. When

the entire external surface is described by these conditions we say that we are solving

an elastic problem of the first kind (Dirichlet). A second kind of boundary conditions

fixes the stress applied on the external surface. It means that Tijnj = fi(�x, t) for any
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�x ∈ S and for any t in a given interval. When the entire external surface is described

by these conditions we say that we are solving an elastic problem of the second kind

(Neumann). Finally, a third case can be defined by dividing the surface S in two parts

and by applying the Dirichlet conditions to the first part and the Neumann conditions

to the second part. In this case we say that we are solving an elastic problem of the

third kind, subjected to mixed boundary conditions.


